THE RUSSIANS ARE COMING

August 18, 2018


Are we as Americans a little paranoid—or maybe a lot paranoid when it comes to trusting the Russians?  In light of the stories involving Russian collusion during the recent presidential election, maybe we should put trust on the shelf in all areas of involvement with Putin and the “mother-land”.  Do recent news releases through “pop” media muddy the waters or really do justice to a very interesting occurrence noted just this week? Let’s take a look.

The following is taken from a UPI News release on 16 August 2018:

“Aug. 16 (UPI) — Just days after the Trump administration proposed a Space Force as a new branch of the military, U.S. officials say they’re concerned about “very abnormal behavior” involving a Russian satellite.  The satellite, launched in October, is displaying behavior “inconsistent” with the kind of satellite Russia says it is, said Yleem D.S. Poblete, assistant secretary of state for the Bureau of Arms Control, Verification and Compliance . “Poblete suggested the satellite could be a weapon. “We don’t know for certain what it is, and there is no way to verify it,” he said Wednesday at a disarmament conference in Switzerland.

An artist’s rendition of that satellite is given below:

“Our Russian colleagues will deny that its systems are meant to be hostile,” Poblete continued. “But it is difficult to determine an object’s true purpose simply by observing it on orbit. “So that leads to the question: is this, again, enough information to verify and assess whether a weapon has or has not been tested in orbit? The United States does not believe it is.”

This release is basically saying that if we do not know what the Russian satellite is supposed to do, then it must be a weapon.  One of my favorite online publications is SPACE.com.  This group does a commendable job at assessing breaking stories and giving us the straight “poop” relative to all things in the cosmos.  Let’s take a look at what they say.

SPACE.com:

“This gets a bit confusing, so bear with me: Russia launched the Cosmos 2519 satellite in June 2017. This spacecraft popped out a subsatellite known as Cosmos 2521 in August of that year. On Oct. 30, a second subsat, Cosmos 2523, deployed from one of these two other craft.

“I can’t tell from the data whether the parent [of 2523] was 2519 or 2521, and indeed, I can’t be sure that U.S. tracking didn’t swap the IDs of 2519 and 2521 at some point,” McDowell said.  (NOTE: Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics who monitors many of the spacecraft circling our planet using publicly available U.S. tracking data.)

These three spacecraft performed a variety of maneuvers over the ensuing months, according to McDowell and Brian Weeden, director of program planning at the nonprofit Secure World Foundation. For example, Cosmos 2521 conducted some “proximity operations” around 2519 and may have docked with the mothership in October, Weeden said via Twitter today (Aug. 16).

Cosmos 2521 adjusted its orbit slightly in February 2018, then performed two big engine burns in April to significantly lower its slightly elliptical path around Earth, from about 400 miles (650 kilometers) to roughly 220 miles (360 km), McDowell said. The satellite fired its engines again on July 20, reshaping its orbit to a more elliptical path with a perigee (close-approach point) of 181 miles (292 km) and an apogee (most-distant point) of 216 miles (348 km).

And Cosmos 2519 conducted a series of small burns between late June and mid-July of this year, shifting its orbit from a nearly circular one (again, with an altitude of about 400 miles) to a highly elliptical path with a perigee of 197 miles (317 km) and an apogee of 413 miles (664 km), McDowell calculated.

These big maneuvers are consistent with a technology demonstration of some kind, he said.

Perhaps the Russians “are checking out the [spacecraft] bus and its capability to deliver multiple subsatellites to different orbits — something like that,” McDowell said. “From the information that’s available in the public domain, that would be an entirely plausible interpretation.”

“What are they complaining about?” McDowell said, referring to American officials. Weeden voiced similar sentiments. Cosmos 2523’s “deployment was unusual, but hard to see at this point why the US is making it a big deal,” he said via Twitter today. “There are a lot of facts and not a lot of pattern,” McDowell said. “So, partly I take the U.S. statement as saying, ‘Russia, how dare you do something confusing?'” It’s possible, of course, that American satellites or sensors have spotted Cosmos 2523 (or Cosmos 2519, or Cosmos 2521) doing something suspicious — some activity that can’t be detected just by analyzing publicly available tracking data. “But they need to say a little more for us to take that seriously,” McDowell said.

CONCLUSIONS:

We just do not know and we do not trust the Russians to let us know the purpose behind their newest satellite.  Then again, why should they?    We live in a world where our own media tells us “the public has the right to know”.  That’s really garbage.  The public and others have a right to know what we choose to tell them.  No more—no less.

Advertisements

I feel that most individuals, certainly most adults, wonder if anyone is out there.  Are there other planets with intelligent life and is that life humanoid or at least somewhat intelligent?  The first effort would be to define intelligent.  Don’t laugh but this does have some merit and has been considered by behavioral scientists for a significant length of time.  On Earth, human intelligence took nearly four (4) Billion years to develop. If living beings develop advanced technology, they can make their existence known to the Universe. A working definition of “intelligent” includes self-awareness, use of tools, and use of language. There are other defining traits, as follows:

  • Crude perceptive abilities: Like concept of a handshake (sending a message and acknowledging receipt of one sent by you)
  • Crude communication abilities: Some primitive language and vocabulary
  • Sentience: Should be able of original thought and motivation, some form of self -awareness
  • Retention: Ability to remember and recall information on will
  • Some form of mathematical ability like counting

Please feel free to apply your own definition to intelligence. You will probably come as close as anyone to a workable one.

TESS:

NASA is looking and one manner in which the search occurs is with the new satellite TESS.

The Transiting Exoplanet Survey Satellite (TESS) is an Explorer-class planet finder.   TESS will pick up the search for exoplanets as the Kepler Space Telescope runs out of fuel.

Kepler, which has discovered more than 4,500 potential planets and confirmed exoplanets, launched in 2009. After mechanical failure in 2013, it entered a new phase of campaigns to survey other areas of the sky for exoplanets, called the K2 mission. This enabled researchers to discover even more exoplanets, understand the evolution of stars and gain insight about supernovae and black holes.

Soon, Kepler’s mission will end, and it will be abandoned in space, orbiting the sun, therefore:  never getting closer to Earth than the moon.

The spaceborne all-sky transit survey, TESS will identify planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and orbital distances. The principal goal of the TESS mission is to detect small planets with bright host stars in the solar neighborhood, so that detailed characterizations of the planets and their atmospheres can be performed. TESS is only one satellite used to determine if there are any “goldy-locks” planets in our solar system. TESS will survey an area four hundred (400) times larger than Kepler observed. This includes two hundred thousand (200,000) of the brightest nearby stars. Over the course of two years, the four wide-field cameras on board will stare at different sectors of the sky for days at a time.

TESS will begin by looking at the Southern Hemisphere sky for the first year and move to the Northern Hemisphere in the second year. It can accomplish this lofty goal by dividing the sky into thirteen (13) sections and looking at each one for twenty-seven (27) days before moving on to the next.

The various missions launched to discover exoplanets may be seen below.

As mentioned earlier, TESS will monitor the brightness of more than two hundred thousand (200,000) stars during a two-year mission, searching for temporary drops in brightness caused by planetary transits. Transits occur when a planet’s orbit carries it directly in front of its parent star as viewed from Earth. TESS is expected to catalog more than fifteen hundred (1,500) transiting exoplanet candidates, including a sample of approximately five hundred (500) Earth-sized and ‘Super Earth’ planets, with radii less than twice that of the Earth. TESS will detect small rock-and-ice planets orbiting a diverse range of stellar types and covering a wide span of orbital periods, including rocky worlds in the habitable zones of their host stars.  This is a major undertaking and you might suspect so joint-ventures are an absolute must.  With that being the case, the major parterners in this endeavor may be seen as follows:

The project overview is given by the next pictorial.

In summary:

TESS will tile the sky with 26 observation sectors:

  • At least 27 days staring at each 24° × 96° sector
  • Brightest 200,000 stars at 1-minute cadence
  • Full frame images with 30-minute cadence
  • Map Southern hemisphere in first year
  • Map Northern hemisphere in second year
  • Sectors overlap at ecliptic poles for sensitivity to smaller and longer period planets in JWST Continuous Viewing Zone (CVZ)

TESS observes from unique High Earth Orbit (HEO):

  • Unobstructed view for continuous light curves
  • Two 13.7-day orbits per observation sector
  • Stable 2:1 resonance with Moon’s orbit
  • Thermally stable and low-radiation

The physical hardware looks as follows:

You can’t tell much about the individual components from the digital picture above but suffice it to say that TESS is a significant improvement relative to Kepler as far as technology.  The search continues and I do not know what will happen if we ever discover ET.  Imagine the areas of life that would affect?

 

 


Portions of the following post were taken from the September 2017 Machine Design Magazine.

We all like to keep up with salary levels within our chosen profession.  It’s a great indicator of where we stand relative to our peers and the industry we participate in.  The state of the engineering profession has always been relatively stable. Engineers are as essential to the job market as doctors are to medicine. Even in the face of automation and the fear many have of losing their jobs to robots, engineers are still in high demand.  I personally do not think most engineers will be out-placed by robotic systems.  That fear definitely resides with on-line manufacturing positions with duties that are repetitive in nature.  As long as engineers can think, they will have employment.

The Machine Design Annual Salary & Career Report collected information and opinions from more than two thousand (2,000) Machine Design readers. The employee outlook is very good with thirty-three percent (33%) indicating they are staying with their current employer and thirty-six percent (36%) of employers focusing on job retention. This is up fifteen percent (15%) from 2016.  From those who responded to the survey, the average reported salary for engineers across the country was $99,922, and almost sixty percent (57.9%) reported a salary increase while only ten percent (9.7%) reported a salary decrease. The top three earning industries with the largest work forces were 1.) industrial controls systems and equipment, 2.) research & development, and 3.) medical products. Among these industries, the average salary was $104,193. The West Coast looks like the best place for engineers to earn a living with the average salary in the states of California, Washington, and Oregon was $116,684. Of course, the cost of living in these three states is definitely higher than other regions of the country.

PROFILE OF THE ENGINEER IN THE USA TODAY:

As is the ongoing trend in engineering, the profession is dominated by male engineers, with seventy-one percent (71%) being over fifty (50) years of age. However, the MD report shows an up-swing of young engineers entering the profession.  One effort that has been underway for some years now is encouraging more women to enter the profession.  With seventy-one percent (71%) of the engineering workforce being over fifty, there is a definite need to attract participants.    There was an increase in engineers within between twenty-five (25) and thirty-five (35).  This was up from 5.6% to 9.2%.  The percentage of individuals entering the profession increased as well, with engineers with less than fourteen (14) years of experience increasing five percent (5%) from last year.  Even with all the challenges of engineering, ninety-two percent (92%) would still recommend the engineering profession to their children, grandchildren and others. One engineer responds, “In fact, wherever I’ll go, I always will have an engineer’s point of view. Trying to understand how things work, and how to improve them.”

 

When asked about foreign labor forces, fifty-four percent (54%) believe H1-B visas hurt engineering employment opportunities and sixty-one percent (61%) support measures to reform the system. In terms of outsourcing, fifty-two percent (52%) reported their companies outsource work—the main reason being lack of in-house talent. However, seventy-three percent (73%) of the outsourced work is toward other U.S. locations. When discussing the future, the job force, fifty-five percent (55%) of engineers believe there is a job shortage, specifically in the skilled labor area. An overwhelming eighty-seven percent (87%) believe that we lack a skilled labor force. According to the MD readers, the strongest place for job growth is in automation at forty-five percent (45%) and the strongest place to look for skilled laborers is in vocational schools at thirty-two percent (32%). The future of engineering is dependent on the new engineers not only in school today, but also in younger people just starting their young science, technology, engineering, and mathematic (STEM) interests. With the average engineer being fifty (50) years or old, the future of engineering will rely heavily on new engineers willing to carry the torch—eighty-seven percent (87%) of our engineers believe there needs to be more focus on STEM at an earlier age to make sure the future of engineering is secure.

With being the case, let us now look at the numbers.

The engineering profession is a “graying” profession as mentioned earlier.  The next digital picture will indicate that, for the most part, those in engineering have been in for the “long haul”.  They are “lifers”.  This fact speaks volumes when trying to influence young men and women to consider the field of engineering.  If you look at “years in the profession”, “work location” and years at present employer” we see the following:

The slide below is a surprise to me and I think the first time the question has been asked by Machine Design.  How much of your engineering training is theory vs. practice? You can see the greatest response is almost fourteen percent (13.6%) with a fifty/fifty balance between theory and practice.  In my opinion, this is as it should be.

“The theory can be learned in a school, but the practical applications need to be learned on the job. The academic world is out of touch with the current reality of practical applications since they do not work in

that area.” “My university required three internships prior to graduating. This allowed them to focus significantly on theoretical, fundamental knowledge and have the internships bolster the practical.”

ENGINEERING CERTIFICATIONS:

The demands made on engineers by their respective companies can sometimes be time-consuming.  The respondents indicated the following certifications their companies felt necessary.

 

 

SALARIES:

The lowest salary is found with contract design and manufacturing.  Even this salary, would be much desired by just about any individual.

As we mentioned earlier, the West Coast provides the highest salary with several states in the New England area coming is a fairly close second.

 

SALARY LEVELS VS. EXPERIENCE:

This one should be no surprise.  The greater number of years in the profession—the greater the salary level.  Forty (40) plus years provides an average salary of approximately $100,000.  Management, as you might expect, makes the highest salary with an average being $126,052.88.

OUTSOURCING:

 

As mentioned earlier, outsourcing is a huge concern to the engineering community. The chart below indicates where the jobs go.

JOB SATISFACTION:

 

Most engineers will tell you they stay in the profession because they love the work. The euphoria created by a “really neat” design stays with an engineer much longer than an elevated pay check.  Engineers love solving problems.  Only two percent (2%) told MD they are not satisfied at all with their profession or current employer.  This is significant.

Any reason or reasons for leaving the engineering profession are shown by the following graphic.

ENGINEERING AND SOCIETY: 

As mentioned earlier, engineers are very worried about the H1-B visa program and trade policies issued by President Trump and the Legislative Branch of our country.  The Trans-Pacific Partnership has been “nixed” by President Trump but trade policies such as NAFTA and trade between the EU are still of great concern to engineers.  Trade with China, patent infringement, and cyber security remain big issues with the STEM profession and certainly engineers.

 

CONCLUSIONS:

I think it’s very safe to say that, for the most part, engineers are very satisfied with the profession and the salary levels offered by the profession.  Job satisfaction is great making the dawn of a new day something NOT to be dreaded.

THE NEXT FIVE (5) YEARS

February 15, 2017


As you well know, there are many projections relative to economies, stock market, sports teams, entertainment, politics, technology, etc.   People the world over have given their projections for what might happen in 2017.  The world of computing technology is absolutely no different.  Certain information for this post is taken from the publication “COMPUTER.org/computer” web site.  These guys are pretty good at projections and have been correct multiple times over the past two decades.  They take their information from the IEEE.

The IEEE Computer Society is the world’s leading membership organization dedicated to computer science and technology. Serving more than 60,000 members, the IEEE Computer Society is the trusted information, networking, and career-development source for a global community of technology leaders that includes researchers, educators, software engineers, IT professionals, employers, and students.  In addition to conferences and publishing, the IEEE Computer Society is a leader in professional education and training, and has forged development and provider partnerships with major institutions and corporations internationally. These rich, self-selected, and self-paced programs help companies improve the quality of their technical staff and attract top talent while reducing costs.

With these credentials, you might expect them to be on the cutting edge of computer technology and development and be ahead of the curve as far as computer technology projections.  Let’s take a look.  Some of this absolutely blows me away.

human-brain-interface

This effort first started within the medical profession and is continuing as research progresses.  It’s taken time but after more than a decade of engineering work, researchers at Brown University and a Utah company, Blackrock Microsystems, have commercialized a wireless device that can be attached to a person’s skull and transmit via radio thought commands collected from a brain implant. Blackrock says it will seek clearance for the system from the U.S. Food and Drug Administration, so that the mental remote control can be tested in volunteers, possibly as soon as this year.

The device was developed by a consortium, called BrainGate, which is based at Brown and was among the first to place implants in the brains of paralyzed people and show that electrical signals emitted by neurons inside the cortex could be recorded, then used to steer a wheelchair or direct a robotic arm (see “Implanting Hope”).

A major limit to these provocative experiments has been that patients can only use the prosthetic with the help of a crew of laboratory assistants. The brain signals are collected through a cable screwed into a port on their skull, then fed along wires to a bulky rack of signal processors. “Using this in the home setting is inconceivable or impractical when you are tethered to a bunch of electronics,” says Arto Nurmikko, the Brown professor of engineering who led the design and fabrication of the wireless system.

capabilities-hardware-projection

Unless you have been living in a tree house for the last twenty years you know digital security is a huge problem.  IT professionals and companies writing code will definitely continue working on how to make our digital world more secure.  That is a given.

exascale

We can forget Moor’s Law which refers to an observation made by Intel co-founder Gordon Moore in 1965. He noticed that the number of transistors per square inch on integrated circuits had doubled every year since their invention.  Moore’s law predicts that this trend will continue into the foreseeable future. Although the pace has slowed, the number of transistors per square inch has since doubled approximately every 18 months. This is used as the current definition of Moore’s law.  We are well beyond that with processing speed literally progressing at “warp six”.

non-volitile-memory

If you are an old guy like me, you can remember when computer memory costs an arm and a leg.  Take a look at the JPEG below and you get an idea as to how memory costs has decreased over the years.

hard-drive-cost-per-gbyte

As you can see, costs have dropped remarkably over the years.

photonics

texts-for-photonoics

power-conservative-multicores

text-for-power-conservative-multicores

CONCLUSION:

If you combine the above predictions with 1.) Big Data, 2.) Internet of Things (IoT), 3.) Wearable Technology, 4.) Manufacturing 4.0, 5.) Biometrics, and other fast-moving technologies you have a world in which “only the adventurous thrive”.  If you do not like change, I recommend you enroll in a monastery.  You will not survive gracefully without technology on the rampage. Just a thought.


One of the items on my bucket list has been to attend the Consumer Electronics Show in Las Vegas.  (I probably need to put a rush on this one because the clock is ticking.)  For 50 years, CES has been the launching pad for innovation and new technology.  Much of this technology has changed the world. Held in Las Vegas every year, it is the world’s gathering place for all who thrive on the business of consumer technologies and where next-generation innovations are introduced to the commercial marketplace.   The International Consumer Electronics Show (International CES) showcases more than 3,800 exhibiting companies, including manufacturers, developers and suppliers of consumer technology hardware, content, technology delivery systems and more; a conference program with more than three hundred (300) conference sessions and more than one-hundred and sixty-five thousand attendees from one hundred1 (50) countries.  Because it is owned and produced by the Consumer Technology Association (CTA)™ — formerly the Consumer Electronics Association (CEA)® — the technology trade association representing the $287 billion U.S. consumer technology industry, and it attracts the world’s business leaders and pioneering thinkers to a forum where the industry’s most relevant issues are addressed.  The range of products is immense as seen from the listing of product categories below.

PRODUCT CATEGORIES:

  • 3D Printing
  • Accessories
  • Augmented Reality
  • Audio
  • Communications Infrastructure
  • Computer Hardware/Software/Services
  • Content Creation & Distribution
  • Digital/Online Media
  • Digital Imaging/Photography
  • Drones
  • Electronic Gaming
  • Fitness and Sports
  • Health and Biotech
  • Internet Services
  • Personal Privacy & Cyber Security
  • Robotics
  • Sensors
  • Smart Home
  • Startups
  • Vehicle Technology
  • Video
  • Wearables
  • Wireless Devices & Services

If we look at world-changing revolution and evolution coming from CES over the years, we may see the following advances in technology, most of which now commercialized:

  • Videocassette Recorder (VCR), 1970
  • Laserdisc Player, 1974
  • Camcorder and Compact Disc Player, 1981
  • Digital Audio Technology, 1990
  • Compact Disc – Interactive, 1991
  • Digital Satellite System (DSS), 1994
  • Digital Versatile Disk (DVD), 1996
  • High Definition Television (HDTV), 1998
  • Hard-disc VCR (PVR), 1999
  • Satellite Radio, 2000
  • Microsoft Xbox and Plasma TV, 2001
  • Home Media Server, 2002
  • Blu-Ray DVD and HDTV PVR, 2003
  • HD Radio, 2004
  • IP TV, 2005
  • Convergence of content and technology, 2007
  • OLED TV, 2008
  • 3D HDTV, 2009
  • Tablets, Netbooks and Android Devices, 2010
  • Connected TV, Smart Appliances, Android Honeycomb, Ford’s Electric Focus, Motorola Atrix, Microsoft Avatar Kinect, 2011
  • Ultrabooks, 3D OLED, Android 4.0 Tablets, 2012
  • Ultra HDTV, Flexible OLED, Driverless Car Technology, 2013
  • 3D Printers, Sensor Technology, Curved UHD, Wearable Technologies, 2014
  • 4K UHD, Virtual Reality, Unmanned Systems, 2015

Why don’t we do this, let’s now take a very brief look at several exhibits to get a feel for the products.  Here we go.

Augmented Reality (AR):

Through specially designed hardware and software full of cameras, sensors, algorithms and more, your perception of reality can be instantly altered in context with your environment. Applications include sports scores showing on TV during a match, the path of trajectory overlaying an image, gaming, construction plans and more.  VR (virtual reality) equipment is becoming extremely popular, not only with consumers, but with the Department of Defense, Department of Motor Vehicles, and companies venturing out to technology for training purposes.

augmented-reality

Cyber Security:

The Cyber & Personal Security Marketplace will feature innovations ranging from smart wallets and safe payment apps to secure messaging and private Internet access.  If you have never been hacked, you are one in a million.  I really don’t think there are many people who have remained unaffected by digital fraud.  One entire section of the CES is devoted to cyber security.

cyber-security

E-Commerce:

Enterprise solutions are integral for business. From analytics, consulting, integration and cyber security to e-commerce and mobile payment, the options are ever-evolving.  As you well know, each year the number of online shoppers increases and will eventually outpace the number of shoppers visiting “brick-and-motor stores.  Some feel this may see the demise of shopping centers altogether.

e-commerce

Self-Driving Autonomous Automobiles:

Some say if you are five years old or under you may never need a driver’s license.  I personally think this is a little far-fetched but who knows.  Self-driving automobiles are featured prominently at the CES.

self-driving-automobiles

Virtual Reality (VR):

Whether it will be the launch of the next wave of immersive multimedia for virtual reality systems and environments or gaming hardware, software and accessories designed for mobile, PCs or consoles, these exhibitors are sure to energize, empower and excite at CES 2017.

vr

i-Products:

From electronic plug-ins to fashionable cases, speakers, headphones and exciting new games and applications, the product Marketplace will feature the latest third-party accessories and software for your Apple iPod®, iPhone® and iPad® devices.

i-products

3-D Printing:

Most 3D printers are used for building prototypes for the medical, aerospace, engineering and automotive industries. But with the advancement of the digital technology supporting it, these machines are moving toward more compact units with affordable price points for today’s consumer.

30-d-printing

Robotic Systems:

The Robotics Marketplace will showcase intelligent, autonomous machines that are changing the way we live at work, at school, at the doctor’s office and at home.

robotics

Healthcare and Wellness:

Digital health continues to grow at an astonishing pace, with innovative solutions for diagnosing, monitoring and treating illnesses, to advancements in health care delivery and smarter lifestyles.

health-and-wellness

Sports Technology:

In a world where an athlete’s success hinges on milliseconds or millimeters, high-performance improvement and feedback are critical.

sports-technology

CONCLUSIONS:

I think it’s amazing and to our credit as a country that CES exists and presents, on an annual basis, designs and visions from the best and brightest.  A great show-place for ideas the world over from established companies and companies who wish to make their mark on technology.  Can’t wait to go—maybe next year.  As always, I welcome your comments.

PAYCHECK 2016

August 28, 2016


The following post is taken from information furnished by Mr. Rob Spiegel of Design News Daily.

We all are interested in how we stack up pay-wise relative to our peers.  Most companies have policies prohibiting discussions about individual pay because every paycheck is somewhat different due to deductible amounts.   The number of dependents, health care options, saving options all play a role in representations of the bottom line—take-home pay.  That’s the reason it is very important to have a representative baseline for average working salaries for professional disciplines.  That is what this post is about.  Just how much should an engineering graduate expect upon graduation in the year 2016?  Let’s take a very quick look.

The average salaries for engineering grads entering the job market range from $62,000 to $64,000 — except for one notable standout. According to the 2016 Salary Survey from The National Association of Colleges and Employers, petroleum engineering majors are expected to enter their field making around $98,000/year. Clearly, petroleum engineering majors are projected to earn the top salaries among engineering graduates this year.

Petroleum Engineers

Actually, I can understand this high salary for Petroleum engineers.  Petroleum is a non-renewable resource with diminishing availability.  Apparently, the “easy” deposits have been discovered—the tough ones, not so much.  The locations for undiscovered petroleum deposits represent some of the most difficult conditions on Earth.  They deserve the pay they get.

Chemical Engineering

Dupont at one time had the slogan, “Better living through chemistry.”  That fact remains true to this day.  Chemical engineers provide value-added products from medical to material.  From the drugs we take to the materials we use, chemistry plays a vital role in kicking the can down the road.

Electrical Engineering

When I was a graduate, back in the dark ages, electrical engineers garnered the highest paying salaries.   Transistors, relays, optical devices were new and gaining acceptance in diverse markets.  Electrical engineers were on the cutting edge of this revolution.  I still remember changing tubes in radios and even TV sets when their useful life was over.  Transistor technology was absolutely earth-shattering and EEs were riding the crest of that technology wave.

Computer Engineering

Computer and software engineering are here to stay because computers have changed our lives in a remarkably dramatic fashion.  We will NEVER go back to performing even the least tedious task with pencil and paper.  We often talk about disruptive technology—game changers.  Computer science is just that

Mechanical Engineering

I am a mechanical engineer and have enjoyed the benefits of ME technology since graduation fifty years ago.  Now, we see a great combination of mechanical and electrical with the advent of mechatronics.  This is a very specialized field providing the best of both worlds.

Software Engineering

Materials Engineering

Material engineering is a fascinating field for a rising freshman and should be considered as a future path.  Composite materials and additive manufacturing have broadened this field in a remarkable fashion.  If I had to do it over again, I would certainly consider materials engineering.

Systems Engineering

Systems engineering involves putting it all together.  A critical task considering “big data”, the cloud, internet exchanges, broadband developments, etc.  Someone has to make sense of it all and that’s the job of the systems engineer.

Hope you enjoyed this one. I look forward to your comments.

ENCODERS

May 21, 2016


Once a month a group of guys and I get together for lunch.  Great friends needing to solve the world’s problems.  (Here lately, it’s taken much longer than the one and one-half hours we spend during our meeting.)  One of our friends, call him Joe, just underwent surgery for prostate cancer.  This is called a Prostatectomy and is done every day.  His description of the “event” was fascinating.  To begin with, the surgeon was about twenty (20) feet from the operating table. Yes, that’s correct; the entire surgery was accomplished via robotic systems. OK, why is this procedure more desirable than the “standard” procedure”?   The robotic-assisted approach is less invasive, reduces bleeding and offers large 3-D views of the operating fields. The mechanical arms for the robotic system are controlled by the surgeon and provide greater precision than the human hand.  This allows the surgeon more control when separating nerves and muscles from the prostate. This benefits patients by lowering the risk of side effects, such as erectile dysfunction and incontinence, while also completely removing cancer tissue.  The equipment looks very similar, if not identical to the one given in the JPEG below.  Let’s take a look.

Prostate Surgery and Robotic Systems

As you can see, the electromechanical devices are remarkably sophisticated and represent significant advantages in medical technology.  The equipment you are seeing above is called the “patient side cart”. It looks as follows:

Surgical Side Cart

During a robotic prostatectomy, the patient side cart is positioned next to the operating table.  The system you see above is a da Vinci robotic arm arranged to provide entry points into the human body and prostate.  EndoWrist instruments, and the da Vinci Insite Vision System, are mounted onto the robot’s electromechanical arms representing the surgeon’s left and right hands. They provide the functionality to perform complex tissue manipulation through the entry points, or ports.  EndoWrist instruments include forceps, scissors, electrocautery, scalpels and other surgical tools. If the surgeon needs to change an Endowrist instrument, common during robotic prostatectomy, the instrument is withdrawn from the surgical system using controls at the console. Typically, an operating room nurse standing near the patient physically removes the EndoWrist instruments and replaces them with new instruments.

There are certainly other types of surgery performed today using robotic systems.  Several of these are as follows:

One electromechanical device that helps to make this remarkable procedure possible is called an encoder.  Let’s define an encoder.

An encoder is a sensor of mechanical motion that generates digital signals in response to motion. As an electro-mechanical device, an encoder is able to provide motion control system users with information concerning position, velocity and direction. There are two different types of encoders: linear and rotary. A linear encoder responds to motion along a path, while a rotary encoder responds to rotational motion. An encoder is generally categorized by the means of its output. An incremental encoder generates a train of pulses which can be used to determine position and speed. An absolute encoder generates unique bit configurations to track positions directly.

As you might expect, knowing the exact position of a medical device used during surgery is absolutely critical to the outcome.  The surgeon MUST know the angular position of the device at all times to ensure no errors are made.  Nerves, tendons and muscles must be left intact.  This information is provided by encoders and encoder data systems.

ENCODER TYPES:

Linear and rotary encoders are broken down into two main types: the absolute encoder and the incremental encoder. The construction of these two types of encoders is quite similar; however they differ in physical properties and the interpretation of movement.

Incremental rotary encoders utilize a transparent disk which contains opaque sections that are equally spaced to determine movement. A light emitting diode is used to pass through the glass disk and is detected by a photo detector. This causes the encoder to generate a train of equally spaced pulses as it rotates. The output of incremental rotary encoders is measured in pulses per revolution which is used to keep track of position or determine speed.  This type of encoder is required with the medical system given above.

Absolute encoders utilize stationary mask in between the photodetector and the encoder disk as shown below. The output signal generated from an absolute encoder is in digital bits which correspond to a unique position. The bit configuration is produced by the light which is received by the photodetector when the disk rotates. The light configuration received is translated into gray code. As a result, each position has its own unique bit configuration.

Typical construction for a rotary encoder is given as follows:

Rotary Encoders

Please note the following features:

  • Electrical connection to the right of the encoder body.
  • Encoder shaft that couples to the medical device.
  • Electrical specifications indicating the device is driven by a five (5) volt +/- 5% source.

Encoder Specifics

You can see from the above illustrated parts breakdown that a rotary encoder is quite technical in design.

SYSTEM ACCURACY:

System accuracy is critical, especially during surgery. Let’s look.

An encoder’s performance is typically stated as resolution, rather than accuracy of measurement. The encoder may be able to resolve movement into precise bits very accurately, but the accuracy of each bit is limited by the quality of the machine motion being monitored. For example, if there are deflections of machine elements under load, or if there is a drive screw with 0.1 inch of play, using a 1000 count-per-turn encoder with an output reading to 0.001 inch will not improve the 0.1 inch tolerance on the measurement. The encoder only reports position; it cannot improve on the basic accuracy of the shaft motion from which the position is sensed.  As you can see, the best encoders, hopefully those used in a surgical device, can deliver accuracy to 0.10 inch.  Remarkable accuracy for a robotic device and absolutely necessary.

CONCLUSIONS: 

TECHNOLOGY DELIVERS.  Ours lives are much better served with advancing technology and certainly technology applied to the medical profession. This is the reason engineers and technologists endure the rigor necessary to achieve talents that ultimately will be directed to solving problems and advancing technology you have seen from the post above.

As always, I welcome your comments.  bobjengr@comcast.net

%d bloggers like this: