PERSEVERANCE

April 15, 2021


Some of the information for this post comes from the publication TechBriefs, March 2021 edition.

We have just witnessed one of the most awesome engineering feats in the history of our species.  The landing of the spacecraft Perseverance on the planet Mars was accomplished with remarkable precision. After approximately seven months and three hundred million (300) million miles, the Mars 2020 Perseverance rover landed on Mars on February 18th at approximately 3:55 p.m. EST.  In other words, NASA had the landing down to the minute.  From NASA, Perseverance left Earth traveling at a speed of twenty-four thousand six hundred (24,600) miles per hour or about thirty-nine thousand (39,000) kilometers per hour. The trip to Mars is approximately three hundred (3000 million miles from Earth. During that journey, the engineers working on the Perseverance mission had the ability to change the speed, direction and trajectory of the rover to make its arrival to the Red Planet an absolutely precise event. 

JEZERO CRATER:

NASA chose the Jezero Crater as the landing site believing the area was once flooded with water and possibly home to an ancient river delta.  Conceivably, microbial life could have lived in the Jezero Crater during one or more of wet periods in the life of the planet.  The Jezero Crater tells a story of the on-again, off-again nature of the wet past of Mars. More than three point five (3.5) billion years ago, river channels spilled over the crater wall and created a lake. Scientists see evidence that water carried clay minerals from the surrounding area into the crater lake. Conceivably, microbial life could have lived in Jezero during one or more of these wet times. If so, signs of their remains might be found in lakebed or shoreline sediments. Scientists will study how the region formed and evolved, seek signs of past life, and collect samples of Mars rock and soil that might preserve these signs.  The site looks something like the following:

You will notice we have been there before. Jezero Crater is twenty-eight (28) miles wide, and is located on the western edge of a flat plain called Isidis Planitia, which lies just north of the Martian equator. The landing site is about two thousand three hundred (2,300) miles from Curiosity’s landing site in Gale Crater.  Jezero Crater sits within the Isidis Planitia region of Mars, where an ancient meteorite impact left behind a large crater some seven hundred and fifty (750) miles across. This event is known as Isidis impact, and it forever changed the rock at the base of the crater. A later, smaller meteorite impact created the Jezero Crater within the Isidis impact basin. Scientists believe that these events likely created environments friendly to life. There is evidence of ancient river flow into Jezero, forming a delta that has long since been dry.

THE LANDING:

The digital below will show the decent for the landing.  Please note the exact timing given below the digital.

Here’s a step-by-step timeline of the entry, descent, and landing sequence, beginning at the moment Perseverance’s heat shield first encounters the upper traces of the Martian atmosphere:

  • Entry+00:00: Atmospheric entry.
  • Entry+01:20: Peak entry heating, with temperatures outside the heat shield reaching about 2,370 degrees Fahrenheit (1,300 degrees Celsius).
  • Entry+01:30: Peak deceleration.
  • Entry+04:00: Perseverance deploys its seventy point five (70.5)-foot-wide supersonic parachute at an altitude of about seven (7) miles and a speed of about nine hundred and forty (940) mph. The craft deploys the chute when it detects that it has reached a predetermined distance from the landing site.
  • Entry+04:20: Perseverance jettisons its no-longer-needed heat shield, revealing a landing radar and cameras to help the spacecraft navigate to a safe landing site.
  • Entry+04:50: Radar lock on the Martian surface.
  • Entry+05:30: Perseverance obtains a terrain relative navigation solution by using images captured by on-board cameras to search for a safe landing site.
  • Entry+05:50: The Perseverance rover jettisons its backshell at an altitude of one point three (1.3) miles freeing the craft’s descent stage to fire eight throttleable retrorockets to slow for landing. After reaching an altitude of about sixty-six (66) feet, or 20 meters, the descent stage will lower the rover on Nylon cords to a distance of about twenty-five (25) feet. The rover’s wheels will deploy before setting down in Jezero Crater.
  • Entry+6:50: Perseverance lands on Mars. Pyrotechnics will fire blades to sever the Nylon cords connecting the rover to its descent stage, which will propel itself a safe distance away before impacting the Martian surface.

The actual placement of the rover onto the planet is envisioned as follows:

The rover itself looks as follows:

INGENUITY:

One other first represents a huge technology-demonstration component. A tiny helicopter named Ingenuity is flying to the Red Planet on Perseverance’s belly. In the early days of the Mars 2020 mission, Ingenuity will make a few test flights, trying to become the first rotorcraft ever to fly on a world beyond Earth. Success could open Mars to extensive aerial exploration in the future, NASA officials have said.

The Ingenuity copter looks as follows:

“As with everything with the helicopter, this type of deployment has never been done before,” said Farah Alibay, Mars Helicopter integration lead for the Perseverance rover. “Once we start the deployment there is no turning back. All activities are closely coordinated, irreversible, and dependent on each other. If there is even a hint that something isn’t going as expected, we may decide to hold off for a sol or more until we have a better idea what is going on.”

The helicopter deployment process will take about six sols (six days, four hours on Earth). On the first sol, the team on Earth will activate a bolt-breaking device, releasing a locking mechanism that helped hold the helicopter firmly against the rover’s belly during launch and Mars landing. The following sol, they will fire a cable-cutting pyrotechnic device, enabling the mechanized arm that holds Ingenuity to begin rotating the helicopter out of its horizontal position. This is also when the rotorcraft will extend two of its four landing legs.

During the third sol of the deployment sequence, a small electric motor will finish rotating Ingenuity until it latches, bringing the helicopter completely vertical. During the fourth sol, the final two landing legs will snap into position. On each of those four sols, the Wide-Angle Topographic Sensor for Operations and engineering (WATSON) imager will take confirmation shots of Ingenuity as it incrementally unfolds into its flight configuration. In its final position, the helicopter will hang suspended at about five (5) inches over the Martian surface. At that point, only a single bolt and a couple dozen tiny electrical contacts will connect the helicopter to Perseverance. On the fifth sol of deployment, the team will use the final opportunity to utilize Perseverance as a power source and charge Ingenuity’s six battery cells.

“Once we cut the cord with Perseverance and drop those final five inches to the surface, we want to have our big friend drive away as quickly as possible so we can get the Sun’s rays on our solar panel and begin recharging our batteries,” said Balaram.

On the sixth and final scheduled sol of this deployment phase, the team will need to confirm three things: that Ingenuity’s four legs are firmly on the surface of Jezero Crater, that the rover did, indeed, drive about sixteen (16) feet away, and that both helicopter and rover are communicating via their onboard radios. This milestone also initiates the thirty (30)-sol clock during which time all preflight checks and flight tests must take place.

“Ingenuity is an experimental engineering flight test – we want to see if we can fly at Mars,” said MiMi Aung, project manager for Ingenuity Mars Helicopter at JPL. “There are no science instruments onboard and no goals to obtain scientific information. We are confident that all the engineering data we want to obtain both on the surface of Mars and aloft can be done within this thirty (30)-sol window.

CONCLUSIONS:

One reason I think this is amazing is I worked on the Titan II missile in the mid-60s. The Titan II shot the Gemini astronauts.  All equipment and instruments were analog—not digital.  There were backup systems for safety and it was man-rated so they were absolutely necessary but the Perseverance Program amazes me as to the absolute precision.  This could not have been achieved without the digital age having been accomplished.


The International Space Station (ISS) has been in existence since 1969 in some form or the other.  A very quick history of its humble beginnings is given below.  Also, given below is a hyperlink to an absolutely fascinating UTUBE video of the existing ISS and various components of the internal workings of the station.  I do not know what I expected, but the facility is a marvelous combination of hardware, software and electronics.  I suppose when I thought of the ISS, I had in mind the deck of the Starship Enterprise.  Not even close—much more impressive.

A condensed version of the time line is given below but please go to the NASA website to get the extended chronology of the ISS.

  • On January 24, 1984, President Ronald Reagan commissioned NASA to build the international space station and to do so within the next 10 years.
  • On November 20, 1998 the first segment of the ISS launches: a Russian proton rocket named Zarya (“sunrise”).
  • On December 4, 1998, Unity, the first U.S.-built component of the International Space Station launches—the first Space Shuttle mission dedicated to assembly of the station.
  • The first crew to reside on the station was on November 2, 2000.  Astronaut Bill Shepherd and cosmonauts Yuri Gidzenko and Sergei Krikalev become the first crew to reside onboard the station, staying several months.
  • U.S. Lab Module was Added February 7, 2001.  Destiny, the U.S. Laboratory module, becomes part of the station. Destiny continues to be the primary research laboratory for U.S. payloads.
  • The European Lab Joined the ISS February 7, 2008. The European Space Agency’s Columbus Laboratory becomes part of the station.
  • On March 11, 2008 the Japanese Lab joined the ISS.  The first Japanese Kibo laboratory module becomes part of the station.
  •  

HISTORY:

The International Space Station (ISS) took ten (10) years and more than thirty (30) missions to assemble. It is the result of unprecedented scientific and engineering collaboration among five space agencies representing fifteen (15) countries. The space station is approximately the size of a football field: a four hundred and sixty (460)-ton, permanently crewed platform orbiting two hundred and fifty (250) miles above Earth. It is about four times as large as the Russian space station Mir and five times as large as the U.S. Skylab.

The idea of a space station was once science fiction, existing only in the imagination until it became clear in the 1940s that construction of such a structure might be attainable by our nation. As the Space Age began in the 1950s, designs of “space planes” and stations dominated popular media. The first rudimentary station was created in 1969 by the linking of two Russian Soyuz vehicles in space, followed by other stations and developments in space technology until construction began on the ISS in 1998, aided by the first reusable spacecraft ever developed: the American shuttles.

Until recently, U.S. research space onboard the ISS had been reserved for mostly government initiatives, but new opportunities for commercial and academic use of the ISS are now available, facilitated by the ISS National Lab.

There is no way I can provide a better description of the ISS than the video I hope you will look at.  That hyperlink is given as follows:  Hope you enjoy it.

HOW IT WORKS: The International Space Station

SPACEIL’s BERESHEET

March 5, 2019


If you read my posts at all you know I am solidly behind our space efforts by NASA or even private companies.  In my opinion, the United States of America made a HUGE mistake in withdrawing financed manned missions AND discontinuing efforts to colonize the moon.  We now are dependent upon Russia to take our astronauts to the ISS.   That may end soon with successful launches from SpaceX and Virgin Galactic.  The headway they are making is very interesting.

Israel has also made headline news just recently with their successful launch and landing on the moon’s surface.   A digital photograph of the lander is shown below.

The story of this effort is fascinating and started in 2010 with a Facebook post. “Who wants to go to the moon?” wrote Yariv Bash, a computer engineer. A couple of friends, Kfir Damari and Yonatan Winetraub responded, and the three met at a bar in Holon, a city south of Tel Aviv. At 30, Mr. Bash was the oldest. “As the alcohol levels in our blood increased, we became more determined,” Mr. Winetraub recalled.  They formed a nonprofit, SpaceIL, to undertake the task. More than eight years later, the product of their dreams, a small spacecraft called Beresheet, blasted off this past Thursday night atop a SpaceX Falcon 9 rocket at the Cape Canaveral Air Force Station in Florida.  Beresheet is a joint project of the nonprofit group SpaceIL and the company Israel Aerospace Industries.

Israel’s first lunar lander has notched another important milestone — its first in-space selfie. The newly released photo shows the robotic lander, known as Beresheet, looking back at Earth from a distance of 23,363.5 miles (37,600 kilometers).

“In the photo of Earth, taken during a slow spin of the spacecraft, Australia is clearly visible,” mission team members wrote in an image description today (March 5). “Also seen is the plaque installed on the spacecraft, with the Israeli flag and the inscriptions ‘Am Yisrael Chai’ and ‘Small Country, Big Dreams.'”

The entire Beresheet mission, including launch, costs about $100 million, team members have said.

Beresheet’s ride through space hasn’t been entirely smooth. Shortly after liftoff, team members noticed that the craft’s star trackers, which are critical to navigation, are susceptible to blinding by solar radiation. And Beresheet’s computer performed a reset unexpectedly just before the craft’s second planned engine burn.

Mission team members have overcome these issues. For example, they traced the computer reset to cosmic radiation and firmed up Beresheet’s defenses with a software update. The lander was then able to execute the engine burn, which put Beresheet back on track toward the moon.  This reset indicates complete control of the mission and the ability to make a mid-course correction if needed.  In other words, they know what they are doing.

I would be very surprised if Israel stopped with this success.  I am sure they have other missions they are considering.  They do have competition. Prior to Israel’s landing, there were only three other countries to “soft-land” a lunar lander:  USA, Russia and China.  The Chinese have already stated they want to colonize the moon and make that their base for further exploration.  We know the direction they are going.  I just hope we get serious about a colony on the moon and give up, for the present time, sending men and women to Mars.  Any Mars mission at this time would be nuts.

 

As always, I welcome your opinion.


With the federal government pulling out of manned space flight, it gave private companies ample opportunity to fill in the gaps.  Of course, these companies MUST have adequate funding, trained personnel and proper facilities to launch their version(s) of equipment, support and otherwise that will take man and equipment to the outer reaches of space.  The list of companies was quite surprising to me.  Let’s take a look.

These are just the launch vehicles.  There is also a huge list of manufacturers making man-rovers and orbiters, research craft and tech demonstrators, propulsion manufacturers, satellite launchers, space manufacturing, space mining, space stations, space settlements, spacecraft component manufacturers and developers, and spaceliner companies.   I will not publish that list but these companies are available for discovery by putting in the heading for each category.  To think we are not involved in space is obviously a misnomer.

 

HAPPY BIRTHDAY NASA

October 17, 2018


Some information for this post is taken from NASA Tech Briefs, Vol 42, No.10

On October 4, 1957, the Soviet Union launched Sputnik 1, the world’s first artificial satellite.  I remember the announcement just as though it was yesterday.  Walter Cronkite announced the “event” on the CBS evening news.  That single event was a game-changer and sent the United States into action. That’s when we realized we were definitely behind the curve.  The launch provided the impetus for increased spending for aerospace endeavors, technical and scientific educational programs, and the chartering of a new federal agency to manage air and space research and development. The United States and Russia were engaged in a Cold War, and during this period of time, space exploration emerged as a major area of concern.  In short, they beat us to the punch and caught us with our pants down.

As a result, President Dwight David Eisenhower created the National Aeronautics and Space Administration or NASA.  NASA opened for business on October 1, 1958, with T. Keith Glenman, president of the Case Institute of Technology, as its first administrator.  NASA’s primary goal was to “provide research into the problems of flight within and outside the Earth’s atmosphere, and other purposes. “(Not too sure the “other purposes” was fully explained but that’s no real problem.  The “spooks” had input into the overall mission of NASA due to the Cold War.)

NASA absorbed NACA (National Advisory Committee on Aeronautics) including three major research laboratories: 1.) Langley Aeronautical Laboratory, 2.) Ames Aeronautical Laboratory, and 3.) the Lewis Flight Propulsion Laboratory.  There were two smaller laboratories included with the new Federal branch also.  NASA quickly incorporated other organizations into its new agency, notably the space science group of the Naval Research Laboratory in Maryland, the Jet Propulsion Laboratory managed by Caltech for the Army and the Army Ballistic Missile Agency in Huntsville, Alabama. As you recall, Dr. Werner von Braun’s team of engineers were at that time engaged in the development of very large rockets.

The very first launch for NASA was from Cape Canaveral, Florida.  It was the Pioneer I, which launched on October 11, 1958. In May of 1959, Pioneer 4 was launched to the Moon, successfully making the first U.S. lunar flyby.

NASA’s first high-profile program involving human spaceflight was Project Mercury, an effort to learn if humans could survive the rigors of spaceflight.  On May 5, 1961, Alan B. Shepard Jr. became the first American to fly into space.  He rode his Mercury capsule on a fifteen (15) minute suborbital mission.

On May 25, 1961, President John F. Kennedy announced the goal of sending astronauts to the moon and back before the end of the decade.  To facilitate this goal, NASA expanded the existing manned spaceflight program in December 1961 to include the development of a two-man spacecraft. The program was officially designated Gemini and represented a necessary intermediate step in sending men to the moon on what became known as the Apollo Missions.  I had the great pleasure of being in the Air Force at that period of history and worked on the Titan II Missile.  The Titan II shot the Mercury astronauts into orbit.  Every launch was a specular success for our team at the Ogden Air Material Area located at Hill Air Force Base in Ogden, Utah.  The missile has since been made obsolete by other larger and more powerful rockets but it was the “ride” back in those days.

One thing I greatly regret is the cessation of maned-flight by our government.  All of the efforts expended during the days of Mercury, Gemini and Apollo have not been totally lost but we definitely have relinquished our dominance in manned space travel.  Once again, you can thank your “local politicians” for that great lack of vision.

THE RUSSIANS ARE COMING

August 18, 2018


Are we as Americans a little paranoid—or maybe a lot paranoid when it comes to trusting the Russians?  In light of the stories involving Russian collusion during the recent presidential election, maybe we should put trust on the shelf in all areas of involvement with Putin and the “mother-land”.  Do recent news releases through “pop” media muddy the waters or really do justice to a very interesting occurrence noted just this week? Let’s take a look.

The following is taken from a UPI News release on 16 August 2018:

“Aug. 16 (UPI) — Just days after the Trump administration proposed a Space Force as a new branch of the military, U.S. officials say they’re concerned about “very abnormal behavior” involving a Russian satellite.  The satellite, launched in October, is displaying behavior “inconsistent” with the kind of satellite Russia says it is, said Yleem D.S. Poblete, assistant secretary of state for the Bureau of Arms Control, Verification and Compliance . “Poblete suggested the satellite could be a weapon. “We don’t know for certain what it is, and there is no way to verify it,” he said Wednesday at a disarmament conference in Switzerland.

An artist’s rendition of that satellite is given below:

“Our Russian colleagues will deny that its systems are meant to be hostile,” Poblete continued. “But it is difficult to determine an object’s true purpose simply by observing it on orbit. “So that leads to the question: is this, again, enough information to verify and assess whether a weapon has or has not been tested in orbit? The United States does not believe it is.”

This release is basically saying that if we do not know what the Russian satellite is supposed to do, then it must be a weapon.  One of my favorite online publications is SPACE.com.  This group does a commendable job at assessing breaking stories and giving us the straight “poop” relative to all things in the cosmos.  Let’s take a look at what they say.

SPACE.com:

“This gets a bit confusing, so bear with me: Russia launched the Cosmos 2519 satellite in June 2017. This spacecraft popped out a subsatellite known as Cosmos 2521 in August of that year. On Oct. 30, a second subsat, Cosmos 2523, deployed from one of these two other craft.

“I can’t tell from the data whether the parent [of 2523] was 2519 or 2521, and indeed, I can’t be sure that U.S. tracking didn’t swap the IDs of 2519 and 2521 at some point,” McDowell said.  (NOTE: Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics who monitors many of the spacecraft circling our planet using publicly available U.S. tracking data.)

These three spacecraft performed a variety of maneuvers over the ensuing months, according to McDowell and Brian Weeden, director of program planning at the nonprofit Secure World Foundation. For example, Cosmos 2521 conducted some “proximity operations” around 2519 and may have docked with the mothership in October, Weeden said via Twitter today (Aug. 16).

Cosmos 2521 adjusted its orbit slightly in February 2018, then performed two big engine burns in April to significantly lower its slightly elliptical path around Earth, from about 400 miles (650 kilometers) to roughly 220 miles (360 km), McDowell said. The satellite fired its engines again on July 20, reshaping its orbit to a more elliptical path with a perigee (close-approach point) of 181 miles (292 km) and an apogee (most-distant point) of 216 miles (348 km).

And Cosmos 2519 conducted a series of small burns between late June and mid-July of this year, shifting its orbit from a nearly circular one (again, with an altitude of about 400 miles) to a highly elliptical path with a perigee of 197 miles (317 km) and an apogee of 413 miles (664 km), McDowell calculated.

These big maneuvers are consistent with a technology demonstration of some kind, he said.

Perhaps the Russians “are checking out the [spacecraft] bus and its capability to deliver multiple subsatellites to different orbits — something like that,” McDowell said. “From the information that’s available in the public domain, that would be an entirely plausible interpretation.”

“What are they complaining about?” McDowell said, referring to American officials. Weeden voiced similar sentiments. Cosmos 2523’s “deployment was unusual, but hard to see at this point why the US is making it a big deal,” he said via Twitter today. “There are a lot of facts and not a lot of pattern,” McDowell said. “So, partly I take the U.S. statement as saying, ‘Russia, how dare you do something confusing?'” It’s possible, of course, that American satellites or sensors have spotted Cosmos 2523 (or Cosmos 2519, or Cosmos 2521) doing something suspicious — some activity that can’t be detected just by analyzing publicly available tracking data. “But they need to say a little more for us to take that seriously,” McDowell said.

CONCLUSIONS:

We just do not know and we do not trust the Russians to let us know the purpose behind their newest satellite.  Then again, why should they?    We live in a world where our own media tells us “the public has the right to know”.  That’s really garbage.  The public and others have a right to know what we choose to tell them.  No more—no less.


Space Exploration Technologies Corp., doing business as SpaceX, is a private American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California. SpaceX has flown twenty-five (25) resupply missions to the International Space Station (ISS) under a partnership with NASA. As you all know, NASA no longer undertakes missions of this sort but relies upon private companies such as Space X for delivery of supplies and equipment to the ISS as well as launching satellite “dishes” for communications.

BACKGROUND: 

Entrepreneur Elon Musk, founded PayPal and Tesla Motors is the visionary who started the company Space Exploration Technologies.   In early 2002 Musk was seeking staff for the new company and approached rocket engineer Tom Mueller, now SpaceX’s CTO of Propulsion.  SpaceX was first headquartered in a seventy-five thousand (75,000) square foot warehouse in El Segundo, California. Musk decided SpaceX’s first rocket would be named Falcon 1, a nod to Star Wars’ Millennium Falcon. Musk planned Falcon 1’s first launch to occurring in November 2003, fifteen (15) months after the company started. When you think about the timing, you must admit this is phenomenal and extraordinary.   Now, the fact that is was an unmanned mission certainly cut the time due to no need for safety measures to protect the crew.  No redundant systems needed other than protecting the launch and cargo itself.

In January 2005 SpaceX bought a ten percent (10%) stake in Surrey Satellite Technology and by March 2006, Musk had invested US $100 million in the company.

On August 4, 2008 SpaceX accepted a further twenty ($20) million investment from Founders Fund.   In early 2012, approximately two-thirds of the company was owned by its founder Must with seventy  (70) million shares of stock estimated to be worth $875 million on private markets.  The value of SpaceX was estimated to be at $1.3 billion as of February 2012.   After the COTS 2+ flight in May 2012, the company private equity valuation nearly doubled to $2.4 billion.

SATELLITE LAUNCH:

The latest version of SpaceX’s workhorse Falcon 9 rocket lifted off for the second time on July 22, lighting up the skies over Florida’s Space Coast in a dazzling predawn launch.  The “Block 5” variant of the two-stage Falcon 9 blasted off from Cape Canaveral Air Force Station at 1:50 a.m. EDT (0550 GMT), successfully delivering to orbit a satellite for the Canadian communications company Telesat.     Less than nine (9) minutes after launch, the rocket’s first stage came back down to Earth, a with a successful landing aboard the SpaceX drone ship “Of Course I Still Love You” a few hundred miles off the Florida coast.  The Falcon 9 may be seen with the JPEG below.

The Block 5 is the newest, most powerful and most reusable version of the Falcon 9.  Musk said the Block 5 first stages are designed to fly at least ten (10) times with just inspections between landing and liftoff, and one hundred (100) times or more with some refurbishment involved.

Such extensive reuse is key to Musk’s quest to slash the cost of spaceflight, making Mars colonization and other bold exploration efforts economically feasible. To date, SpaceX has successfully landed more than two dozen Falcon 9 first stages and re-flown landed boosters on more than a dozen occasions.

The only previous Block 5 flight occurred this past May 2018 and also involved a new rocket configuration.  The satellite lofted is called Telstar 19V, is headed for geostationary orbit, about 22,250 miles (35,800 kilometers) above Earth. Telstar 19V, which was built by California-based company SSL, will provide broadband service to customers throughout the Americas and Atlantic Ocean region, according to a Telesat fact sheet.

The booster’s first stage, sporting redesigned landing legs, improved heat shield insulation, upgraded avionics and more powerful engines with crack-resistant turbine hardware, flipped around moments after falling away from the Falcon 9’s second stage and flew itself back to an on-target landing on an offshore drone-ship.

It was the 25th successful booster recovery overall for SpaceX and the fifth so far this year, the latest demonstration of SpaceX’s maturing ability to bring orbit-class rockets back to Earth to fly again in the company’s drive to dramatically lower launch costs.

CONCLUSION:

I think the fact that Musk has taken on this project is quite extortionary.  Rocket launches, in times past, have represented an amazing expenditure of capital with the first and second stages being lost forever.  The payload, generally the third stage, go on to accomplish the ultimate mission.  Stages one and two become space debris orbiting Earth and posing a great menace to other launches.  Being able to reuse any portion of stages one and two is a great cost-effective measure and quite frankly no one really though it could be accomplished.


I feel that most individuals, certainly most adults, wonder if anyone is out there.  Are there other planets with intelligent life and is that life humanoid or at least somewhat intelligent?  The first effort would be to define intelligent.  Don’t laugh but this does have some merit and has been considered by behavioral scientists for a significant length of time.  On Earth, human intelligence took nearly four (4) Billion years to develop. If living beings develop advanced technology, they can make their existence known to the Universe. A working definition of “intelligent” includes self-awareness, use of tools, and use of language. There are other defining traits, as follows:

  • Crude perceptive abilities: Like concept of a handshake (sending a message and acknowledging receipt of one sent by you)
  • Crude communication abilities: Some primitive language and vocabulary
  • Sentience: Should be able of original thought and motivation, some form of self -awareness
  • Retention: Ability to remember and recall information on will
  • Some form of mathematical ability like counting

Please feel free to apply your own definition to intelligence. You will probably come as close as anyone to a workable one.

TESS:

NASA is looking and one manner in which the search occurs is with the new satellite TESS.

The Transiting Exoplanet Survey Satellite (TESS) is an Explorer-class planet finder.   TESS will pick up the search for exoplanets as the Kepler Space Telescope runs out of fuel.

Kepler, which has discovered more than 4,500 potential planets and confirmed exoplanets, launched in 2009. After mechanical failure in 2013, it entered a new phase of campaigns to survey other areas of the sky for exoplanets, called the K2 mission. This enabled researchers to discover even more exoplanets, understand the evolution of stars and gain insight about supernovae and black holes.

Soon, Kepler’s mission will end, and it will be abandoned in space, orbiting the sun, therefore:  never getting closer to Earth than the moon.

The spaceborne all-sky transit survey, TESS will identify planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and orbital distances. The principal goal of the TESS mission is to detect small planets with bright host stars in the solar neighborhood, so that detailed characterizations of the planets and their atmospheres can be performed. TESS is only one satellite used to determine if there are any “goldy-locks” planets in our solar system. TESS will survey an area four hundred (400) times larger than Kepler observed. This includes two hundred thousand (200,000) of the brightest nearby stars. Over the course of two years, the four wide-field cameras on board will stare at different sectors of the sky for days at a time.

TESS will begin by looking at the Southern Hemisphere sky for the first year and move to the Northern Hemisphere in the second year. It can accomplish this lofty goal by dividing the sky into thirteen (13) sections and looking at each one for twenty-seven (27) days before moving on to the next.

The various missions launched to discover exoplanets may be seen below.

As mentioned earlier, TESS will monitor the brightness of more than two hundred thousand (200,000) stars during a two-year mission, searching for temporary drops in brightness caused by planetary transits. Transits occur when a planet’s orbit carries it directly in front of its parent star as viewed from Earth. TESS is expected to catalog more than fifteen hundred (1,500) transiting exoplanet candidates, including a sample of approximately five hundred (500) Earth-sized and ‘Super Earth’ planets, with radii less than twice that of the Earth. TESS will detect small rock-and-ice planets orbiting a diverse range of stellar types and covering a wide span of orbital periods, including rocky worlds in the habitable zones of their host stars.  This is a major undertaking and you might suspect so joint-ventures are an absolute must.  With that being the case, the major parterners in this endeavor may be seen as follows:

The project overview is given by the next pictorial.

In summary:

TESS will tile the sky with 26 observation sectors:

  • At least 27 days staring at each 24° × 96° sector
  • Brightest 200,000 stars at 1-minute cadence
  • Full frame images with 30-minute cadence
  • Map Southern hemisphere in first year
  • Map Northern hemisphere in second year
  • Sectors overlap at ecliptic poles for sensitivity to smaller and longer period planets in JWST Continuous Viewing Zone (CVZ)

TESS observes from unique High Earth Orbit (HEO):

  • Unobstructed view for continuous light curves
  • Two 13.7-day orbits per observation sector
  • Stable 2:1 resonance with Moon’s orbit
  • Thermally stable and low-radiation

The physical hardware looks as follows:

You can’t tell much about the individual components from the digital picture above but suffice it to say that TESS is a significant improvement relative to Kepler as far as technology.  The search continues and I do not know what will happen if we ever discover ET.  Imagine the areas of life that would affect?

 

 

GOTTA GET IT OFF

January 6, 2018


OKAY, how many of you have said already this year?  “MAN, I have to lose some weight.”  I have a dear friend who put on a little weight over a couple of years and he commented: “Twenty or twenty-five pounds every year and pretty soon it adds up.”  It does add up.  Let’s look at several numbers from the CDC and other sources.

  • The CDC organization estimates that three-quarters (3/4of the American population will likely be overweight or obese by 2020. The latest figures, as of 2014, show that more than one-third (36.5%) of U.S. adults age twenty (20) and older and seventeen percent (17%) of children and adolescents aged two through nineteen (2–19) years were obese.
  • American ObesityRates are on the Rise, Gallup Poll Finds. Americans have become even fatter than before, with nearly twenty-eight (28%) percent saying they are clinically obese, a new survey finds. … At 180 pounds this person has a BMI of thirty (30) and is considered obese.

Now, you might say—we are in good company:  According to the World Health Organization, the following countries have the highest rates of obesity.

  • Republic of Nauru. Formerly known as Pleasant Island, this tiny island country in the South Pacific only has a population of 9,300. …
  • American Samoa. …
  • Tokelau
  • Tonga
  • French Polynesia. …
  • Republic of Kiribati. …
  • Saudi Arabia. …
  • Panama.

There is absolutely no doubt that more and more Americans are over weight even surpassing the magic BMI number of 30.  We all know what reduction in weight can do for us on an individual basis, but have you ever considered what reduction in weight can do for “other items”—namely hardware?

  • Using light-weight components, (composite materials) and high-efficiency engines enabled by advanced materials for internal-combustion engines in one-quarter of U.S. fleet trucks and automobiles could possibly save more than five (5) billion gallons of fuel annually by 2030. This is according to the US Energy Department Vehicle Technologies Office.
  • This is possible because, according to the Oak Ridge National Laboratory, The Department of Energy’s Carbon Fiber Technology Facility has a capacity to produce up to twenty-five (25) tons of carbon fiber per year.
  • Replacing heavy steel with high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by ten to sixty percent (10-60 %). Longer term, materials such as magnesium and carbon fiber-reinforced composites could reduce the weight of some components by fifty to seventy-five percent (50-75%).
  • It costs $10,000 per pound to put one pound of payload into Earth orbit. NASA’s goal is to reduce the cost of getting to space down to hundreds of dollars per pound within twenty-five (25) years and tens of dollars per pound within forty (40) years.
  • Space-X Falcon Heavy rocket will be the first ever rocket to break the $1,000 per pound per orbit barrier—less than a tenth as much as the Shuttle. ( SpaceX press release, July 13, 2017.)
  • The Solar Impulse 2 flew 40,000 Km without fuel. The 3,257-pound solar plane used sandwiched carbon fiber and honey-combed alveolate foam for the fuselage, cockpit and wing spars.

So you see, reduction in weight can have lasting affects for just about every person and some pieces of hardware.   Let’s you and I get it off.

THREE DAYS IN JANUARY

January 31, 2017


In looking at the political landscape over the last fifty (50) years I can truly say I have no real heroes.  Of course, ‘beauty is truly in the eye of the beholder’.  Most of our politicians are much too concerned about their base, their brand and their legacy to be bothered with discerning and carrying out the will of the people. There are two notable exceptions—Sir Winston Churchill and President Dwight David Eisenhower.  Let’s look at the achievements of President Eisenhower.

DOMESTIC ACCOMPLISHMENTS:

  • Launched the Interstate Highway System. Also known as the National Interstate and Defense Highways Act, this act came into effect on June 29, 1956, when President Dwight D. Eisenhower signed it. It authorized $25 billion for 41,000 miles of interstate highways to be constructed in the United States.
  • The National Aeronautics and Space Administration (NASA). On July 29, 1958, President Eisenhower signed the Act that created the National Aeronautics and Space Administration (NASA) which provided for the peaceful and collaborative exploration of space.
  • The Defense Advanced Research Project Agency. Launched the Defense Advanced Research Projects Agency, which ultimately led to the development of the Internet. (Cry your eyes out Al Gore!)
  • Established a strong science education via the National Defense Education Act
  • Sent federal troops to Little Rock, Arkansas for the first time since Reconstruction to enforce federal court orders to desegregate public schools
  • Signed civil rights legislation in 1957 and 1960 to protect the right to vote by African-Americans. After declaring that “There must be no second class citizens in this country,” PresidentDwight Eisenhower told the District of Columbia to use their schools as a model of integrating black and white public schools. He proposed the Civil Rights Acts of 1957 and 1960 to Congress, which he signed into law. The 1957 Act created a civil rights office within the U.S. Justice Department and the Civil Rights Commission; both departments had the authority to prosecute discriminatory cases and voting rights intrusions. They were the first significant civil rights laws since the late 19th Century.
  • Opposed Wisconsin Senator Joseph McCarthy and contributed to the end of McCarthyism by openly invoking the modern expanded version of executive privilege.
  • Desegregated the Armed Forces: Within his first two years as president, Eisenhower forced the desegregation of the military by reinforcing Executive Order #9981 issued by President Harry Truman in 1948.

FOREIGN POLICY ACCOMPLISHMENTS:

  • Deposed the leader of Iran in the 1953 Iranian coup d’̩tat .
  • Armistice that ended the Korean War: Eisenhower used his formidable military reputation to imply a threat of nuclear attacks if North Korea, China and South Korea didn’t sign an Armistice to end the three-year-old bloody war. It was signed on July 27, 1953.
  • Prioritized inexpensive nuclear weapons and a reduction of conventional military forces as a means of keeping pressure on the Soviet Union and reducing the federal deficit
  • First to articulate the domino theory of communist expansion in 1954
  • Established the US policy of defending Taiwan from Chinese communist aggression in the 1955 Formosa Resolution
  • Forced Israel, the UK, and France to end their invasion of Egypt during the Suez Crisis of 1956
  • Sent 15,000 U.S. troops to Lebanon to prevent the pro-Western government from falling to a Nasser-inspired revolution

ACCPMPLISHMENTS PRIOR TO BECOMING PRESIDENT:

  • Becoming a five-star general in the United States Army
  • Serving as Supreme Commander of the Allied Forces in Europe during World War II
  • Serving as the supervisor and planner of North Africa’s invasion in Operation Torch in 1942-43
  • Successfully invading France and Germany in 1944-45, attacking from the Western Front
  • Becoming the first Supreme Commander of NATO
  • Becoming the 34th President of the United States for two terms, 1953 until 1961

All of these accomplishments are celebrated in a new book by Bret Baier and Catherine Whitney. Bret Baier, the chief political anchor for Fox News and talented writer Catherine Whitney, have written a book that comes at a timely moment in American history. I found a great deal of similarities between the transition of Eisenhower and Kennedy relative to the transition of Obama and Trump.  Maybe I was just looking for them but in my opinion they are definitely there.  “Three Days in January” records the final days of the Eisenhower presidency and the transition of leadership to John F. Kennedy. Baier describes the three days leading up to Kennedy’s inauguration as the culmination of one of America’s greatest leaders who used this brief time to prepare both the country and the next president for upcoming challenges.

Eisenhower did not particularly like JFK.  Baier writes: “In most respects, Kennedy, a son of privilege following a dynastic pathway, was unknowable to Ike. He was as different from Eisenhower as he could be, as well as from Truman, who didn’t much care for him.” Times of transition are difficult under the very best of circumstances but from Eisenhower to Kennedy was a time, as described by Baier, as being a time of concern on Eisenhower’s part.  There were unknowns in Eisenhower’s mind as to whether Kennedy could do the job.  Couple that with Kennedy’s young age and inexperience in global affairs and you have a compelling story.  During those three days, though, Eisenhower warmed up to Kennedy.  There was a concerted effort to make the transition as smooth as possible and even though Kennedy and his staff seemed to be very cocky, the outgoing President was very instrumental in giving President-elect Kennedy information that would serve him very well during his first one hundred days and beyond.

On January 17, 1961, three days before inauguration ceremonies, Eisenhower gave a notable and now-prophetic farewell speech in which he looked into the future, warning Americans about the dangers of putting partisanship above national interest, the risks of deficit spending, the expansion of the military-industrial complex and the growing influence of special interest groups on government officials.  Eisenhower’s concerns have become reality in our modern day with technology outpacing legislation and common sense to oversee development of hardware that can destroy us all.  This book is about those three days and brief time-periods prior to and after that very meaningful speech.

If you are a historian, a news junkie, or someone who just likes to keep up, I can definitely recommend this book to you.  It is extremely well-written and wonderfully researched. Mr. Baier and Ms. Whitney have done their research with each reference noted, by chapter, in the back of the book.  It is very obvious that considerable time and effort was applied to each paragraph to bring about a coherent and compelling novel.  It, in my opinion, is not just a book but a slice of history.  A document to be read and enjoyed.