HAPPY BIRTHDAY NASA

October 17, 2018


Some information for this post is taken from NASA Tech Briefs, Vol 42, No.10

On October 4, 1957, the Soviet Union launched Sputnik 1, the world’s first artificial satellite.  I remember the announcement just as though it was yesterday.  Walter Cronkite announced the “event” on the CBS evening news.  That single event was a game-changer and sent the United States into action. That’s when we realized we were definitely behind the curve.  The launch provided the impetus for increased spending for aerospace endeavors, technical and scientific educational programs, and the chartering of a new federal agency to manage air and space research and development. The United States and Russia were engaged in a Cold War, and during this period of time, space exploration emerged as a major area of concern.  In short, they beat us to the punch and caught us with our pants down.

As a result, President Dwight David Eisenhower created the National Aeronautics and Space Administration or NASA.  NASA opened for business on October 1, 1958, with T. Keith Glenman, president of the Case Institute of Technology, as its first administrator.  NASA’s primary goal was to “provide research into the problems of flight within and outside the Earth’s atmosphere, and other purposes. “(Not too sure the “other purposes” was fully explained but that’s no real problem.  The “spooks” had input into the overall mission of NASA due to the Cold War.)

NASA absorbed NACA (National Advisory Committee on Aeronautics) including three major research laboratories: 1.) Langley Aeronautical Laboratory, 2.) Ames Aeronautical Laboratory, and 3.) the Lewis Flight Propulsion Laboratory.  There were two smaller laboratories included with the new Federal branch also.  NASA quickly incorporated other organizations into its new agency, notably the space science group of the Naval Research Laboratory in Maryland, the Jet Propulsion Laboratory managed by Caltech for the Army and the Army Ballistic Missile Agency in Huntsville, Alabama. As you recall, Dr. Werner von Braun’s team of engineers were at that time engaged in the development of very large rockets.

The very first launch for NASA was from Cape Canaveral, Florida.  It was the Pioneer I, which launched on October 11, 1958. In May of 1959, Pioneer 4 was launched to the Moon, successfully making the first U.S. lunar flyby.

NASA’s first high-profile program involving human spaceflight was Project Mercury, an effort to learn if humans could survive the rigors of spaceflight.  On May 5, 1961, Alan B. Shepard Jr. became the first American to fly into space.  He rode his Mercury capsule on a fifteen (15) minute suborbital mission.

On May 25, 1961, President John F. Kennedy announced the goal of sending astronauts to the moon and back before the end of the decade.  To facilitate this goal, NASA expanded the existing manned spaceflight program in December 1961 to include the development of a two-man spacecraft. The program was officially designated Gemini and represented a necessary intermediate step in sending men to the moon on what became known as the Apollo Missions.  I had the great pleasure of being in the Air Force at that period of history and worked on the Titan II Missile.  The Titan II shot the Mercury astronauts into orbit.  Every launch was a specular success for our team at the Ogden Air Material Area located at Hill Air Force Base in Ogden, Utah.  The missile has since been made obsolete by other larger and more powerful rockets but it was the “ride” back in those days.

One thing I greatly regret is the cessation of maned-flight by our government.  All of the efforts expended during the days of Mercury, Gemini and Apollo have not been totally lost but we definitely have relinquished our dominance in manned space travel.  Once again, you can thank your “local politicians” for that great lack of vision.

Advertisements

THE RUSSIANS ARE COMING

August 18, 2018


Are we as Americans a little paranoid—or maybe a lot paranoid when it comes to trusting the Russians?  In light of the stories involving Russian collusion during the recent presidential election, maybe we should put trust on the shelf in all areas of involvement with Putin and the “mother-land”.  Do recent news releases through “pop” media muddy the waters or really do justice to a very interesting occurrence noted just this week? Let’s take a look.

The following is taken from a UPI News release on 16 August 2018:

“Aug. 16 (UPI) — Just days after the Trump administration proposed a Space Force as a new branch of the military, U.S. officials say they’re concerned about “very abnormal behavior” involving a Russian satellite.  The satellite, launched in October, is displaying behavior “inconsistent” with the kind of satellite Russia says it is, said Yleem D.S. Poblete, assistant secretary of state for the Bureau of Arms Control, Verification and Compliance . “Poblete suggested the satellite could be a weapon. “We don’t know for certain what it is, and there is no way to verify it,” he said Wednesday at a disarmament conference in Switzerland.

An artist’s rendition of that satellite is given below:

“Our Russian colleagues will deny that its systems are meant to be hostile,” Poblete continued. “But it is difficult to determine an object’s true purpose simply by observing it on orbit. “So that leads to the question: is this, again, enough information to verify and assess whether a weapon has or has not been tested in orbit? The United States does not believe it is.”

This release is basically saying that if we do not know what the Russian satellite is supposed to do, then it must be a weapon.  One of my favorite online publications is SPACE.com.  This group does a commendable job at assessing breaking stories and giving us the straight “poop” relative to all things in the cosmos.  Let’s take a look at what they say.

SPACE.com:

“This gets a bit confusing, so bear with me: Russia launched the Cosmos 2519 satellite in June 2017. This spacecraft popped out a subsatellite known as Cosmos 2521 in August of that year. On Oct. 30, a second subsat, Cosmos 2523, deployed from one of these two other craft.

“I can’t tell from the data whether the parent [of 2523] was 2519 or 2521, and indeed, I can’t be sure that U.S. tracking didn’t swap the IDs of 2519 and 2521 at some point,” McDowell said.  (NOTE: Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics who monitors many of the spacecraft circling our planet using publicly available U.S. tracking data.)

These three spacecraft performed a variety of maneuvers over the ensuing months, according to McDowell and Brian Weeden, director of program planning at the nonprofit Secure World Foundation. For example, Cosmos 2521 conducted some “proximity operations” around 2519 and may have docked with the mothership in October, Weeden said via Twitter today (Aug. 16).

Cosmos 2521 adjusted its orbit slightly in February 2018, then performed two big engine burns in April to significantly lower its slightly elliptical path around Earth, from about 400 miles (650 kilometers) to roughly 220 miles (360 km), McDowell said. The satellite fired its engines again on July 20, reshaping its orbit to a more elliptical path with a perigee (close-approach point) of 181 miles (292 km) and an apogee (most-distant point) of 216 miles (348 km).

And Cosmos 2519 conducted a series of small burns between late June and mid-July of this year, shifting its orbit from a nearly circular one (again, with an altitude of about 400 miles) to a highly elliptical path with a perigee of 197 miles (317 km) and an apogee of 413 miles (664 km), McDowell calculated.

These big maneuvers are consistent with a technology demonstration of some kind, he said.

Perhaps the Russians “are checking out the [spacecraft] bus and its capability to deliver multiple subsatellites to different orbits — something like that,” McDowell said. “From the information that’s available in the public domain, that would be an entirely plausible interpretation.”

“What are they complaining about?” McDowell said, referring to American officials. Weeden voiced similar sentiments. Cosmos 2523’s “deployment was unusual, but hard to see at this point why the US is making it a big deal,” he said via Twitter today. “There are a lot of facts and not a lot of pattern,” McDowell said. “So, partly I take the U.S. statement as saying, ‘Russia, how dare you do something confusing?'” It’s possible, of course, that American satellites or sensors have spotted Cosmos 2523 (or Cosmos 2519, or Cosmos 2521) doing something suspicious — some activity that can’t be detected just by analyzing publicly available tracking data. “But they need to say a little more for us to take that seriously,” McDowell said.

CONCLUSIONS:

We just do not know and we do not trust the Russians to let us know the purpose behind their newest satellite.  Then again, why should they?    We live in a world where our own media tells us “the public has the right to know”.  That’s really garbage.  The public and others have a right to know what we choose to tell them.  No more—no less.


Space Exploration Technologies Corp., doing business as SpaceX, is a private American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California. SpaceX has flown twenty-five (25) resupply missions to the International Space Station (ISS) under a partnership with NASA. As you all know, NASA no longer undertakes missions of this sort but relies upon private companies such as Space X for delivery of supplies and equipment to the ISS as well as launching satellite “dishes” for communications.

BACKGROUND: 

Entrepreneur Elon Musk, founded PayPal and Tesla Motors is the visionary who started the company Space Exploration Technologies.   In early 2002 Musk was seeking staff for the new company and approached rocket engineer Tom Mueller, now SpaceX’s CTO of Propulsion.  SpaceX was first headquartered in a seventy-five thousand (75,000) square foot warehouse in El Segundo, California. Musk decided SpaceX’s first rocket would be named Falcon 1, a nod to Star Wars’ Millennium Falcon. Musk planned Falcon 1’s first launch to occurring in November 2003, fifteen (15) months after the company started. When you think about the timing, you must admit this is phenomenal and extraordinary.   Now, the fact that is was an unmanned mission certainly cut the time due to no need for safety measures to protect the crew.  No redundant systems needed other than protecting the launch and cargo itself.

In January 2005 SpaceX bought a ten percent (10%) stake in Surrey Satellite Technology and by March 2006, Musk had invested US $100 million in the company.

On August 4, 2008 SpaceX accepted a further twenty ($20) million investment from Founders Fund.   In early 2012, approximately two-thirds of the company was owned by its founder Must with seventy  (70) million shares of stock estimated to be worth $875 million on private markets.  The value of SpaceX was estimated to be at $1.3 billion as of February 2012.   After the COTS 2+ flight in May 2012, the company private equity valuation nearly doubled to $2.4 billion.

SATELLITE LAUNCH:

The latest version of SpaceX’s workhorse Falcon 9 rocket lifted off for the second time on July 22, lighting up the skies over Florida’s Space Coast in a dazzling predawn launch.  The “Block 5” variant of the two-stage Falcon 9 blasted off from Cape Canaveral Air Force Station at 1:50 a.m. EDT (0550 GMT), successfully delivering to orbit a satellite for the Canadian communications company Telesat.     Less than nine (9) minutes after launch, the rocket’s first stage came back down to Earth, a with a successful landing aboard the SpaceX drone ship “Of Course I Still Love You” a few hundred miles off the Florida coast.  The Falcon 9 may be seen with the JPEG below.

The Block 5 is the newest, most powerful and most reusable version of the Falcon 9.  Musk said the Block 5 first stages are designed to fly at least ten (10) times with just inspections between landing and liftoff, and one hundred (100) times or more with some refurbishment involved.

Such extensive reuse is key to Musk’s quest to slash the cost of spaceflight, making Mars colonization and other bold exploration efforts economically feasible. To date, SpaceX has successfully landed more than two dozen Falcon 9 first stages and re-flown landed boosters on more than a dozen occasions.

The only previous Block 5 flight occurred this past May 2018 and also involved a new rocket configuration.  The satellite lofted is called Telstar 19V, is headed for geostationary orbit, about 22,250 miles (35,800 kilometers) above Earth. Telstar 19V, which was built by California-based company SSL, will provide broadband service to customers throughout the Americas and Atlantic Ocean region, according to a Telesat fact sheet.

The booster’s first stage, sporting redesigned landing legs, improved heat shield insulation, upgraded avionics and more powerful engines with crack-resistant turbine hardware, flipped around moments after falling away from the Falcon 9’s second stage and flew itself back to an on-target landing on an offshore drone-ship.

It was the 25th successful booster recovery overall for SpaceX and the fifth so far this year, the latest demonstration of SpaceX’s maturing ability to bring orbit-class rockets back to Earth to fly again in the company’s drive to dramatically lower launch costs.

CONCLUSION:

I think the fact that Musk has taken on this project is quite extortionary.  Rocket launches, in times past, have represented an amazing expenditure of capital with the first and second stages being lost forever.  The payload, generally the third stage, go on to accomplish the ultimate mission.  Stages one and two become space debris orbiting Earth and posing a great menace to other launches.  Being able to reuse any portion of stages one and two is a great cost-effective measure and quite frankly no one really though it could be accomplished.


I feel that most individuals, certainly most adults, wonder if anyone is out there.  Are there other planets with intelligent life and is that life humanoid or at least somewhat intelligent?  The first effort would be to define intelligent.  Don’t laugh but this does have some merit and has been considered by behavioral scientists for a significant length of time.  On Earth, human intelligence took nearly four (4) Billion years to develop. If living beings develop advanced technology, they can make their existence known to the Universe. A working definition of “intelligent” includes self-awareness, use of tools, and use of language. There are other defining traits, as follows:

  • Crude perceptive abilities: Like concept of a handshake (sending a message and acknowledging receipt of one sent by you)
  • Crude communication abilities: Some primitive language and vocabulary
  • Sentience: Should be able of original thought and motivation, some form of self -awareness
  • Retention: Ability to remember and recall information on will
  • Some form of mathematical ability like counting

Please feel free to apply your own definition to intelligence. You will probably come as close as anyone to a workable one.

TESS:

NASA is looking and one manner in which the search occurs is with the new satellite TESS.

The Transiting Exoplanet Survey Satellite (TESS) is an Explorer-class planet finder.   TESS will pick up the search for exoplanets as the Kepler Space Telescope runs out of fuel.

Kepler, which has discovered more than 4,500 potential planets and confirmed exoplanets, launched in 2009. After mechanical failure in 2013, it entered a new phase of campaigns to survey other areas of the sky for exoplanets, called the K2 mission. This enabled researchers to discover even more exoplanets, understand the evolution of stars and gain insight about supernovae and black holes.

Soon, Kepler’s mission will end, and it will be abandoned in space, orbiting the sun, therefore:  never getting closer to Earth than the moon.

The spaceborne all-sky transit survey, TESS will identify planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and orbital distances. The principal goal of the TESS mission is to detect small planets with bright host stars in the solar neighborhood, so that detailed characterizations of the planets and their atmospheres can be performed. TESS is only one satellite used to determine if there are any “goldy-locks” planets in our solar system. TESS will survey an area four hundred (400) times larger than Kepler observed. This includes two hundred thousand (200,000) of the brightest nearby stars. Over the course of two years, the four wide-field cameras on board will stare at different sectors of the sky for days at a time.

TESS will begin by looking at the Southern Hemisphere sky for the first year and move to the Northern Hemisphere in the second year. It can accomplish this lofty goal by dividing the sky into thirteen (13) sections and looking at each one for twenty-seven (27) days before moving on to the next.

The various missions launched to discover exoplanets may be seen below.

As mentioned earlier, TESS will monitor the brightness of more than two hundred thousand (200,000) stars during a two-year mission, searching for temporary drops in brightness caused by planetary transits. Transits occur when a planet’s orbit carries it directly in front of its parent star as viewed from Earth. TESS is expected to catalog more than fifteen hundred (1,500) transiting exoplanet candidates, including a sample of approximately five hundred (500) Earth-sized and ‘Super Earth’ planets, with radii less than twice that of the Earth. TESS will detect small rock-and-ice planets orbiting a diverse range of stellar types and covering a wide span of orbital periods, including rocky worlds in the habitable zones of their host stars.  This is a major undertaking and you might suspect so joint-ventures are an absolute must.  With that being the case, the major parterners in this endeavor may be seen as follows:

The project overview is given by the next pictorial.

In summary:

TESS will tile the sky with 26 observation sectors:

  • At least 27 days staring at each 24° × 96° sector
  • Brightest 200,000 stars at 1-minute cadence
  • Full frame images with 30-minute cadence
  • Map Southern hemisphere in first year
  • Map Northern hemisphere in second year
  • Sectors overlap at ecliptic poles for sensitivity to smaller and longer period planets in JWST Continuous Viewing Zone (CVZ)

TESS observes from unique High Earth Orbit (HEO):

  • Unobstructed view for continuous light curves
  • Two 13.7-day orbits per observation sector
  • Stable 2:1 resonance with Moon’s orbit
  • Thermally stable and low-radiation

The physical hardware looks as follows:

You can’t tell much about the individual components from the digital picture above but suffice it to say that TESS is a significant improvement relative to Kepler as far as technology.  The search continues and I do not know what will happen if we ever discover ET.  Imagine the areas of life that would affect?

 

 

GOTTA GET IT OFF

January 6, 2018


OKAY, how many of you have said already this year?  “MAN, I have to lose some weight.”  I have a dear friend who put on a little weight over a couple of years and he commented: “Twenty or twenty-five pounds every year and pretty soon it adds up.”  It does add up.  Let’s look at several numbers from the CDC and other sources.

  • The CDC organization estimates that three-quarters (3/4of the American population will likely be overweight or obese by 2020. The latest figures, as of 2014, show that more than one-third (36.5%) of U.S. adults age twenty (20) and older and seventeen percent (17%) of children and adolescents aged two through nineteen (2–19) years were obese.
  • American ObesityRates are on the Rise, Gallup Poll Finds. Americans have become even fatter than before, with nearly twenty-eight (28%) percent saying they are clinically obese, a new survey finds. … At 180 pounds this person has a BMI of thirty (30) and is considered obese.

Now, you might say—we are in good company:  According to the World Health Organization, the following countries have the highest rates of obesity.

  • Republic of Nauru. Formerly known as Pleasant Island, this tiny island country in the South Pacific only has a population of 9,300. …
  • American Samoa. …
  • Tokelau
  • Tonga
  • French Polynesia. …
  • Republic of Kiribati. …
  • Saudi Arabia. …
  • Panama.

There is absolutely no doubt that more and more Americans are over weight even surpassing the magic BMI number of 30.  We all know what reduction in weight can do for us on an individual basis, but have you ever considered what reduction in weight can do for “other items”—namely hardware?

  • Using light-weight components, (composite materials) and high-efficiency engines enabled by advanced materials for internal-combustion engines in one-quarter of U.S. fleet trucks and automobiles could possibly save more than five (5) billion gallons of fuel annually by 2030. This is according to the US Energy Department Vehicle Technologies Office.
  • This is possible because, according to the Oak Ridge National Laboratory, The Department of Energy’s Carbon Fiber Technology Facility has a capacity to produce up to twenty-five (25) tons of carbon fiber per year.
  • Replacing heavy steel with high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by ten to sixty percent (10-60 %). Longer term, materials such as magnesium and carbon fiber-reinforced composites could reduce the weight of some components by fifty to seventy-five percent (50-75%).
  • It costs $10,000 per pound to put one pound of payload into Earth orbit. NASA’s goal is to reduce the cost of getting to space down to hundreds of dollars per pound within twenty-five (25) years and tens of dollars per pound within forty (40) years.
  • Space-X Falcon Heavy rocket will be the first ever rocket to break the $1,000 per pound per orbit barrier—less than a tenth as much as the Shuttle. ( SpaceX press release, July 13, 2017.)
  • The Solar Impulse 2 flew 40,000 Km without fuel. The 3,257-pound solar plane used sandwiched carbon fiber and honey-combed alveolate foam for the fuselage, cockpit and wing spars.

So you see, reduction in weight can have lasting affects for just about every person and some pieces of hardware.   Let’s you and I get it off.

THREE DAYS IN JANUARY

January 31, 2017


In looking at the political landscape over the last fifty (50) years I can truly say I have no real heroes.  Of course, ‘beauty is truly in the eye of the beholder’.  Most of our politicians are much too concerned about their base, their brand and their legacy to be bothered with discerning and carrying out the will of the people. There are two notable exceptions—Sir Winston Churchill and President Dwight David Eisenhower.  Let’s look at the achievements of President Eisenhower.

DOMESTIC ACCOMPLISHMENTS:

  • Launched the Interstate Highway System. Also known as the National Interstate and Defense Highways Act, this act came into effect on June 29, 1956, when President Dwight D. Eisenhower signed it. It authorized $25 billion for 41,000 miles of interstate highways to be constructed in the United States.
  • The National Aeronautics and Space Administration (NASA). On July 29, 1958, President Eisenhower signed the Act that created the National Aeronautics and Space Administration (NASA) which provided for the peaceful and collaborative exploration of space.
  • The Defense Advanced Research Project Agency. Launched the Defense Advanced Research Projects Agency, which ultimately led to the development of the Internet. (Cry your eyes out Al Gore!)
  • Established a strong science education via the National Defense Education Act
  • Sent federal troops to Little Rock, Arkansas for the first time since Reconstruction to enforce federal court orders to desegregate public schools
  • Signed civil rights legislation in 1957 and 1960 to protect the right to vote by African-Americans. After declaring that “There must be no second class citizens in this country,” PresidentDwight Eisenhower told the District of Columbia to use their schools as a model of integrating black and white public schools. He proposed the Civil Rights Acts of 1957 and 1960 to Congress, which he signed into law. The 1957 Act created a civil rights office within the U.S. Justice Department and the Civil Rights Commission; both departments had the authority to prosecute discriminatory cases and voting rights intrusions. They were the first significant civil rights laws since the late 19th Century.
  • Opposed Wisconsin Senator Joseph McCarthy and contributed to the end of McCarthyism by openly invoking the modern expanded version of executive privilege.
  • Desegregated the Armed Forces: Within his first two years as president, Eisenhower forced the desegregation of the military by reinforcing Executive Order #9981 issued by President Harry Truman in 1948.

FOREIGN POLICY ACCOMPLISHMENTS:

  • Deposed the leader of Iran in the 1953 Iranian coup d’̩tat .
  • Armistice that ended the Korean War: Eisenhower used his formidable military reputation to imply a threat of nuclear attacks if North Korea, China and South Korea didn’t sign an Armistice to end the three-year-old bloody war. It was signed on July 27, 1953.
  • Prioritized inexpensive nuclear weapons and a reduction of conventional military forces as a means of keeping pressure on the Soviet Union and reducing the federal deficit
  • First to articulate the domino theory of communist expansion in 1954
  • Established the US policy of defending Taiwan from Chinese communist aggression in the 1955 Formosa Resolution
  • Forced Israel, the UK, and France to end their invasion of Egypt during the Suez Crisis of 1956
  • Sent 15,000 U.S. troops to Lebanon to prevent the pro-Western government from falling to a Nasser-inspired revolution

ACCPMPLISHMENTS PRIOR TO BECOMING PRESIDENT:

  • Becoming a five-star general in the United States Army
  • Serving as Supreme Commander of the Allied Forces in Europe during World War II
  • Serving as the supervisor and planner of North Africa’s invasion in Operation Torch in 1942-43
  • Successfully invading France and Germany in 1944-45, attacking from the Western Front
  • Becoming the first Supreme Commander of NATO
  • Becoming the 34th President of the United States for two terms, 1953 until 1961

All of these accomplishments are celebrated in a new book by Bret Baier and Catherine Whitney. Bret Baier, the chief political anchor for Fox News and talented writer Catherine Whitney, have written a book that comes at a timely moment in American history. I found a great deal of similarities between the transition of Eisenhower and Kennedy relative to the transition of Obama and Trump.  Maybe I was just looking for them but in my opinion they are definitely there.  “Three Days in January” records the final days of the Eisenhower presidency and the transition of leadership to John F. Kennedy. Baier describes the three days leading up to Kennedy’s inauguration as the culmination of one of America’s greatest leaders who used this brief time to prepare both the country and the next president for upcoming challenges.

Eisenhower did not particularly like JFK.  Baier writes: “In most respects, Kennedy, a son of privilege following a dynastic pathway, was unknowable to Ike. He was as different from Eisenhower as he could be, as well as from Truman, who didn’t much care for him.” Times of transition are difficult under the very best of circumstances but from Eisenhower to Kennedy was a time, as described by Baier, as being a time of concern on Eisenhower’s part.  There were unknowns in Eisenhower’s mind as to whether Kennedy could do the job.  Couple that with Kennedy’s young age and inexperience in global affairs and you have a compelling story.  During those three days, though, Eisenhower warmed up to Kennedy.  There was a concerted effort to make the transition as smooth as possible and even though Kennedy and his staff seemed to be very cocky, the outgoing President was very instrumental in giving President-elect Kennedy information that would serve him very well during his first one hundred days and beyond.

On January 17, 1961, three days before inauguration ceremonies, Eisenhower gave a notable and now-prophetic farewell speech in which he looked into the future, warning Americans about the dangers of putting partisanship above national interest, the risks of deficit spending, the expansion of the military-industrial complex and the growing influence of special interest groups on government officials.  Eisenhower’s concerns have become reality in our modern day with technology outpacing legislation and common sense to oversee development of hardware that can destroy us all.  This book is about those three days and brief time-periods prior to and after that very meaningful speech.

If you are a historian, a news junkie, or someone who just likes to keep up, I can definitely recommend this book to you.  It is extremely well-written and wonderfully researched. Mr. Baier and Ms. Whitney have done their research with each reference noted, by chapter, in the back of the book.  It is very obvious that considerable time and effort was applied to each paragraph to bring about a coherent and compelling novel.  It, in my opinion, is not just a book but a slice of history.  A document to be read and enjoyed.

ROBONAUGHTS

September 4, 2016


OK, if you are like me, your sitting there asking yourself just what on Earth is a robonaught?  A robot is an electromechanical device used primarily to take the labor and sometimes danger from human activity.  As you well know, robotic systems have been in use for many years with each year providing systems of increasing sophistication.  An astronaut is an individual operating in outer space.  Let’s take a proper definition for ROBONAUGHT as provided by NASA.

“A Robonaut is a dexterous humanoid robot built and designed at NASA Johnson Space Center in Houston, Texas. Our challenge is to build machines that can help humans work and explore in space. Working side by side with humans, or going where the risks are too great for people, Robonauts will expand our ability for construction and discovery. Central to that effort is a capability we call dexterous manipulation, embodied by an ability to use one’s hand to do work, and our challenge has been to build machines with dexterity that exceeds that of a suited astronaut.”

My information is derived from “NASA Tech Briefs”, Vol 40, No 7, July 2016 publication.

If you had your own personal robotic system, what would you ask that system to do?  Several options surface in my world as follows: 1.) Mow the lawn, 2.) Trim hedges, 3.) Wash my cars, 4.) Clean the gutters, 5.) Vacuum floors in our house, 6.) Wash windows, and 7.) Do the laundry.   (As you can see, I’m not really into yard work or even house work.)  Just about all of the tasks I do on a regular basis are home-grown, outdoor jobs and time-consuming.

For NASA, the International Space Station (ISS) has become a marvelous test-bed for developing the world’s most advanced robotic technology—technology that definitely represents the cutting-edge in space exploration and ground research.  The ISS now hosts a significant array of state-of-the are robotic projects including human-scale dexterous robots and free-flying robots.  (NOTE:  The vendor is Astrobee and they have developed for NASA a free-flyer robotic system consists of structure, propulsion, power, guidance, navigation and control (GN&C), command and data handling (C&DH), avionics, communications, dock mechanism, and perching arm subsystems. The Astrobee element is designed to be self-contained and capable of autonomous localization, orientation, navigation and holonomic motion as well as autonomous resupply of consumables while operating inside the USOS.)  These robotic systems are not only enabling the future of human-robot space exploration but promising extraordinary benefits for Earth-bound applications.

The initial purpose for exploring the design and fabrication of a human robotic system was to assist astronauts in completing tasks in which an additional pair or pairs of hands would be very helpful or to perform jobs either too hazardous or too mundane for crewmembers.  For this reason, the  Robonaut 2, was NASA’s first humanoid robot in space and was selected as the NASA Government Invention of the Year for 2014. Many outstanding inventions were considered for this award but Robonaut 2 was chosen after a challenging review by the NASA selection committee that evaluated the robot in the following areas: 1.) Aerospace Significance, 2.) Industry Significance, 3.) Humanitarian Significance, 4.) Technology Readiness Level, 5.) NASA Use, and 6.) Industry Use and Creativity. Robonaut 2 technologies have resulted in thirty-nine (39) issued patents, with several more under review. The NASA Invention of the Year is a first for a humanoid robot and with another in a series of firsts for Robonaut 2 that include: first robot inside a human space vehicle operating without a cage, and first robot to work with human-rated tools in space.  The R2 system developed by NASA is shown in the following JPEGs:

R2 Robotic System

R2 Robotic System(2)

R2 Robotic System(3)

 

Robonaut 2, NASA’s first humanoid robot in space, was selected as the NASA Government Invention of the Year for 2014. Many outstanding inventions were considered for this award, and Robonaut 2 was chosen after a challenging review by the NASA selection committee that evaluated the robot in the following areas: Aerospace Significance, Industry Significance, Humanitarian Significance, Technology Readiness Level, NASA Use, Industry Use and Creativity. Robonaut 2 technologies have resulted in thirty-nine (39) issued patents, with several more under review. The NASA Invention of the Year is a first for a humanoid robot and another in a series of firsts for Robonaut 2 that include: first robot inside a human space vehicle operating without a cage, and first robot to work with human-rated tools in space.

R2 first powered up for the first time in August 2011. Since that time, robotics engineers have tested R2 on ISS, completing tasks ranging from velocity air measurements to handrail cleaning—simple but necessary tasks that require a great deal of crew time.   R2 also has an on-board task of flipping switches and pushing buttons, each time controlled by space station crew members through the use of virtual reality gear. According to Steve Gaddis, “we are currently working on teaching him how to look for handrails and avoid obstacles.”

The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012.  Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators (“legs”), more capable processors, and new sensors. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions.

One advantage of a humanoid design is that Robonaut can take over simple, repetitive, or especially dangerous tasks on places such as the International Space Station. Because R2 is approaching human dexterity, tasks such as changing out an air filter can be performed without modifications to the existing design.

More and more we are seeing robotic systems do the work of humans.  It is just a matter of time before we see their usage here on terra-ferma.  I mean human-type robotic systems used to serve man.  Let’s just hope we do not evolve into the “age of the machines”.  I think I may take another look at the movie Terminator.

%d bloggers like this: