WORST POSSIBLE

January 26, 2018


There is an expression you have heard time and time again: “You have to bloom where you are planted”.  I think this means you are encouraged to flourish where you are and try to make the best of any situation until you can change that situation.

One of the best books I have read recently is “Hillbilly Elegy” by J.D. Vance.  It details the story of a family having to move from Appalachian Kentucky to Ohio.  In his words, their family was “dirt-poor” and when jobs vanished they had to move just to survive.  Mr. Vance’s grandparents, aunt, uncle, sister and most of all, his mother struggled profoundly with the demands of their new middle-class life.  It’s a very insightful book and one I can highly recommend to you.

Let’s face it, there are good places to live and not-so-good-places to live in the United States.  A recent Gallup survey basically tells the tale.

If you live in Illinois, Connecticut or Rhode Island, the chances are you know someone who is not happy. Not happy at all. Around a quarter of the population living in these regions have described them each as the ‘worst possible state to live in’, according to a Gallup survey. The map data doesn’t explain the nature of the residents’ grievances but that map, according to the Gallup Survey, is given below.

While twenty-one to twenty-five (21-25) per cent of people ranked these three states as the ‘worst’, Louisiana and Mississippi also featured prominently – with seventeen to twenty (17-20) per cent describing the two southern states as the worst.

On a positive note, ten states had only one to two (1-2) per cent of their population who weren’t happy: Utah, Colorado, Wyoming, Texas, North Dakota, Minnesota, Iowa, Wisconsin, New Hampshire and Maine. Apparently weather was not a significant factor in their happiness.  If you look at individual cities, we find the following, again according to Gallup in the list below.

If you want to lead a happy life, Boulder, Colorado, it seems, is the place to be – because it was named as the happiest city in the U.S. last October.  It topped a list of twenty-five (25) of America’s happiest cities, revealed in the book The Blue Zones of Happiness, by National Geographic Explorer Dan Buettner.

Along with National Geographic and Gallup, he developed an index to measure a population’s happiness based on fifteen (15) metrics including civic engagement, walkability and healthful food options.  Boulder tops the list with walkability, access to nature and sense of community being contributing factors to its residents’ happiness.  The metro area of Santa Cruz-Watsonville California came second in the list, followed by Charlottesville, Virginia, Fort Collins, Colorado, and San Luis Obispo-Paso Robles-Arroyo Grande in California. California is clearly a dreamy place to live, as eight of its cities, including the metro areas of San Diego-Carlsbad and San Francisco-Oakland-Hayward, make the happiness list.  Let’s now take a look at that list.

If we look at population densities by city, we find the top ten (10) as follows:

You will notice that number seventeen (17) on our most popular list is also on the most-dense list. San Fran must be a great place to live. I know, having repeated experience with Atlanta traffic, LOVE TO VISIT, but would not want to live there.  Great place with lots to do but the traffic is a real bummer.

As always, I welcome your comments.

Advertisements

GOTTA GET IT OFF

January 6, 2018


OKAY, how many of you have said already this year?  “MAN, I have to lose some weight.”  I have a dear friend who put on a little weight over a couple of years and he commented: “Twenty or twenty-five pounds every year and pretty soon it adds up.”  It does add up.  Let’s look at several numbers from the CDC and other sources.

  • The CDC organization estimates that three-quarters (3/4of the American population will likely be overweight or obese by 2020. The latest figures, as of 2014, show that more than one-third (36.5%) of U.S. adults age twenty (20) and older and seventeen percent (17%) of children and adolescents aged two through nineteen (2–19) years were obese.
  • American ObesityRates are on the Rise, Gallup Poll Finds. Americans have become even fatter than before, with nearly twenty-eight (28%) percent saying they are clinically obese, a new survey finds. … At 180 pounds this person has a BMI of thirty (30) and is considered obese.

Now, you might say—we are in good company:  According to the World Health Organization, the following countries have the highest rates of obesity.

  • Republic of Nauru. Formerly known as Pleasant Island, this tiny island country in the South Pacific only has a population of 9,300. …
  • American Samoa. …
  • Tokelau
  • Tonga
  • French Polynesia. …
  • Republic of Kiribati. …
  • Saudi Arabia. …
  • Panama.

There is absolutely no doubt that more and more Americans are over weight even surpassing the magic BMI number of 30.  We all know what reduction in weight can do for us on an individual basis, but have you ever considered what reduction in weight can do for “other items”—namely hardware?

  • Using light-weight components, (composite materials) and high-efficiency engines enabled by advanced materials for internal-combustion engines in one-quarter of U.S. fleet trucks and automobiles could possibly save more than five (5) billion gallons of fuel annually by 2030. This is according to the US Energy Department Vehicle Technologies Office.
  • This is possible because, according to the Oak Ridge National Laboratory, The Department of Energy’s Carbon Fiber Technology Facility has a capacity to produce up to twenty-five (25) tons of carbon fiber per year.
  • Replacing heavy steel with high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by ten to sixty percent (10-60 %). Longer term, materials such as magnesium and carbon fiber-reinforced composites could reduce the weight of some components by fifty to seventy-five percent (50-75%).
  • It costs $10,000 per pound to put one pound of payload into Earth orbit. NASA’s goal is to reduce the cost of getting to space down to hundreds of dollars per pound within twenty-five (25) years and tens of dollars per pound within forty (40) years.
  • Space-X Falcon Heavy rocket will be the first ever rocket to break the $1,000 per pound per orbit barrier—less than a tenth as much as the Shuttle. ( SpaceX press release, July 13, 2017.)
  • The Solar Impulse 2 flew 40,000 Km without fuel. The 3,257-pound solar plane used sandwiched carbon fiber and honey-combed alveolate foam for the fuselage, cockpit and wing spars.

So you see, reduction in weight can have lasting affects for just about every person and some pieces of hardware.   Let’s you and I get it off.

HAPPY NEW YEAR

December 31, 2017


I certainly want to thank all of you who, over this past year, taken time to access my posts.  I wish you the very best in 2018—HEALTH, HAPPINESS, PROFESSIONAL SUCCESS, AND A LITTLE MONEY LEFT IN YOUR POCKETS FOR FUN AT THE END OF THE DAY. Let’s see if we can make 2018 a banner year.

HAPPY NEW YEAR

HALF SMART

December 12, 2017


The other day I was visiting a client and discussing a project involving the application of a robotic system to an existing work cell.  The process is somewhat complex and we all questioned which employee would manage the operation of the cell including the system.  The system is a SCARA type.  SCARA is an acronym for Selective Compliance Assembly Robot Arm or Selective Compliance Articulated Robot Arm.

In 1981, Sankyo SeikiPentel and NEC presented a completely new concept for assembly robots. The robot was developed under the guidance of Hiroshi Makino, a professor at the University of Yamanashi and was called the Selective Compliance Assembly Robot Arm or SCARA.

SCARA’s are generally faster and cleaner than comparable Cartesian (X, Y, Z) robotic systems.  Their single pedestal mount requires a small footprint and provides an easy, unhindered form of mounting. On the other hand, SCARA’s can be more expensive than comparable Cartesian systems and the controlling software requires inverse kinematics for linear interpolated moves. This software typically comes with the SCARA however and is usually transparent to the end-user.   The SCARA system used in this work cell had the capability of one hundred programs with 100 data points per program.  It was programmed by virtue of a “teach pendant” and “jog” switch controlling the placement of the robotic arm over the material.

Several names were mentioned as to who might ultimately, after training, be capable of taking on this task.  When one individual was named, the retort was; “not James, he is only half smart.  That got me to thinking about “smarts”.  How smart is smart?   At what point do we say smart is smart enough?

IQ CHARTS—WHO’S SMART

The concept of IQ or intelligence quotient was developed by either the German psychologist and philosopher Wilhelm Stern in 1912 or by Lewis Terman in 1916.  This is depending on which of several sources you consult.   Intelligence testing was initially accomplished on a large scale before either of these dates. In 1904 psychologist Alfred Binet was commissioned by the French government to create a testing system to differentiate intellectually normal children from those who were inferior.

From Binet’s work the IQ scale called the “Binet Scale,” (and later the “Simon-Binet Scale”) was developed. Sometime later, “intelligence quotient,” or “IQ,” entered our vocabulary.  Lewis M. Terman revised the Simon-Binet IQ Scale, and in 1916 published the Stanford Revision of the Binet-Simon Scale of Intelligence (also known as the Stanford-Binet).

Intelligence tests are one of the most popular types of psychological tests in use today. On the majority of modern IQ tests, the average (or mean) score is set at 100 with a standard deviation of 15 so that scores conform to a normal distribution curve.  This means that 68 percent of scores fall within one standard deviation of the mean (that is, between 85 and 115), and 95 percent of scores fall within two standard deviations (between 70 and 130).  This may be shown from the following bell-shaped curve:

Why is the average score set to 100?  Psychometritians, individuals who study the biology of the brain, utilize a process known as standardization in order to make it possible to compare and interpret the meaning of IQ scores. This process is accomplished by administering the test to a representative sample and using these scores to establish standards, usually referred to as norms, by which all individual scores can be compared. Since the average score is 100, experts can quickly assess individual test scores against the average to determine where these scores fall on the normal distribution.

The following scale resulted for classifying IQ scores:

IQ Scale

Over 140 – Genius or almost genius
120 – 140 – Very superior intelligence
110 – 119 – Superior intelligence
90 – 109 – Average or normal intelligence
80 – 89 – Dullness
70 – 79 – Borderline deficiency in intelligence
Under 70 – Feeble-mindedness

Normal Distribution of IQ Scores

From the curve above, we see the following:

50% of IQ scores fall between 90 and 110
68% of IQ scores fall between 85 and 115
95% of IQ scores fall between 70 and 130
99.5% of IQ scores fall between 60 and 140

Low IQ & Mental Retardation

An IQ under 70 is considered as “mental retardation” or limited mental ability. 5% of the population falls below 70 on IQ tests. The severity of the mental retardation is commonly broken into 4 levels:

50-70 – Mild mental retardation (85%)
35-50 – Moderate mental retardation (10%)
20-35 – Severe mental retardation (4%)
IQ < 20 – Profound mental retardation (1%)

High IQ & Genius IQ

Genius or near-genius IQ is considered to start around 140 to 145. Less than 1/4 of 1 percent fall into this category. Here are some common designations on the IQ scale:

115-124 – Above average
125-134 – Gifted
135-144 – Very gifted
145-164 – Genius
165-179 – High genius
180-200 – Highest genius

We are told “Big Al” had an IQ over 160 which would definitely qualify him as being one the most intelligent people on the planet.

As you can see, the percentage of individuals considered to be genius is quite small. 0.50 percent to be exact.  OK, who are these people?

  1. Stephen Hawking

Dr. Hawking is a man of Science, a theoretical physicist and cosmologist.  Hawking has never failed to astonish everyone with his IQ level of 160. He was born in Oxford, England and has proven himself to be a remarkably intelligent person.   Hawking is an Honorary Fellow of the Royal Society of Arts, a lifetime member of the Pontifical Academy of Sciences, and a recipient of the Presidential Medal of Freedom, the highest civilian award in the United States.  Hawking was the Lucasian Professor of Mathematics at the University of Cambridge between 1979 and 2009. Hawking has a motor neuron disease related to amyotrophic lateral sclerosis (ALS), a condition that has progressed over the years. He is almost entirely paralyzed and communicates through a speech generating device. Even with this condition, he maintains a very active schedule demonstrating significant mental ability.

  1. Andrew Wiles

Sir Andrew John Wiles is a remarkably intelligent individual.  Sir Andrew is a British mathematician, a member of the Royal Society, and a research professor at Oxford University.  His specialty is numbers theory.  He proved Fermat’s last theorem and for this effort, he was awarded a special silver plaque.    It is reported that he has an IQ of 170.

  1. Paul Gardner Allen

Paul Gardner Allen is an American business magnate, investor and philanthropist, best known as the co-founder of The Microsoft Corporation. As of March 2013, he was estimated to be the 53rd-richest person in the world, with an estimated wealth of $15 billion. His IQ is reported to be 170. He is considered to be the most influential person in his field and known to be a good decision maker.

  1. Judit Polgar

Born in Hungary in 1976, Judit Polgár is a chess grandmaster. She is by far the strongest female chess player in history. In 1991, Polgár achieved the title of Grandmaster at the age of 15 years and 4 months, the youngest person to do so until then. Polgar is not only a chess master but a certified brainiac with a recorded IQ of 170. She lived a childhood filled with extensive chess training given by her father. She defeated nine former and current world champions including Garry Kasparov, Boris Spassky, and Anatoly Karpov.  Quite amazing.

  1. Garry Kasparov

Garry Kasparov has totally amazed the world with his outstanding IQ of more than 190. He is a Russian chess Grandmaster, former World Chess Champion, writer, and political activist, considered by many to be the greatest chess player of all time. From 1986 until his retirement in 2005, Kasparov was ranked world No. 1 for 225 months.  Kasparov became the youngest ever undisputed World Chess Champion in 1985 at age 22 by defeating then-champion Anatoly Karpov.   He held the official FIDE world title until 1993, when a dispute with FIDE led him to set up a rival organization, the Professional Chess Association. In 1997 he became the first world champion to lose a match to a computer under standard time controls, when he lost to the IBM supercomputer Deep Blue in a highly publicized match. He continued to hold the “Classical” World Chess Championship until his defeat by Vladimir Kramnik in 2000.

  1. Rick Rosner

Gifted with an amazing IQ of 192.  Richard G. “Rick” Rosner (born May 2, 1960) is an American television writer and media figure known for his high intelligence test scores and his unusual career. There are reports that he has achieved some of the highest scores ever recorded on IQ tests designed to measure exceptional intelligence. He has become known for taking part in activities not usually associated with geniuses.

  1. Kim Ung-Yong

With a verified IQ of 210, Korean civil engineer Ung Yong is considered to be one of the smartest people on the planet.  He was born March 7, 1963 and was definitely a child prodigy .  He started speaking at the age of 6 months and was able to read Japanese, Korean, German, English and many other languages by his third birthday. When he was four years old, his father said he had memorized about 2000 words in both English and German.  He was writing poetry in Korean and Chinese and wrote two very short books of essays and poems (less than 20 pages). Kim was listed in the Guinness Book of World Records under “Highest IQ“; the book gave the boy’s score as about 210. [Guinness retired the “Highest IQ” category in 1990 after concluding IQ tests were too unreliable to designate a single record holder.

  1. Christopher Hirata

Christopher Hirata’s  IQ is approximately 225 which is phenomenal. He was genius from childhood. At the age of 16, he was working with NASA with the Mars mission.  At the age of 22, he obtained a PhD from Princeton University.  Hirata is teaching astrophysics at the California Institute of Technology.

  1. Marilyn vos Savant

Marilyn Vos Savant is said to have an IQ of 228. She is an American magazine columnist, author, lecturer, and playwright who rose to fame as a result of the listing in the Guinness Book of World Records under “Highest IQ.” Since 1986 she has written “Ask Marilyn,” a Parade magazine Sunday column where she solves puzzles and answers questions on various subjects.

1.Terence Tao

Terence Tao is an Australian mathematician working in harmonic analysis, partial differential equations, additive combinatorics, ergodic Ramsey theory, random matrix theory, and analytic number theory.  He currently holds the James and Carol Collins chair in mathematics at the University of California, Los Angeles where he became the youngest ever promoted to full professor at the age of 24 years. He was a co-recipient of the 2006 Fields Medal and the 2014 Breakthrough Prize in Mathematics.

Tao was a child prodigy, one of the subjects in the longitudinal research on exceptionally gifted children by education researcher Miraca Gross. His father told the press that at the age of two, during a family gathering, Tao attempted to teach a 5-year-old child arithmetic and English. According to Smithsonian Online Magazine, Tao could carry out basic arithmetic by the age of two. When asked by his father how he knew numbers and letters, he said he learned them from Sesame Street.

OK, now before you go running to jump from the nearest bridge, consider the statement below:

Persistence—President Calvin Coolidge said it better than anyone I have ever heard. “Nothing in the world can take the place of persistence. Talent will not; nothing is more common than unsuccessful men with talent.   Genius will not; unrewarded genius is almost a proverb. Education will not; the world is full of educated derelicts. Persistence and determination alone are omnipotent.  The slogan “Press on” has solved and always will solve the problems of the human race.” 

I personally think Calvin really knew what he was talking about.  Most of us get it done by persistence!! ‘Nuff” said.

DARK NET

December 6, 2017


Most of the individuals who read my posting are very well-informed and know that Tim Berners-Lee “invented” the internet.  In my opinion, the Internet is a resounding technological improvement in communication.  It has been a game-changer in the truest since of the word.  I think there are legitimate uses which save tremendous time.  There are also illegitimate uses as we shall see.

A JPEG of Mr. Berners-Lee is shown below:

BIOGRAPHY:

In 1989, while working at CERN, the European Particle Physics Laboratory in Geneva, Switzerland, Tim Berners-Lee proposed a global hypertext project, to be known as the World Wide Web. Based on the earlier “Enquire” work, his efforts were designed to allow people to work together by combining their knowledge in a web of hypertext documents.  Sir Tim wrote the first World Wide Web server, “httpd“, and the first client, “WorldWideWeb” a what-you-see-is-what-you-get hypertext browser/editor which ran in the NeXTStep environment. This work began in October 1990.k   The program “WorldWideWeb” was first made available within CERN in December, and on the Internet at large in the summer of 1991.

Through 1991 and 1993, Tim continued working on the design of the Web, coordinating feedback from users across the Internet. His initial specifications of URIs, HTTP and HTML were refined and discussed in larger circles as the Web technology spread.

Tim Berners-Lee graduated from the Queen’s College at Oxford University, England, in 1976. While there he built his first computer with a soldering iron, TTL gates, an M6800 processor and an old television.

He spent two years with Plessey Telecommunications Ltd (Poole, Dorset, UK) a major UK Telecom equipment manufacturer, working on distributed transaction systems, message relays, and bar code technology.

In 1978 Tim left Plessey to join D.G Nash Ltd (Ferndown, Dorset, UK), where he wrote, among other things, typesetting software for intelligent printers and a multitasking operating system.

His year and one-half spent as an independent consultant included a six-month stint (Jun-Dec 1980) as consultant software engineer at CERN. While there, he wrote for his own private use his first program for storing information including using random associations. Named “Enquire” and never published, this program formed the conceptual basis for the future development of the World Wide Web.

From 1981 until 1984, Tim worked at John Poole’s Image Computer Systems Ltd, with technical design responsibility. Work here included real time control firmware, graphics and communications software, and a generic macro language. In 1984, he took up a fellowship at CERN, to work on distributed real-time systems for scientific data acquisition and system control. Among other things, he worked on FASTBUS system software and designed a heterogeneous remote procedure call system.

In 1994, Tim founded the World Wide Web Consortium at the Laboratory for Computer Science (LCS). This lab later merged with the Artificial Intelligence Lab in 2003 to become the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts Institute of Technology (MIT). Since that time he has served as the Director of the World Wide Web Consortium, a Web standards organization which develops interoperable technologies (specifications, guidelines, software, and tools) to lead the Web to its full potential. The Consortium has host sites located at MIT, at ERCIM in Europe, and at Keio University in Japan as well as offices around the world.

In 1999, he became the first holder of 3Com Founders chair at MIT. In 2008 he was named 3COM Founders Professor of Engineering in the School of Engineering, with a joint appointment in the Department of Electrical Engineering and Computer Science at CSAIL where he also heads the Decentralized Information Group (DIG). In December 2004 he was also named a Professor in the Computer Science Department at the University of Southampton, UK. From 2006 to 2011 he was co-Director of the Web Science Trust, launched as the Web Science Research Initiative, to help create the first multidisciplinary research body to examine the Web.

In 2008 he founded and became Director of the World Wide Web Foundation.  The Web Foundation is a non-profit organization devoted to achieving a world in which all people can use the Web to communicate, collaborate and innovate freely.  The Web Foundation works to fund and coordinate efforts to defend the Open Web and further its potential to benefit humanity.

In June 2009 then Prime Minister Gordon Brown announced that he would work with the UK Government to help make data more open and accessible on the Web, building on the work of the Power of Information Task Force. Sir Tim was a member of The Public Sector Transparency Board tasked to drive forward the UK Government’s transparency agenda.  He has promoted open government data globally, is a member of the UK’s Transparency Board.

In 2011 he was named to the Board of Trustees of the Ford Foundation, a globally oriented private foundation with the mission of advancing human welfare. He is President of the UK’s Open Data Institute which was formed in 2012 to catalyze open data for economic, environmental, and social value.

He is the author, with Mark Fischetti, of the book “Weaving the Web” on the past, present and future of the Web.

On March 18 2013, Sir Tim, along with Vinton Cerf, Robert Kahn, Louis Pouzin and Marc Andreesen, was awarded the Queen Elizabeth Prize for Engineering for “ground-breaking innovation in engineering that has been of global benefit to humanity.”

It should be very obvious from this rather short biography that Sir Tim is definitely a “heavy hitter”.

DARK WEB:

I honestly don’t think Sir Tim realized the full gravity of his work and certainly never dreamed there might develop a “dark web”.

The Dark Web is the public World Wide Web content existing on dark nets or networks which overlay the public Internet.  These networks require specific software, configurations or authorization to access. They are NOT open forums as we know the web to be at this time.  The dark web forms part of the Deep Web which is not indexed by search engines such as GOOGLE, BING, Yahoo, Ask.com, AOL, Blekko.com,  Wolframalpha, DuckDuckGo, Waybackmachine, or ChaCha.com.  The dark nets which constitute the Dark Web include small, friend-to-friend peer-to-peer networks, as well as large, popular networks like FreenetI2P, and Tor, operated by public organizations and individuals. Users of the Dark Web refer to the regular web as the Clearnet due to its unencrypted nature.

A December 2014 study by Gareth Owen from the University of Portsmouth found the most commonly requested type of content on Tor was child pornography, followed by black markets, while the individual sites with the highest traffic were dedicated to botnet operations.  Botnet is defined as follows:

“a network of computers created by malware andcontrolled remotely, without the knowledge of the users of those computers: The botnet was usedprimarily to send spam emails.”

Hackers built the botnet to carry out DDoS attacks.

Many whistle-blowing sites maintain a presence as well as political discussion forums.  Cloned websites and other scam sites are numerous.   Many hackers sell their services individually or as a part of groups. There are reports of crowd-funded assassinations and hit men for hire.   Sites associated with Bitcoinfraud related services and mail order services are some of the most prolific.

Commercial dark net markets, which mediate transactions for illegal drugs and other goods, attracted significant media coverage starting with the popularity of Silk Road and its subsequent seizure by legal authorities. Other markets sells software exploits and weapons.  A very brief look at the table below will indicate activity commonly found on the dark net.

As you can see, the uses for the dark net are quite lovely, lovely indeed.  As with any great development such as the Internet, nefarious uses can and do present themselves.  I would stay away from the dark net.  Just don’t go there.  Hope you enjoy this one and please send me your comments.

MAIN STREET MEATS

November 18, 2017


I generally do NOT comment on my successes, failures, things I do well, things I do not do well, BUT I am probably one of the world’s best independent experts on “all-meat” hamburgers 😊😊.  Do NOT be fooled by my very quiet demeanor and passive personality.  I’m one of the best.  You might say a connoisseur of burgers—all-meat that is.  A turkey burger is not really a burger.  Let’s get that straight right now.  The best all-meat hamburger in Chattanooga is served by a restaurant called Main Street Meats. I know, I know, those of you who read this post and live in Chattanooga, will say NO, Tremont, Urban Stacks, Slicks; all serving great hamburgers, BUT Main Street Meats is the very best.  Main Street has a burger that would make the Earl of Sandwich giddy with excitement and anticipation!

My wife and I visited “Meats” this past Friday.  This post will give you some perspective as to why I say this is a wonderful experience.   Let’s take a look.

MENU

The menu separates the restaurant from your typical “burger joint”.  Much more expansive and certainly much more complete than a fast-food, hash-slinging, drive-through, down-and- dirty, greasy spoon establishment.   Main Street has a lunch menu and a dinner menu.  Since we went to dinner, I have given you the dinner menu below.

DINNER MENU

– BUTCHER’S SELECTIONS 

Served with House-Pickles, Mustards, and Niedlov’s Baguette

DAILY CHEESE SELECTIONS (1) $7 / (3) $19

DAILY CURED MEAT SELECTIONS (1) $5 / (3) $14 / (5) $23

– STARTERS –

PORK RINDS, Harissa Aioli ~ $5

BEEF TARTARE, Filet Mignon, Sour Carrot, Cornichon, Shallot, Yolk, Baguette Crisps ~ $13

CHICKEN LIVER MOUSSE, Bacon Jam, Parsley, Lemon ~ $9

HUMMUS, Seasonal Vegetables, Grilled PIta ~ $9.5

MSM BRATWURST, House Mustard & Pickles ~ $8

– SOUPS –

TURKEY POTATO, Turnip Greens, Mushrooms, Bacon, Green Onion ~ $6

– SALADS –

FALL GREENS, Buttercup Squash, Pepita, Baked Feta, Sweet Onion Dressing ~ $9

– SANDWICHES –

LOCAL BEEF BURGER, House Pickles, Mustard, Mayo, Caramelized Onions, Bacon, Gruyere ~ $10.25*

FISH TACOS, Spicy Aioli, Cabbage, Radish, Pickled Shallot, Cotija ~ $9

– PLATES –

BUTCHER’S STEAK, Bordelaise, Mashed Potatoes Simpson Farms (TN) Flank ~ $19, Simpson Farms (TN) New York Strip ~ $32, Strauss (NC) Filet Mignon ~ $36, Simpsons Farm (TN) 70 Day Dry Age Ribeye ~ $44

FISH n’ GRITS, Bacon Cheddar Grits, Pickled Okra, Chow Chow ~ $18

GRILLED PORK CHOPS, Roasted Root Vegetable, Apple and Onion Gastrique ~ $26

ROASTED CHICKEN, Sweet Potato, Smoked Ricotta, Pecans, Bourbon Maple Cream Sauce ~ $20

– SIDES –

HOUSE MADE FRIES, Tallow, Maldon Salt ~ $5

GARDINERA ~ $4

BRUSSELS, Apple Glaze, Chili Flake ~ 6

BEANS-N-GREENS, Chow Chow ~ $5

BROCCOLINI, Garlic, Aleppo, Parm ~ $6.5

POTATO SALAD, Scallion, Bacon, Mustard, Mayo ~ $6.5

– DESSERTS –

BANANA PUDDING, ‘Nilla Wafer, Marshmallow ~ $7.5

BREAD PUDDING, Maple Anglaise, Bacon Caramel, Chantilly ~ $7.5

COOKIES & ICE CREAM, Bacon Chocolate Chip Cookie, Clumpies Ice Cream ~ $5

WINE

– SPARKLING –

MEZZA DI MEZZACORONA ~ $8/gl $39/bt

– WHITE –

CASS MR BLANC ’16 ~ $9.5/gl $48/bt

MOUTON NOIR BOTTOMS UP ’14 ~ $48/bt

MOUTON NOIR OREGOGNE ’13 ~ $82.5/bt

UNIQUE SAUVIGNON BLANC ’14 ~ $7.5/gl $37/bt

VIGILANCE CHARDONNAY ’16 ~ $8/gl $40/bt

– ROSE –

AIX PROVENCE ROSE ’16 ~ $9/gl $46/bt

– RED –

BOOMTOWN MERLOT ’14 ~ $8.5/gl $42/bt

CALIFNORNIA SOUL ’11 ~ $9/gl $45/bt

HEITZ INK GRADE VINEYARD ZINFANDEL ’13 ~ $67/bt

HENDRY HWR PINOT NOIR ’14 ~ $9.5 gl/ $48/bt

HIRSCH RESERVE PINOT NOIR ’13 ~ $168/bt

LESSE-FITCH CABERNET ’15 ~ $7.5/gl $36/bt

NEYERS LEFT BANK RED ’15 ~ $65/bt

BEER

– DRAFT –

BLACKBERRY FARMS BOUNDARY TREE SAISON ~ $6.5

GOOD PEOPLE MUMBAI RYE ~ $5.5

ODDSTORY BELGIAN DUBBLE ~ $7

– BOTTLE –

BEARDED IRIS EVER CLEVER ~ $12

BEARDED IRIS SCATTERBRIAN ~ $11

BELL’S WINTER WHITE ~ $5.5

BLACKBERRY FARMS BELGO IPA ~ $15 (375ml)

BLACKBERRY FARMS BLACKBERRY RYE ~ $15 (375ml)

BUY THE KITCHEN A HIGH LIFE ~ $3.25

FOUNDERS PORTER ~ $6

HI-WIRE STRONGMAN COFFEE MILK STOUT ~ $6.5

MILLER HIGH LIFE (7oz.) ~ $2.5

MODELO ESPECIAL ~ $3.5

WISEACRE ADJECTIVE ANIMAL ~ $7.5

YEE-HAW DUNKEL ~ $5.5

BEVERAGES

– BOTTLED BEVERAGES –

ACQUA PANNA BOTTLED WATER ~ $3.75/500ml, $6/1L

DIET COKE ~ $3

FANTA ~ $3.5

MEXICAN COKE ~ $3.75

SAN PELLEGRINO ~ $3.75/500ml

SPRITE ~ $3.5

VELO COLD BREW COFFEE, BUNNY HOP ~ $4.25

VELO COLD BREW COFFEE, RTD ~ $3.75

– COFFEE & TEA –

GREYFRIAR’S COFFEE ~ $2.95

ICED TEA ~ $2.95

When you walk through the front door, you immediately are reminded that this is truly a meat market.  They sell the very best cuts of meat in addition to having a small restaurant.  Take a look.

 

 

In addition to meats, they have an excellent selection of cheeses.  The cooler below is more complete than appears because I took this photo with my cell phone which does not have a wide-angle lens.

The seating area is fairly small with approximately ten (10) tables and one very large table and accommodating groups in the center of the establishment. Main Street is a locally owned and operated operation and they enjoy the small size.

Every restaurant must have a bar and Main Street certainly does also.  The selection includes what you see below and other choices under the bar itself.

Our waiter was a great guy, very knowledgeable and very attentive.  Never an empty water glass and always accommodating.

The JPEG below really does not do justice to the burger itself.  You simply cannot get a feel for the quality of beef, or bread, or “fixings” included with the burger.  Main Street calls this the Local Beef Burger with house pickles, mustard, mayo, caramelized onions, bacon, and Gruyere cheese.  I say—you MUST include the caramelized onions. They establish one element of the overall taste. Also, the bacon is not your microwaved, thin, ready in two minutes bacon.  It’s twelve dollars ($12.00) a pound from the cooler.  Thick and cooked so crispy when eaten.

CONCLUSIONS:

Once again, the good news is—Main Street Meats is in Chattanooga.  The bad news is—Main Street Meats is in Chattanooga.  Most of you reading this post cannot “rush right down” and give this great restaurant a try, BUT you can make the visit to the River City.  Put that visit on your “bucket list”.  As always, I welcome your comments.

THEY GOT IT ALL WRONG

November 15, 2017


We all have heard that necessity is the mother of invention.  There have been wonderful advances in technology since the Industrial Revolution but some inventions haven’t really captured the imagination of many people, including several of the smartest people on the planet.

Consider, for example, this group: Thomas Edison, Lord Kelvin, Steve Ballmer, Robert Metcalfe, and Albert Augustus Pope. Despite backgrounds of amazing achievement and even brilliance, all share the dubious distinction of making some of the worst technological predictions in history and I mean the very worst.

Had they been right, history would be radically different and today, there would be no airplanes, moon landings, home computers, iPhones, or Internet. Fortunately, they were wrong.  And that should tell us something: Even those who shape the future can’t always get a handle on it.

Let’s take a look at several forecasts that were most publically, painfully, incorrect. From Edison to Kelvin to Ballmer, click through for 10 of the worst technological predictions in history.

“Heavier-than-air flying machines are impossible.” William Thomson (often referred to as Lord Kelvin), mathematical physicist and engineer, President, Royal Society, in 1895.

A prolific scientific scholar whose name is commonly associated with the history of math and science, Lord Kelvin was nevertheless skeptical about flight. In retrospect, it is often said that Kelvin was quoted out of context, but his aversion to flying machines was well known. At one point, he is said to have publically declared that he “had not the smallest molecule of faith in aerial navigation.” OK, go tell that to Wilber and Orville.

“Fooling around with alternating current is just a waste of time. No one will use it, ever. Thomas Edison, 1889.

Thomas Edison’s brilliance was unassailable. A prolific inventor, he earned 1,093 patents in areas ranging from electric power to sound recording to motion pictures and light bulbs. But he believed that alternating current (AC) was unworkable and its high voltages were dangerous.As a result, he battled those who supported the technology. His so-called “war of currents” came to an end, however, when AC grabbed a larger market share, and he was forced out of the control of his own company.

 

“Computers in the future may weigh no more than 1.5 tons.” Popular Mechanics Magazine, 1949.

The oft-repeated quotation, which has virtually taken on a life of its own over the years, is actually condensed. The original quote was: “Where a calculator like the ENIAC today is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps weigh only 1.5 tons.” Stated either way, though, the quotation delivers a clear message: Computers are mammoth machines, and always will be. Prior to the emergence of the transistor as a computing tool, no one, including Popular Mechanics, foresaw the incredible miniaturization that was about to begin.

 

“Television won’t be able to hold on to any market it captures after the first six months. People will soon get tired of staring at a plywood box every night.” Darryl Zanuck, 20th Century Fox, 1946.

Hollywood film producer Darryl Zanuck earned three Academy Awards for Best Picture, but proved he had little understanding of the tastes of Americans when it came to technology. Television provided an alternative to the big screen and a superior means of influencing public opinion, despite Zanuck’s dire predictions. Moreover, the technology didn’t wither after six months; it blossomed. By the 1950s, many homes had TVs. In 2013, 79% of the world’s households had them.

 

“I predict the Internet will go spectacularly supernova and in 1996 catastrophically collapse.” Robert Metcalfe, founder of 3Com, in 1995.

An MIT-educated electrical engineer who co-invented Ethernet and founded 3Com, Robert Metcalfe is a holder of the National Medal of Technology, as well as an IEEE Medal of Honor. Still, he apparently was one of many who failed to foresee the unbelievable potential of the Internet. Today, 47% of the 7.3 billion people on the planet use the Internet. Metcalfe is currently a professor of innovation and Murchison Fellow of Free Enterprise at the University of Texas at Austin.

“There’s no chance that the iPhone is going to get any significant market share.” Steve Ballmer, former CEO, Microsoft Corp., in 2007.

Some magna cum laude Harvard math graduate with an estimated $33 billion in personal wealth, Steve Ballmer had an amazing tenure at Microsoft. Under his leadership, Microsoft’s annual revenue surged from $25 billion to $70 billion, and its net income jumped 215%. Still, his insights failed him when it came to the iPhone. Apple sold 6.7 million iPhones in its first five quarters, and by end of fiscal year 2010, its sales had grown to 73.5 million.

 

 

“After the rocket quits our air and starts on its longer journey, its flight would be neither accelerated nor maintained by the explosion of the charges it then might have left.” The New York Times,1920.

The New York Times was sensationally wrong when it assessed the future of rocketry in 1920, but few people of the era were in a position to dispute their declaration. Forty-one years later, astronaut Alan Shepard was the first American to enter space and 49 years later, Neil Armstrong set foot on the moon, laying waste to the idea that rocketry wouldn’t work. When Apollo 11 was on its way to the moon in 1969, the Times finally acknowledged the famous quotation and amended its view on the subject.

“With over 15 types of foreign cars already on sale here, the Japanese auto industry isn’t likely to carve out a big share of the market for itself.” Business Week, August 2, 1968.

Business Week seemed to be on safe ground in 1968, when it predicted that Japanese market share in the auto industry would be miniscule. But the magazine’s editors underestimated the American consumer’s growing distaste for the domestic concept of planned obsolescence. By the 1970s, Americans were flocking to Japanese dealerships, in large part because Japanese manufacturers made inexpensive, reliable cars. That trend has continued over the past 40 years. In 2016, Japanese automakers built more cars in the US than Detroit did.

“You cannot get people to sit over an explosion.” Albert Augustus Pope, founder, Pope Manufacturing, in the early 1900s.

Albert Augustus Pope thought he saw the future when he launched production of electric cars in Hartford, CT, in 1897. Listening to the quiet performance of the electrics, he made his now-famous declaration about the future of the internal combustion engine. Despite his preference for electrics, however, Pope also built gasoline-burning cars, laying the groundwork for future generations of IC engines. In 2010, there were more than one billion vehicles in the world, the majority of which used internal combustion propulsion.

 

 

 

“I have traveled the length and breadth of this country and talked to the best people, and I can assure you that data processing is a fad that won’t last out the year.” Editor, Prentice Hall Books,1957.

The concept of data processing was a head-scratcher in 1957, especially for the unnamed Prentice Hall editor who uttered the oft-quoted prediction of its demise. The prediction has since been used in countless technical presentations, usually as an example of our inability to see the future. Amazingly, the editor’s forecast has recently begun to look even worse, as Internet of Things users search for ways to process the mountains of data coming from a new breed of connected devices. By 2020, experts predict there will be 30 to 50 billion such connected devices sending their data to computers for processing.

CONCLUSIONS:

Last but not least, Charles Holland Duell in 1898 was appointed as the United States Commissioner of Patents, and held that post until 1901.  In that role, he is famous for purportedly saying “Everything that can be invented has been invented.”  Well Charlie, maybe not.

%d bloggers like this: