RETURN OF X-PLANES

April 22, 2017


In the April 2017 issue of “Machine Design” a fascinating article entitled “NASA’S Green Thumb for Green Aviation” was presented. This article was written by Carlos M. Gonzales and encouraged me to explore, at least through NASA’s web site, the status of their “X-Plane” program.  Aviation is definitely a growth industry. Millions upon millions of individuals travel each year for business, recreation, and tourism.  There is no doubt that aviation is the “Greyhound Bus” for the twenty-first century.

The aviation system is the high-speed transportation backbone of the United States and global economies. Global aviation is forecast to grow from today’s three point five (3.5) billion passenger trips per year to seven (7) billion passenger trips by the mid- 2030s, and to eleven (11) billion passenger trips by mid-century. Such growth brings with it the direct economic potential of trillions of dollars in the fields of manufacturing, operations and maintenance, and the high-quality jobs they support.

At the same time, international competition for leadership of this critical industry is growing, as more nations invest in developing their own aviation technology and industrial capabilities. Such massive growth also creates substantial operational and environmental challenges. For example, by mid-century the aviation industry will need to build and fly enough new aircraft to accommodate more than three times as many passenger trips while at the same time reducing total emissions by half from that new hardware. Moreover, large reductions in emissions and aircraft noise levels will be needed, if not mandated. To meet those demands, revolutionary levels of aircraft performance improvements – well beyond today’s technology – must be achieved. In terms of air traffic control and the National Airspace System, maintaining safe and efficient operations is a continuing and growing challenge as the system expands, and especially as new business and operational models – such as unmanned aerial systems – are introduced. Enabling aircraft (with pilots aboard or not) to fly optimized trajectories through high density airspace with real-time, systemwide safety assurance are among the most critical operational improvements that must be achieved.

In looking at global growth, we see the following:

These numbers would be very frightening without the aviation industry deciding to be pro-active relative to the sheer numbers of passenger miles anticipated over the next two decades.  That’s where NASA comes in.

NEW AVIATION HORIZONS:

In FY 2017, NASA plans to begin a major ten-year research effort to accelerate aviation energy efficiency, transform propulsion systems, and enable major improvements in air traffic mobility. The centerpiece of NASA’s ten-year acceleration for advanced technologies testing is called New Aviation Horizons, or NAH. It is an ambitious plan to build a series of five mostly large-scale experimental aircraft – X-planes – that will flight test new technologies, systems and novel aircraft and engine configurations. X-planes are a key piece of the “three-legged stool” that characterizes aviation research.

  • One leg represents computational capabilities – the high-speed super computers that can model the physics of air flowing over an object – be it a wing, a rudder or a full airplane.
  • A second leg represents experimental methods. This is where scientists put what is most often a scale model of an object or part of an object – be it a wing, a rudder or an airplane – in a wind tunnel to take measurements of air flowing over the object. These measurements help improve the computer model, and the computer model helps inform improvements to the airplane design, which can then be tested again in the wind tunnel.
  • The third leg of the stool is to actually fly the design. Whether it’s flying an X-plane or a full-scale prototype of a new aircraft, the data recorded in actual flight can be used to validate and improve the computational and experimental methods used to develop the design in the first place. This third leg makes it possible to lower the risk enough to completely trust what the numbers are saying.

With NAH, NASA will:

  • Demonstrate revolutionary advancements in aircraft and engine configurations that break the mold of traditional tube and wing designs.
  • Support accelerated delivery to the U.S. aviation community of advanced verified design and analysis tools that support new flight-validated concepts, systems and technologies.
  • Provide to appropriate organizations and agencies research results that inform their work to update domestic and international aviation standards and regulations.
  • Enable U.S. industry to put into service flight-proven transformative technology that will solve tomorrow’s global aviation challenges.
  • Inspire a new generation of aeronautical innovators and equip them to engineer future aviation systems. Of the five X-planes, NASA has determined that three subsonic aircraft will be enough to span the range of possible configurations necessary to demonstrate in flight the major enabling fuel, emissions and noise reducing technologies.

The graphic below indicates possible designs for aircraft of the future.  All of these craft are now on the drawing board with computational prototyping underway.

INDUSTRY:

U.S. industry plays an integral role in the NAH initiative, leading the design, development and building of all X-planes under contract to NASA. Industry will be a research partner in the ground test and analysis, as well as the flight tests of the X-planes. Industry also partners in the advancement of the physics-based design and analysis capabilities. Through the lead and partnering roles, U.S. industry will be fully capable of confidently taking the next steps in commercializing the transformational configurations and technologies. The Lockheed Martin Aeronautics Company has already been awarded a preliminary design contract for the Quiet Supersonic Technology demonstrator. As indicated in a white paper published by the Aerospace Industries Association and the American Institute of Aeronautics and Astronautics, “The U.S. government must support robust, long-term Federal civil aeronautics research and technology initiatives funded at a level that will ensure U.S. leadership in aeronautics. Congress should support NASA’s ten-year Strategic Implementation Plan at least at the levels recommended in the fiscal year 2017 NASA Budget request to sustain a strong economy, maintain a skilled workforce, support national security, and drive a world-class educational system.”

UNIVERSITIES:

NASA has already launched the University Leadership Initiative, which provides U.S.-based universities the opportunity to take full independent leadership in defining and solving key technical challenges aligned with the NASA Aeronautics strategy. Solicitations and proposals are managed through the NASA Research Announcement process; the first round of awards will be made in Fall 2016. These awards could lead to new experiments that would fly onboard one or more X-planes. In addition, NASA is formulating new mechanisms for direct university and student participation in the X-plane design, development and flight test process. The objective is to ensure U.S. universities remain the leading global institutions for aviation research and education, and to ensure the next generation workforce has the vision and skills needed to lead aviation system transformation.

POSSIBLE CONFIGURATIONS:

As mentioned above, NASA, industry and universities have already begun looking at possible configurations.  The most promising on-going programs are given below.

As you can see, the designs are absolutely striking and “doable” relative to existing technology.  The key goals are to:

  • Produce environmentally sound or “GREEN” designs lessening air pollution.
  • Create better fuel usage and conservation.
  • Extend flight range
  • Structure designs so minimal airport alternations will be necessary
  • Improve passenger experience

Tall orders but keep in mind NASA got us to the moon and back.  Why do we feel they will not be able to meet the goals indicated?  As always, I welcome your comments.

ORDORIFOUS REALITY

January 14, 2017


My company is working on a project involved with capturing methane from the decomposition of organic material in landfill sites.  Research preparatory to accepting the job reviled very interesting facts.  Let’s take a look.

NUMBERS:

The U.S. has 3,091 active landfills and over 10,000 old municipal landfills, according to the Environmental Protection Agency. However, in the “good old days,” every town (and many businesses and factories) had its own dump.  This is somewhat disturbing since these landfills were unregulated.  Upregulation without standards can create situations where effluent can creep into groundwater possibly polluting wells and other sources of potable water.  That has now changed for the better.  The two digital maps below will indicate location and concentration of approved landfill sites.  You certainly can notice the greatest concentration is from the Mississippi River east where population densities are greatest.  This is certainly to be expected.

landfill-map2

landfill-map

Municipal solid waste (MSW) – more commonly known as trash or garbage – consists of everyday items people use and then throw away, such as product packaging, grass clippings, furniture, clothing, bottles, food scraps and papers. In 2010, individuals in the United States generated about 250 million short tons (230 Mt) of trash.   In the United Stateslandfills are regulated by the Environmental Protection Agency (EPA) and the states’ environmental agencies. Municipal solid waste landfills (MSWLF) are required to be designed to protect the environment from contaminants that may be present in the solid waste stream

Some materials may be banned from disposal in municipal solid waste landfills including common household items such as paints, cleaners/chemicalsmotor oilbatteriespesticides, and electronics. These products, if mishandled, can be dangerous to health and the environment.  Safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement is the goal of the EPA and state environmental agencies.

A typical landfill site looks pretty much as follows:

landfill-storage

You are correct—a big, very big mess.

CODES AND REGULATIONS:

Title 40 of the Code of Federal Regulations (CFR) part 258 addresses seven major aspects of MSWLFs, which include the following:

  • Location restrictions—ensure that landfills are built in suitable geological areas away from faults, wetlands, flood plains or other restricted areas.
  • Composite liners requirements—include a flexible membrane (i.e., geo-membrane) overlaying two feet of compacted clay soil lining the bottom and sides of the landfill. They are used to protect groundwater and the underlying soil from leachate releases.
  • Leachate collection and removal systems—sit on top of the composite liner and removes leachate from the landfill for treatment and disposal.
  • Operating practices—include compacting and covering waste frequently with several inches of soil. These practices help reduce odor, control litter, insects, and rodent, and protect public health.
  • Groundwater monitoring requirements—requires testing groundwater wells to determine whether waste materials have escaped from the landfill.
  • Closure and post-closure care requirements—include covering landfills and providing long-term care of closed landfills.
  • Corrective action provisions—control and clean up landfill releases and achieves groundwater protection standards.
  • Financial assurance—provides funding for environmental protection during and after landfill closure (i.e., closure and post-closure care).

TIME LINE FOR METHANE PRODUCTION FROM LANDFILL:

Collection of methane does not occur the first day garbage is dumped into a landfill.  The chart below will indicate the constituents and a typical timeline for production CH (4).

time-line

We are after the methane so as you can see, after two years, approximately, we have roughly twenty percent (20%) of the effluent available for reclama.

Typical characteristics and quantities from decomposition of an established landfill are as follows:

typical-characteristics-and-quantities

HOW WE DO IT:

The JPEG below will indicate a very rough schematic of a landfill site with wells “sunk” to receive mechane and basic piping necessary for the accumulation of mechane.  Well systems consist of a series of vertical LFG extraction wells (perforated or slotted collection pipes) that penetrate to near the bottom of the refuse or to near the depth of saturated waste. Well systems are often recommended for landfills or portions of landfills that exceed 12 m (40 ft.) in depth. The design of a well-system requires an estimate of the rate of LFG production and the radius of influence of the wells. A well- system, either active or passive, is useful for layered landfills where vertical LFG migration is impeded. Because of the variability of landfill refuse, design procedures are difficult to apply to LFG collection systems. Vertical LFG collection wells are typically installed once filling operations have been completed, and are commonly spaced at a frequency of one per acre and are constructed using an auger type drill rig. As a general rule, where LFG collection efficiency is important, it is generally advisable to develop a tighter grid of extraction points with smaller spacings operated at a lower vacuum. It has been found that a vacuum of 10 to 25 inches of water column (in wc) represents a reasonable balance between maximizing zones of influence and minimizing air intrusion into the site. Operating at higher vacuum levels tends to extend the zone of capture beyond the limits of the waste burial and increase the potential for atmospheric air intrusion that could create a landfill fire/explosion hazard. The radius of the capture zone for a vertical extraction well may range from around 50 feet to 200 feet and is strongly dependent on localized landfill conditions. LFG recovery rates from an individual extraction well may range from approximately 10 to 50 cubic feet per minute (cfm).

A depiction of a typical well is shown as follows:

well

Each well must meet EPA standards and have the ability to capture all affluent so contamination of ground water does not occur.  Well extraction piping and well placement patterns may look as follows:

well-extraction-piping

A cross-section of a typical site indicates multiple wells with the landfill area.  The digital below will give you some idea as to schematic piping and flow.

methane-collection

As you can see, after accumulation, the affluent must be cleaned to remove methane.  Constituents possible within the “mix” are as follows:

organic-contaminants

Some of these contaminants are cancer-causing so they must be dealt with prior to collection.

You will notice in our example above; the collected and scrubbed methane is used to fire generators used to produce electricity.  This electricity may be sold back to the grid or used for industry and/or homes.

Examples of LFG Energy Projects:

Projects can vary significantly depending on the size of the landfill, the energy end-user, and other factors. Currently operational projects include:

  • Apex (50 million tons of waste) Las Vegas, NV – CC Landfill Energy LLC is building a plant that will produce 11 megawatts (MW) of electricity for NV Energy, a utility that serves approximately 2.4 million customers.
  • Puente Hills (123 M tons) Whittier, CA – The largest LFG-to-electricity program currently in production, Puente Hills produces 50 megawatts, enough to power roughly 50,000 homes. Additionally, some of Puente Hills’ gas is used to fuel garbage trucks.
  • Rumpke Sanitary (36 M tons) Colerain Township, OH – This landfill site hosts the largest landfill-to-gas facility in the world, recovering approximately 15 million standard cubic feet of LFG per day, which is then distributed by Duke Energy Corporation.
  • Newton County Landfill Partnership (19 M tons) Brook, IN – More than 1.1 million standard cubic feet of gas is captured from Newton County Landfill per day. The energy is used by a nearby factory to make egg cartons.
  • Atlantic Waste (15 M tons) Waverly, VA – This site has in place a 20-mile pipeline to Honeywell’s Hopewell plant. The landfill provides 20 percent of the energy used at the plant.

CONCLUSIONS:

Methane extraction is not only possible but is being accomplished across the United States.  The very short list above indicates those states and cities in which technology is being applied to provide usable energy from old-fashioned garbage.


I want us to consider a “what-if” scenario.  You are thirty-two years old, out of school, and have finally landed a job you really enjoy AND you are actually making money at that job. You have your expenses covered with “traveling money” left over for a little fun.  You recently discovered the possibility that Social Security (SS), when you are ready to retire, will be greatly reduced if not completely eliminated. You MUST start saving for retirement and consider SS to be the icing on the cake if available at all.  QUESTION: Where do you start?  As you investigate the stock markets you find stocks seem to be the best possibility for future income.  Stocks, bonds, “T” bills, etc. all are possibilities but stocks are at the top of the list.

People pay plenty of money for consulting giants to help them figure out which technology trends are fads and which will stick. You could go that route, or get the same thing from the McKinsey Global Institute’s in-house think-tank for the cost of a new book. No Ordinary Disruption: The Four Global Forces Breaking All the Trends, was written by McKinsey directors Richard Dobbs, James Manyika, and Jonathan Woetzel, and offers insight into which developments will have the greatest impact on the business world in coming decades. If you chose stocks, you definitely want to look at technology sectors AND consider companies contributing products to those sectors.  The following list from that book may help.  Let’s take a look.

Below, we’re recapping their list of the “Disruptive Dozen”—the technologies the group believes have the greatest potential to remake today’s business landscape.

Batteries

energy-storage

The book’s authors predict that the price of lithium-ion battery packs could fall by a third in the next 10 years, which will have a big impact on not only electric cars, but renewable energy storage. There will be major repercussions for the transportation, power generation, and the oil and gas industries as batteries grow cheaper and more efficient.  Battery technology will remain with us and will contribute to ever-increasing product offerings as time goes by.  Companies supplying this market sector will only increase in importance.

Genomics

genomics

As super computers make the enormously complicated process of genetic analysis much simpler, the authors foresee a world in which “genomic-based diagnoses and treatments will extend patients’ lives by between six months and two years in 2025.” Sequencing systems could eventually become so commonplace that doctors will have them on their desktops.  This is a rapidly growing field and one that has and will save lives.

Material Science

advanced-materials

The ability to manipulate existing materials on a molecular level has already enabled advances in products like sunglasses, bike frames, and medical equipment. Scientists have greater control than ever over nanomaterials in a variety of substances, and their understanding is growing. Health concerns recently prompted Dunkin’ Donuts to remove nanomaterials from their food. But certain advanced nanomaterials show promise for improving health, and even treating cancer. Coming soon: materials that are self-healing, self-cleaning, and that remember their original shape even if they’re bent.

Self-Driving or Autonomous Automobiles

self-driving-vehicles

Autonomous cars are coming, and fast. By 2025, the “driverless revolution” could already be “well underway,” the authors write. All the more so if laws and regulations in the U.S. can adapt to keep up. Case in point: Some BMW cars already park themselves. You will not catch me in a self-driving automobile unless the FED and the auto maker can assure me they are safe.  Continuous effort is being expended to do just that.  These driverless automobiles are coming and we all may just as well get used to it.

Alternate Energy Solutions

reneuable-energy

Wind and solar have never really been competitive with fossil fuels, but McKinsey predicts that status quo will change thanks to technology that enables wider use and better energy storage. In the last decade, the cost of solar energy has already fallen by a factor of 10, and the International Energy Agency predicts that the sun could surpass fossil fuels to become the world’s largest source of electricity by 2050.  I might include with wind and solar, methane recovery from landfills, biodiesel, compressed natural gas, and other environmentally friendly alternatives.

Robotic Systems

advanced-robotics

The robots are coming! “Sales of industrial robots grew by 170% in just two years between 2009 and 2011,” the authors write, adding that the industry’s annual revenues are expected to exceed $40 billion by 2020. As robots get cheaper, more dexterous, and safer to use, they’ll continue to grow as an appealing substitute for human labor in fields like manufacturing, maintenance, cleaning, and surgery.

3-D Printing

3-d-printing

Much-hyped additive manufacturing has yet to replace traditional manufacturing technologies, but that could change as systems get cheaper and smarter. “In the future, 3D printing could redefine the sale and distribution of physical goods,” the authors say. Think buying an electric blueprint of a shoe, then going home and printing it out. The book notes that “the manufacturing process will ‘democratize’ as consumers and entrepreneurs start to print their own products.”

Mobile Devices

mobile-internet

The explosion of mobile apps has dramatically changed our personal experiences (goodbye hookup bars, hello Tinder), as well as our professional lives. More than two thirds of people on earth have access to a mobile phone, and another two or three billion people are likely to gain access over the coming decade. The result: internet-related expenditures outpace even agriculture and energy, and will only continue to grow.

Artificial Intelligence

automation-of-knowledge

It’s not just manufacturing jobs that will be largely replaced by robots and 3D printers. Dobbs, Manyika, and Woetzel report that by 2025, computers could do the work of 140 million knowledge workers. If Watson can win at “Jeopardy!” there’s nothing stopping computers from excelling at other knowledge work, ranging from legal discovery to sports coverage.

 

The Internet of Things (IoT)

iot

Right now, 99% of physical objects are unconnected to the “internet of things.” It won’t last. Going forward, more products and tools will be controlled via the internet, the McKinsey directors say, and all kinds of data will be generated as a result. Expect sensors to collect information on the health of machinery, the structural integrity of bridges, and even the temperatures in ovens.

Cloud Technology

cloud-technology

The growth of cloud technology will change just how much small businesses and startups can accomplish. Small companies will get “IT capabilities and back-office services that were previously available only to larger firms—and cheaply, too,” the authors write. “Indeed, large companies in almost every field are vulnerable, as start-ups become better equipped, more competitive, and able to reach customers and users everywhere.”

Oil Production

advanced-oil-technology

The International Energy Agency predicts the U.S. will be the world’s largest producer of oil by 2020, thanks to advances in fracking and other technologies, which improved to the point where removing oil from hard-to-reach spots finally made economic sense. McKinsey directors expect increasing ease of fuel extraction to further shift global markets.  This was a real surprise to me but our country has abundant oil supplies and we are already fairly self-sufficient.

Big Data

big-data

There is an ever-increasing accumulation of data from all sources.  At no time in our global history has there been a greater thirst for information.  We count and measure everything now days with the recent election being one example of that very fact.  Those who can control and manage big data are definitely ahead of the game.

CONCLUSION:  It’s a brave new world and a world that accommodates educated individuals.  STAY IN SCHOOL.  Get ready for what’s coming.  The world as we know it will continue to change with greater opportunities as time advances.  Be there.  Also, I would recommend investing in those technology sectors that feed the changes.  I personally don’t think a young investor will go wrong.

BMW I NEXT

November 3, 2016


I think we are all aware that automotive trends point towards autonomous vehicles; i.e. “self-driving” cars.  Personally, I’m not too thrilled about the prospects and feel the reality of one in my driveway is down the road, if ever.   With that being the case, BMW, INTEL, and Mobileye have teamed up to bring autonomous vehicles to the BMW product line.  I must admit, this appears to be one “mean ride”.  Let’s take a very quick at the styling to date.

i-next

i-next2

As you can see, the styling is truly beautiful. Each company represents leadership in automotive technology, computer vision, and machine learning and share the opinion that automated driving technologies will make travel safer and easier.  No doubt, easier is a given but I have yet to be convinced safer is right around the corner.  There are significant challenges to overcome before road-worthy vehicles such as the i NEXT receives certification and goes into production for the buying public.

The goal of collaborative effort is to develop future-proofed solutions that will enable drivers to reach the so called “eyes-off”, or level 3, and ultimately the “mind-off” or level 4 by 2021. This would transform “getting there” to leisure and/or work time. BMW said the new i NEXT model will be the basis for future fleets of fully autonomous vehicles that will drive on both highways and in urban environments, which are far more challenging. A BMW spokesman said it expects a steering wheel and pedals to remain in the fully self-driving vehicle, in case the driver wants to be in control. I personally feel even these will be removed if the concept proves itself with greatly improved safety. By doing so, cost savings may be accomplished and reduction in system complexity.

While BMW lends its automotive expertise to the collaboration, INTEL is providing computing power ranging from its INTEL Atom to INTEL Xenon processors, which deliver up to one hundred (100) teraflops of power-efficient performance without having to rewrite code. Mobileye is developing software algorithms, system-on-chips, and customer applications based upon processing visual information for driver assistance systems.

BMW is actively revamping company concepts to assure direct competition with the likes of new OEM Tesla, along with the usual suspects, Audi and Mercedes-Benz. In March, the company showed its future ideas regarding vehicle autonomy via its Vision Next 100 concept cars. This was likely an overly obvious foreshadowing of the iNext platform.

Harald Krueger, BMW CEO told annual shareholders in Munich that the upcoming vehicle with “cutting-edge” electric drive-train and all new interior will be able to drive itself. The new release, along with BMW’s current “i” line are all efforts to compete in the luxury car electric vehicle market. This will be an addition to the line which already includes the i8 PHEV and the i3 BEV/REx. Krueger said:

i Next is set to be “our new innovation driver, with autonomous driving, digital connectivity, intelligent lightweight design, a totally new interior and ultimately bringing the next generation of electro-mobility to the road.”

In addition to this, as companies are realizing that car ownership is continually diminishing in “big city” environments, BMW has announced its jump onto the bandwagon of car-sharing and ride-sharing ventures. Its first delve into the scene is a car-sharing situation in Seattle, with the possibility of more such services to come.

The numbers are showing that Tesla is dominating the European market and lighting a fire under established automakers. Mercedes has been luckier than BMW with being ahead of the game, launching new product lineups and a multiplex of new models. BMW’s sales in the first quarter of 2016 only gained marginal success compared to that of Mercedes.

In an attempt to try to regain momentum and push ahead, BMW has cut prices by approximately six percent (5.9%) across the board. This is partly since the company’s available models are all “older” models, in direct comparison to the competitors. Nevertheless, BMW is reportedly still on par with 2016 projections.

Krueger, in his stockholder’s address, assured that for the seventh consecutive year, his company is on target. While, unfortunately, above target needs to be the goal when factoring in the accelerated growth of the dominant competition.

Krueger concluded:

“After our first quarter, we are on track for the full year. We have always stressed that our centenary is a springboard to the future.”

CONCLUSION:   I marvel at the technology.  There is absolutely no way any company or companies could have developed a vehicle such as this as far back as five (5) years ago.  The technology was just not there.  Hopefully, BMW is successful, but as I mentioned earlier, there are tremendous hurdles and challenges before the rubber hits the road.  I certainly wish them success.

FARADAY FUTURES

February 12, 2016


Just when you thought it was safe to go back into the water, another all-electric automobile emerges from “drawing board” to concept car with hopes of becoming reality.  Faraday Future–which suggests you call it FF for short–says it will launch its battery-electric vehicle sometime during 2017, model FFZERO1. This is a very aggressive timetable and one which draws considerable skepticism from informed individuals in the automotive industry.

Future was established in 2014 and is currently based in Gardena, California. Since its inception in 2014, the company has grown to 750 employees globally.  Over the past eighteen (18) months California-based Faraday Future (FF)  has drawn an incredible hype with plans to “redefine the automotive experience by delivering seamlessly connected electric vehicles and future mobility solutions that will fit the needs of tomorrow’s population.”   Former automotive design-team leaders were recruited from BMW and Tesla Motors.   This Chinese-backed company has huge ambitions to change the future of the automotive industry and take on other electric rivals. Faraday says it is targeting the highest energy density and specific vehicle energy on the market with its battery pack. That would likely take the total energy capacity to over 100 kilowatt-hours, given Tesla’s recent announcement of a 90-kWh pack option for its Model S sedan.

FF plans to use a single pack design, smaller than current large packs to provide greater crumple zones, but will offer different pack capacities inside this single form factor. The batteries sit in horizontal rows, and the scalable factor of the platform comes from the ability to add or take away rows for different sized models. Nick Sampson, senior VP at FF and head of R&D said the batteries would operate like Christmas tree lights — if one pack goes out the “strand” keeps working. Other specifics–cells grouped into modules, replaceable cells or modules, safety measures to prevent any short in a faulty cell from propagating to adjacent cells–have been seen before in various other makers’ pack designs.

Are you ready for this one—“The 1,000-horsepower FFZero1 includes the ability to exceed 200mph (321 kph) and accelerate from zero to 60mph in less than three seconds. It also includes a helmet to provide oxygen and water to the driver.”  Other key features are as follows:

  • The adjustable chassis can accommodate strings of batteries that are more easily changed than single batteries. The number of batteries would depend on car size
  • A helmet to provide oxygen and water to the driver. (This really blows my mind.)
  • ‘Aero tunnels’ incorporated into the design to channel air through the vehicle for reducing drag and cooling the batteries.

Faraday made a deal with the State of Nevada for a billion dollar factory, securing over $330 million in tax incentives and eventually bringing 4,500 jobs to the state. FF revealed at CES (Consumer Electronic Show-2016)  plans to break ground on the new three million square-feet factory in just a few weeks, with the Mayor of North Las Vegas and Governor of Nevada present at the event.

Let’s take a look at the FFZERO1 displayed at the recent show.

FARADAY BODY STYLE

FARADAY BODY STYLE(2)

FARADAY BODY STYLE(3)

As you can see, this is truly a car of the future and apparently that future begins in 2017. Please keep in mind, if this vehicle is commercialized at all, there will have to be involvement with the DOT.  Approvals will have to be given.  Maintenance protocols will have to be developed. Spare parts will have to be designated.  In other words, there is a great deal of extremely important work needing to be accomplished prior to the first vehicle being sold.  I may have missed it but I saw no price mentioned in any of the press releases for the product.  I suppose if you have to ask you cannot afford one.  Time will tell.


The United States has longed for energy independence for years now.  The need to lessen or eliminate reliance on foreign sources for petroleum products by developing alternate fuels is now coming to fruition.  The question is: Will compressed natural gas be a future source of energy for the internal combustion engine?  Resources Magazine thinks so.  Let’s take a quick look at the assessment from Alan J. Krupnick, Senior Fellow and Co-Director, RFF’s Center for Energy and Climate Economics.

“Natural gas holds the promise of reducing carbon emissions and dependence on oil. But until recently, it was an also-ran in the sweepstakes for transforming fuel costs and transportation in the United States. The new abundance of domestically available shale gas and continuingly high gasoline and diesel prices could change that. Will these developments be enough to extend the reach of natural gas vehicles beyond buses, garbage trucks, and delivery trucks?”

I feel his conclusions indicate CNG is a very viable alternative for local delivery vans and trucks as well as “the big rigs”.  Other information substantiates his conclusion.  From this, we can see the following.

Industry Analysis

The CNG market has grown at the rate of 3.7% since 2000. The market for these products has experienced slow growth to due to: 1.) availability of the products, 2.) heat build-up during the compression process, 3.) time delays in the refilling process and 4.) the expense of locating CNG at the market locations. The areas of greatest growth in the CNG market are in the area of transporters that possess fleets (Tractor Trailers), Straight Trucks, and Public Transportation such as school and/or city buses. California and Texas lead the way with CNG fueling stations on a national level. There are approximately 1,300 CNG fueling stations in the US today; however, 730 are public stations with the remainder private fleet stations. There are currently less than 10 public CNG filling stations within the Tri-State area of Tennessee, Georgia, and Alabama. Southeast Tennessee currently has no CNG fueling stations. The industry is rapidly changing as the 2014 EPA NHTSA Heavy Duty Truck Program has been put in place by president Obama. This legislation has forced fleet and fuel managers to reduce emissions as well as increase fuel efficiency. Small savings have been made by reducing drag, adequate tire pressure, and reduced idling practices. CNG is a “game changing” modification that addresses the new standards that are currently in place as well as future reductions that are scheduled for 2018. We will adopt a customer centric approach that addresses the needs of the immediate market based on available original equipment and after market manufacturers. Some industry pundits have estimated CNG will realize 25% annual growth for the next 5 to 10 years on a conservative level.

Market Segment

Key points in defining the market segment for CNG are existing markets and projected future markets. Electric power and industrial markets make up almost 60% of the current consumer market. Existing markets include the fields of Agriculture, Industrial, and Motor Fuel in a static environment. Projected markets include opportunities in a more mobile environment. Transportation appears to be the most likely segment to grow as it makes up less than 1% of total natural gas used. Currently, the market is distributed with limited, if any, diversity of participants. Trending for share gains and losses typically represents large potential for gains across the entire industry. Share losses are predominantly absorbed by the diesel fuel and propane distributors, as recent supply shortages have clearly proven in the motor fuel and poultry industries. Market share will be lost by the above mentioned industries due to loss of confidence by the respective customer bases. The current and projected trends in the motor fuel industry are now driven by the Tier II Fuel Initiative causing off road diesel fuel to be banned in the near future. The result of the ban will continue to be increases in motor fuel pricing. As motor fuel costs increase, CNG becomes not only the clean alternative fuel replacement, but also the affordable alternative. CNG cuts the cost of a diesel equivalent gallon by as much as 50% based on the volatile and often fluctuating diesel market. Also, CNG is a much more effective fuel in cold weather areas as opposed to diesel and the multiple problems which exist.

The implied trends in the propane and agricultural industries currently indicate an extended, long-term propane supply shortage. The result is that CNG becomes the efficient, clean energy solution by cutting propane costs by 25 to 50%. Users of CNG are looking for quality and productivity improvements. The history of CNG development has resulted in the need for creative technology solutions that enable the full application of the CNG Natural Gas Industry. Recent patenting and innovation that Cielo has identified allows CAF to operate more efficiently than diesel or propane. The stability of this market segment is solid, based on CNG product category performance over the past two years. The forecasters predict an exponential growth over the next two years.

CNG STATION:

With this in mind, Cielo Technologies, LLC has entered into a partnership to “sink” one CNG station in the Chattanooga area.  Land has been purchased, layouts determined, zoning completed, and site preparation underway.  Right now, the area selected does not look like much.  The following JPEGs will illustrate that fact.  I intend to give you progress reports as we erect the facility and hopefully in five months, show you the completed and operating compound.  Let’s take a very quick look at the site itself.

ENTERANCE DRIVE

The first digital shows the proposed entry to the station itself.  As I mentioned, not much to look at and definitely needs considerable attention—that attention is on the way.

EXIT DRIVE

This is the proposed exit from the facility.  We feel less confusion will be the order of the day if we have one way in and one way out.

GROUND SITE

There will be three (3) pumping stations installed on a concrete island located left to right on the JPEG above.  Room enough for three “18 wheelers”.

LOCATION OF PUMPING STATION(2)

Another look at the pumping station locations.  The CNG compressors and storage will be to the right of the pumping stations.  All piping will be underground and unexposed to the elements.  We opted to go hard-wire instead of Wi-Fi due to possible interruption of service.

ENVIRONMENTAL MARKETS

May 16, 2015


Environmental markets have been actively traded on both compliant and voluntary levels for the last 7 years. The Kyoto Protocol was the first compliance-driven agreement between thirty-seven  (37)  countries.  This agreement was established by the United Nation Framework Convention on Climate Change (UNFCCC). The purpose of the UNFCCC was to create benchmark emission reduction goals.  Annex I to this agreement began in 2005 and will extend through 2012. The reductions call for five percent (5%)  annual reductions based on a benchmark established in 1990. There are currently thirty-four (34)  countries that were selected to continue into 2013 with compliance guidelines established at the Durban Conference.  These guidelines were to insure that Climate Change regulations would be in place.  These non-binding guidelines will become binding in May 2012. The European Union Trading Scheme will continue along with the Clean Development Mechanism and Joint Implementation Programs to reduce the emissions by an additional 20% by 2020. Currently Certified Emissions Reductions from industrialized and non developed nations are being traded through the aforementioned programs from entities that have adopted programs.

The United States signed the Kyoto Protocol however never put in place compliant guidelines enabling emission reduction instruments to be traded within these markets. Therefore, credits originated in the United States would have to be traded within voluntary markets. The Western Climate Initiative is scheduled to begin January 1, 2013 with California and Quebec as the two participating parties in the first North American compliant cap and trade program. The trading platform will adhere to guidelines outlined in Bill AB 32 ratified in 2006 and recently upheld by election in November 2010 via Proposition 23. Prop 23 was overwhelmingly endorsed by sixty-three percent (63%) of the voters and has cleared the way for a statewide cap and trade program. The California Air Resources Board has cleared the way for the first compliant stateside cap and trade system. Phase I is through 2020 with targeted reductions of 17% overall. The resources board has acknowledged four (4) crediting programs whose protocols were adopted from the Climate Action Reserve; Forestry, Urban Forestry, Ozone Depleting Substances, and Livestock. These programs will be eligible for carbon crediting through the abatement or reduction of carbon emissions. California represents twenty-five (25%)  of the total U.S. GDP and will allow carbon sequestration projects that can be originated anywhere in the continental U.S., Canada, and some regions in Mexico. The Western Climate Initiative (WCI) will be the established platform that California and Quebec will adhere to for climate protocol. WCI member jurisdictions include seven (7) US states and four (4) Canadian provinces:  Arizona, British Columbia, California, Manitoba, Montana, New Mexico, Ontario, Oregon, Quebec, Utah, and Washington. It is expected that states and provinces within the WCI will follow suit once the program is up and running. There is definitely a political element to cap and trade programs. It is somewhat difficult to predict what federal and state programs will be put in place in future years that could expand the areas of compliance. California Carbon Allowances are currently being traded on the Intercontinental Exchange. Pricing for the allowances began at $17 per allowance for the first transaction and then went as high $23. Point Carbon has forecasted carbon allowance prices to rise as high as $75 by 2020. The offsets are credits that are generated from emission reduction projects that are expected to price at approximately 70% of allowance prices.

The voluntary markets were impacted dramatically when federal cap and trade legislation stalled in the Senate in 2009. The economic environment and passing of the health care initiative put a formal cap and trade program on hold.   Voluntary carbon offsetting went from being for the greater good of the public to a luxury line item. The economy has started to slowly correct and voluntary market transactions per Markit have continued to grow. Issuance activity was up to 27.8 million Verified Carbon Standard Credits an increase of 500,000 credits. Credits being traded from 2010 to 2011 were 3.6 million to 9.8 million or an increase of 6.2 million credits. The Gold Standard credits traded at premiums and most transactions were over the counter pricing from $8-$12. Companies such as Whole Foods, Google, Yahoo, and Wal-Mart are forward thinking companies that are either buying voluntary carbon offsets or actually funding projects that directly reduce emissions. The Bonneville Environmental Foundation was set up to offset emissions and list participants such as Chevrolet, The North Face, REI, NHL, MLS, Idaho Power, Silk and Oregon State University.  The Foundation has identified projects that yield certain credits to address the offset needs of these individual entities.

Overall, emission reduction credits are here to stay. The Climate Change initiative is considered to be gaining more traction with the WCI platform being established and is predicted to pick up steam on a national level as states begin to adopt their own regulations regarding greenhouse gas emissions. The Clean Air Act is still in force and additional GGE compliance could be implemented through the EPA.

We are seeing significant effort to “clean up” our environment by reducing emissions by putting into effect compressed natural gas (CNG) fueling stations, propane fueling stations, hybrid automobiles, electric-powered automobiles, methane capture from wast sites, re-processing of oils and several other reclaim measures.  A much greater number of our population is beginning to recognize that we have one world–one Earth.  We had better take care of it.

 

 

%d bloggers like this: