SMARTS

March 17, 2019


Who was the smartest person in the history of our species? Solomon, Albert Einstein, Jesus, Nikola Tesla, Isaac Newton, Leonardo de Vinci, Stephen Hawking—who would you name.  We’ve had several individuals who broke the curve relative to intelligence.   As defined by the Oxford Dictionary of the English Language, IQ:

“an intelligence test score that is obtained by dividing mental age, which reflects the age-graded level of performance as derived from population norms, by chronological age and multiplying by100: a score of100 thus indicates performance at exactly the normal level for that age group. Abbreviation: IQ”

An intelligence quotient or IQ is a score derived from one of several different intelligence measures.  Standardized tests are designed to measure intelligence.  The term “IQ” is a translation of the German Intellizenz Quotient and was coined by the German psychologist William Stern in 1912.  This was a method proposed by Dr. Stern to score early modern children’s intelligence tests such as those developed by Alfred Binet and Theodore Simin in the early twentieth century.  Although the term “IQ” is still in use, the scoring of modern IQ tests such as the Wechsler Adult Intelligence Scale is not based on a projection of the subject’s measured rank on the Gaussian Bell curve with a center value of one hundred (100) and a standard deviation of fifteen (15).  The Stanford-Binet IQ test has a standard deviation of sixteen (16).  As you can see from the graphic below, seventy percent (70%) of the human population has an IQ between eighty-five and one hundred and fifteen.  From one hundred and fifteen to one hundred and thirty you are considered to be highly intelligent.  Above one hundred and thirty you are exceptionally gifted.

What are several qualities of highly intelligent people?  Let’s look.

QUALITIES:

  • A great deal of self-control.
  • Very curious
  • They are avid readers
  • They are intuitive
  • They love learning
  • They are adaptable
  • They are risk-takers
  • They are NOT over-confident
  • They are open-minded
  • They are somewhat introverted

You probably know individuals who fit this profile.  We are going to look at one right now:  John von Neumann.

JON von NEUMANN:

The Financial Times of London celebrated John von Neumann as “The Man of the Century” on Dec. 24, 1999. The headline hailed him as the “architect of the computer age,” not only the “most striking” person of the 20th century, but its “pattern-card”—the pattern from which modern man, like the newest fashion collection, is cut.

The Financial Times and others characterize von Neumann’s importance for the development of modern thinking by what are termed his three great accomplishments, namely:

(1) Von Neumann is the inventor of the computer. All computers in use today have the “architecture” von Neumann developed, which makes it possible to store the program, together with data, in working memory.

(2) By comparing human intelligence to computers, von Neumann laid the foundation for “Artificial Intelligence,” which is taken to be one of the most important areas of research today.

(3) Von Neumann used his “game theory,” to develop a dominant tool for economic analysis, which gained recognition in 1994 when the Nobel Prize for economic sciences was awarded to John C. Harsanyi, John F. Nash, and Richard Selten.

John von Neumann, original name János Neumann, (born December 28, 1903, Budapest, Hungary—died February 8, 1957, Washington, D.C. Hungarian-born American mathematician. As an adult, he appended von to his surname; the hereditary title had been granted his father in 1913. Von Neumann grew from child prodigy to one of the world’s foremost mathematicians by his mid-twenties. Important work in set theory inaugurated a career that touched nearly every major branch of mathematics. Von Neumann’s gift for applied mathematics took his work in directions that influenced quantum theory theory of automation, economics, and defense planning. Von Neumann pioneered game theory, and, along with Alan Turing and Claude Shannon was one of the conceptual inventors of the stored-program digital computer .

Von Neumann did exhibit signs of genius in early childhood: he could joke in Classical Greek and, for a family stunt, he could quickly memorize a page from a telephone book and recite its numbers and addresses. Von Neumann learned languages and math from tutors and attended Budapest’s most prestigious secondary school, the Lutheran Gymnasium . The Neumann family fled Bela Kun’s short-lived communist regime in 1919 for a brief and relatively comfortable exile split between Vienna and the Adriatic resort of Abbazia. Upon completion of von Neumann’s secondary schooling in 1921, his father discouraged him from pursuing a career in mathematics, fearing that there was not enough money in the field. As a compromise, von Neumann simultaneously studied chemistry and mathematics. He earned a degree in chemical engineering from the Swiss Federal Institute in  Zurich and a doctorate in mathematics (1926) from the University of Budapest.

OK, that all well and good but do we know the IQ of Dr. John von Neumann?

John Von Neumann IQ is 190, which is considered as a super genius and in top 0.1% of the population in the world.

With his marvelous IQ, he wrote one hundred and fifty (150) published papers in his life; sixty (60) in pure mathematics, twenty (20) in physics, and sixty (60) in applied mathematics. His last work, an unfinished manuscript written while in the hospital and later published in book form as The Computer and the Brain, gives an indication of the direction of his interests at the time of his death. It discusses how the brain can be viewed as a computing machine. The book is speculative in nature, but discusses several important differences between brains and computers of his day (such as processing speed and parallelism), as well as suggesting directions for future research. Memory is one of the central themes in his book.

I told you he was smart!

Advertisements

COMPUTER SIMULATION

January 20, 2019


More and more engineers, systems analysist, biochemists, city planners, medical practitioners, individuals in entertainment fields are moving towards computer simulation.  Let’s take a quick look at simulation then we will discover several examples of how very powerful this technology can be.

WHAT IS COMPUTER SIMULATION?

Simulation modelling is an excellent tool for analyzing and optimizing dynamic processes. Specifically, when mathematical optimization of complex systems becomes infeasible, and when conducting experiments within real systems is too expensive, time consuming, or dangerous, simulation becomes a powerful tool. The aim of simulation is to support objective decision making by means of dynamic analysis, to enable managers to safely plan their operations, and to save costs.

A computer simulation or a computer model is a computer program that attempts to simulate an abstract model of a particular system. … Computer simulations build on and are useful adjuncts to purely mathematical models in science, technology and entertainment.

Computer simulations have become a useful part of mathematical modelling of many natural systems in physics, chemistry and biology, human systems in economics, psychology, and social science and in the process of engineering new technology, to gain insight into the operation of those systems. They are also widely used in the entertainment fields.

Traditionally, the formal modeling of systems has been possible using mathematical models, which attempts to find analytical solutions to problems enabling the prediction of behavior of the system from a set of parameters and initial conditions.  The word prediction is a very important word in the overall process. One very critical part of the predictive process is designating the parameters properly.  Not only the upper and lower specifications but parameters that define intermediate processes.

The reliability and the trust people put in computer simulations depends on the validity of the simulation model.  The degree of trust is directly related to the software itself and the reputation of the company producing the software. There will considerably more in this course regarding vendors providing software to companies wishing to simulate processes and solve complex problems.

Computer simulations find use in the study of dynamic behavior in an environment that may be difficult or dangerous to implement in real life. Say, a nuclear blast may be represented with a mathematical model that takes into consideration various elements such as velocity, heat and radioactive emissions. Additionally, one may implement changes to the equation by changing certain other variables, like the amount of fissionable material used in the blast.  Another application involves predictive efforts relative to weather systems.  Mathematics involving these determinations are significantly complex and usually involve a branch of math called “chaos theory”.

Simulations largely help in determining behaviors when individual components of a system are altered. Simulations can also be used in engineering to determine potential effects, such as that of river systems for the construction of dams.  Some companies call these behaviors “what-if” scenarios because they allow the engineer or scientist to apply differing parameters to discern cause-effect interaction.

One great advantage a computer simulation has over a mathematical model is allowing a visual representation of events and time line. You can actually see the action and chain of events with simulation and investigate the parameters for acceptance.  You can examine the limits of acceptability using simulation.   All components and assemblies have upper and lower specification limits a and must perform within those limits.

Computer simulation is the discipline of designing a model of an actual or theoretical physical system, executing the model on a digital computer, and analyzing the execution output. Simulation embodies the principle of “learning by doing” — to learn about the system we must first build a model of some sort and then operate the model. The use of simulation is an activity that is as natural as a child who role plays. Children understand the world around them by simulating (with toys and figurines) most of their interactions with other people, animals and objects. As adults, we lose some of this childlike behavior but recapture it later on through computer simulation. To understand reality and all of its complexity, we must build artificial objects and dynamically act out roles with them. Computer simulation is the electronic equivalent of this type of role playing and it serves to drive synthetic environments and virtual worlds. Within the overall task of simulation, there are three primary sub-fields: model design, model execution and model analysis.

REAL-WORLD SIMULATION:

The following examples are taken from computer screen representing real-world situations and/or problems that need solutions.  As mentioned earlier, “what-ifs” may be realized by animating the computer model providing cause-effect and responses to desired inputs. Let’s take a look.

A great host of mechanical and structural problems may be solved by using computer simulation. The example above shows how the diameter of two matching holes may be affected by applying heat to the bracket

 

The Newtonian and non-Newtonian flow of fluids, i.e. liquids and gases, has always been a subject of concern within piping systems.  Flow related to pressure and temperature may be approximated by simulation.

 

The Newtonian and non-Newtonian flow of fluids, i.e. liquids and gases, has always been a subject of concern within piping systems.  Flow related to pressure and temperature may be approximated by simulation.

Electromagnetics is an extremely complex field. The digital above strives to show how a magnetic field reacts to applied voltage.

Chemical engineers are very concerned with reaction time when chemicals are mixed.  One example might be the ignition time when an oxidizer comes in contact with fuel.

Acoustics or how sound propagates through a physical device or structure.

The transfer of heat from a colder surface to a warmer surface has always come into question. Simulation programs are extremely valuable in visualizing this transfer.

 

Equation-based modeling can be simulated showing how a structure, in this case a metal plate, can be affected when forces are applied.

In addition to computer simulation, we have AR or augmented reality and VR virtual reality.  Those subjects are fascinating but will require another post for another day.  Hope you enjoy this one.

 

 

SCUTOIDS

July 31, 2018


Just who is considered the “father of geometry”?  Do you know the answer?  Euclid enters history as one of the greatest mathematicians in history and is often referred to as the father of geometry. The standard geometry most of us learned in school is called Euclidian Geometry.  My geometry teacher in high school was Mr. Willard Millsaps.  OK, you asked how I remember that teacher’s name—he was magic. I graduated in 1961 from Chattanooga Central High School so it is a minor miracle that I remember anything, but I do remember Mr. Millsaps.

Euclid gathered all the knowledge developed in Greek mathematics at that time and created his great work, a book called ‘The Elements’ (c300 BCE). This treatise is unequaled in the history of science and could safely lay claim to being the most influential non-religious book of all time.

Euclid probably attended Plato’s academy in Athens before moving to Alexandria, in Egypt. At this time, the city had a huge library and the ready availability of papyrus made it the center for books, the major reasons why great minds such as Heron of Alexandria and Euclid based themselves there.   With Caesar’s conquest of Alexandria in 48 BC the ancient accounts by Plutarch, Aulus Gellius, Ammianus Marcellinus, and Orosius were accidentally burned during or after the siege.  The library was arguably one of the largest and most significant libraries of the ancient world, but details are a mixture of history and legend. Its main purpose was to show off the wealth of Egypt, with research as a lesser goal, but its contents were used to aid the ruler of Egypt. At any rate, its loss was significant.

You would certainly think that from 300 BCE to the present day just about every geometric figure under the sun would have been discovered but that just might not be the case.  Researchers from the University of Seville found a new configuration of shapes:  “twisted prisms”.  These prisms are found in nature, more specifically within the cells that make up skin and line many organs. Scutoids are the true shape of epithelial cells that protect organisms against infections and take in nutrients.

These “blocks” were previously represented as prism-shaped, but research published in the peer-reviewed journal Nature Communications suggests they have a specific curve and look unlike any other known shape. The researchers observed the structure in fruit-flies and zebrafish.

The scutoid is six-sided at the top, five-sided on the bottom with one triangular side. Why it has been so complex to define is because epithelial cells must move and join together to organize themselves “and give the organs their final shape,” University of Seville Biology faculty teacher Luisma Escudero said in a release.  A picture is truly worth a thousand words so given below is an artist’s rendition of a “twisted prism” or SCUTOID.

This shape — new to math, not to nature — is the form that a group of cells in the body takes in order to pack tightly and efficiently into the tricky curves of organs, scientists reported in a new paper, published July 27 in the journal Nature Communications. As mentioned earlier, the cells, called epithelial cells, line most surfaces in an animal’s body, including the skin, other organs and blood vessels. These cells are typically described in biology books as column-like or having some sort of prism shape — two parallel faces and a certain number of parallelogram sides. Sometimes, they can also be described as a bottle-like form of a prism called a “frustum.

But by using computational modeling, the group of scientists found that epithelial cells can take a new shape, previously unrecognized by mathematics, when they have to pack together tightly to form the bending parts of organs. The scientists named the shape “scutoid” after a triangle-shaped part of a beetle’s thorax called the scutellum. The researchers later confirmed the presence of the new shape in the epithelial cells of fruit-fly salivary glands and embryos.

By packing into scutoids, the cells minimize their energy use and maximize how stable they are when they pack, the researchers said in a statement. And uncovering such elegant mathematics of nature can provide engineers with new models to inspire delicate human-made tissues.

“If you are looking to grow artificial organs, this discovery could help you build a scaffold to encourage this kind of cell packing, accurately mimicking nature’s way to efficiently develop tissues,” study co-senior author Javier Buceta, an associate professor in the Department of Bioengineering at Lehigh University in Pennsylvania, said in the statement.

The results of the study surprised the researchers. “One does not normally have the opportunity to discover much name a new shape,” Buceta said in the statement.

CONCLUSIONS:

I just wonder how many more things do we not know about our universe and the planet we inhabit. I think as technology advances and we become more adept at investigating, we will discover an encyclopedia full of “unknowns”.

AUGMENTED REALITY (AR)

October 13, 2017


Depending on the location, you can ask just about anybody to give a definition of Virtual Reality (VR) and they will take a stab at it. This is because gaming and the entertainment segments of our population have used VR as a new tool to promote games such as SuperHot VR, Rock Band VR, House of the Dying Sun, Minecraft VR, Robo Recall, and others.  If you ask them about Augmented Reality or AR they probably will give you the definition of VR or nothing at all.

Augmented reality, sometimes called Mixed Reality, is a technology that merges real-world objects or the environment with virtual elements generated by sensory input devices for sound, video, graphics, or GPS data.  Unlike VR, which completely replaces the real world with a virtual world, AR operates in real time and is interactive with objects found in the environment, providing an overlaid virtual display over the real one.

While popularized by gaming, AR technology has shown a prowess for bringing an interactive digital world into a person’s perceived real world, where the digital aspect can reveal more information about a real-world object that is seen in reality.  This is basically what AR strives to do.  We are going to take a look at several very real applications of AR to indicate the possibilities of this technology.

  • Augmented Reality has found a home in healthcare aiding preventative measures for professionals to receive information relative to the status of patients. Healthcare giant Cigna recently launched a program called BioBall that uses Microsoft HoloLense technology in an interactive game to test for blood pressure and body mass index or BMI. Patients hold a light, medium-sized ball in their hands in a one-minute race to capture all the images that flash on the screen in front of them. The Bio Ball senses a player’s heartbeat. At the University of Maryland’s Augmentarium virtual and augmented reality laboratory, the school is using AR I healthcare to improve how ultrasound is administered to a patient.  Physicians wearing an AR device can look at both a patient and the ultrasound device while images flash on the “hood” of the AR device itself.
  • AR is opening up new methods to teach young children a variety of subjects they might not be interested in learning or, in some cases, help those who have trouble in class catching up with their peers. The University of Helsinki’s AR program helps struggling kids learn science by enabling them to virtually interact with the molecule movement in gases, gravity, sound waves, and airplane wind physics.   AR creates new types of learning possibilities by transporting “old knowledge” into a new format.
  • Projection-based AR is emerging as a new way to case virtual elements in the real world without the use of bulky headgear or glasses. That is why AR is becoming a very popular alternative for use in the office or during meetings. Startups such as Lampix and Lightform are working on projection-based augmented reality for use in the boardroom, retail displays, hospitality rooms, digital signage, and other applications.
  • In Germany, a company called FleetBoard is in the development phase for application software that tracks logistics for truck drivers to help with the long series of pre-departure checks before setting off cross-country or for local deliveries. The Fleet Board Vehicle Lense app uses a smartphone and software to provide live image recognition to identify the truck’s number plate.  The relevant information is super-imposed in AR, thus speeding up the pre-departure process.
  • Last winter, Delft University of Technology in the Netherlands started working with first responders in using AR as a tool in crime scene investigation. The handheld AR system allows on-scene investigators and remote forensic teams to minimize the potential for site contamination.  This could be extremely helpful in finding traces of DNA, preserving evidence, and getting medical help from an outside source.
  • Sandia National Laboratories is working with AR as a tool to improve security training for users who are protecting vulnerable areas such as nuclear weapons or nuclear materials. The physical security training helps guide users through real-world examples such as theft or sabotage in order to be better prepared when an event takes place.  The training can be accomplished remotely and cheaply using standalone AR headsets.
  • In Finland, the VTT Technical Research Center recently developed an AR tool for the European Space Agency (ESA) for astronauts to perform real-time equipment monitoring in space. AR prepares astronauts with in-depth practice by coordinating the activities with experts in a mixed-reality situation.
  • The U.S. Daqri International uses computer vision for industrial AR to enable data visualization while working on machinery or in a warehouse. These glasses and headsets from Daqri display project data, tasks that need to be completed and potential problems with machinery or even where an object needs to be placed or repaired.

CONCLUSIONS:

Augmented Reality merges real-world objects with virtual elements generated by sensory input devices to provide great advantages to the user.  No longer is gaming and entertainment the sole objective of its use.  This brings to life a “new normal” for professionals seeking more and better technology to provide solutions to real-world problems.

AMAZING GRACE

October 3, 2017


There are many people responsible for the revolutionary development and commercialization of the modern-day computer.  Just a few of those names are given below.  Many of whom you probably have never heard of.  Let’s take a look.

COMPUTER REVOLUNTARIES:

  • Howard Aiken–Aiken was the original conceptual designer behind the Harvard Mark I computer in 1944.
  • Grace Murray Hopper–Hopper coined the term “debugging” in 1947 after removing an actual moth from a computer. Her ideas about machine-independent programming led to the development of COBOL, one of the first modern programming languages. On top of it all, the Navy destroyer USS Hopper is named after her.
  • Ken Thompson and David Ritchie–These guys invented Unix in 1969, the importance of which CANNOT be overstated. Consider this: your fancy Apple computer relies almost entirely on their work.
  • Doug and Gary Carlson–This team of brothers co-founded Brøderbund Software, a successful gaming company that operated from 1980-1999. In that time, they were responsible for churning out or marketing revolutionary computer games like Myst and Prince of Persia, helping bring computing into the mainstream.
  • Ken and Roberta Williams–This husband and wife team founded On-Line Systems in 1979, which later became Sierra Online. The company was a leader in producing graphical adventure games throughout the advent of personal computing.
  • Seymour Cray–Cray was a supercomputer architect whose computers were the fastest in the world for many decades. He set the standard for modern supercomputing.
  • Marvin Minsky–Minsky was a professor at MIT and oversaw the AI Lab, a hotspot of hacker activity, where he let prominent programmers like Richard Stallman run free. Were it not for his open-mindedness, programming skill, and ability to recognize that important things were taking place, the AI Lab wouldn’t be remembered as the talent incubator that it is.
  • Bob Albrecht–He founded the People’s Computer Company and developed a sincere passion for encouraging children to get involved with computing. He’s responsible for ushering in innumerable new young programmers and is one of the first modern technology evangelists.
  • Steve Dompier–At a time when computer speech was just barely being realized, Dompier made his computer sing. It was a trick he unveiled at the first meeting of the Homebrew Computer Club in 1975.
  • John McCarthy–McCarthy invented Lisp, the second-oldest high-level programming language that’s still in use to this day. He’s also responsible for bringing mathematical logic into the world of artificial intelligence — letting computers “think” by way of math.
  • Doug Engelbart–Engelbart is most noted for inventing the computer mouse in the mid-1960s, but he’s made numerous other contributions to the computing world. He created early GUIs and was even a member of the team that developed the now-ubiquitous hypertext.
  • Ivan Sutherland–Sutherland received the prestigious Turing Award in 1988 for inventing Sketchpad, the predecessor to the type of graphical user interfaces we use every day on our own computers.
  • Tim Paterson–He wrote QDOS, an operating system that he sold to Bill Gates in 1980. Gates rebranded it as MS-DOS, selling it to the point that it became the most widely-used operating system of the day. (How ‘bout them apples.?)
  • Dan Bricklin–He’s “The Father of the Spreadsheet. “Working in 1979 with Bob Frankston, he created VisiCalc, a predecessor to Microsoft Excel. It was the killer app of the time — people were buying computers just to run VisiCalc.
  • Bob Kahn and Vint Cerf–Prolific internet pioneers, these two teamed up to build the Transmission Control Protocol and the Internet Protocol, better known as TCP/IP. These are the fundamental communication technologies at the heart of the Internet.
  • Nicklus Wirth–Wirth designed several programming languages, but is best known for creating Pascal. He won a Turing Award in 1984 for “developing a sequence of innovative computer languages.”

ADMIREL GRACE MURRAY HOPPER:

At this point, I want to highlight Admiral Grace Murray Hopper or “amazing Grace” as she is called in the computer world and the United States Navy.  Admiral Hopper’s picture is shown below.

Born in New York City in 1906, Grace Hopper joined the U.S. Navy during World War II and was assigned to program the Mark I computer. She continued to work in computing after the war, leading the team that created the first computer language compiler, which led to the popular COBOL language. She resumed active naval service at the age of 60, becoming a rear admiral before retiring in 1986. Hopper died in Virginia in 1992.

Born Grace Brewster Murray in New York City on December 9, 1906, Grace Hopper studied math and physics at Vassar College. After graduating from Vassar in 1928, she proceeded to Yale University, where, in 1930, she received a master’s degree in mathematics. That same year, she married Vincent Foster Hopper, becoming Grace Hopper (a name that she kept even after the couple’s 1945 divorce). Starting in 1931, Hopper began teaching at Vassar while also continuing to study at Yale, where she earned a Ph.D. in mathematics in 1934—becoming one of the first few women to earn such a degree.

After the war, Hopper remained with the Navy as a reserve officer. As a research fellow at Harvard, she worked with the Mark II and Mark III computers. She was at Harvard when a moth was found to have shorted out the Mark II, and is sometimes given credit for the invention of the term “computer bug”—though she didn’t actually author the term, she did help popularize it.

Hopper retired from the Naval Reserve in 1966, but her pioneering computer work meant that she was recalled to active duty—at the age of 60—to tackle standardizing communication between different computer languages. She would remain with the Navy for 19 years. When she retired in 1986, at age 79, she was a rear admiral as well as the oldest serving officer in the service.

Saying that she would be “bored stiff” if she stopped working entirely, Hopper took another job post-retirement and stayed in the computer industry for several more years. She was awarded the National Medal of Technology in 1991—becoming the first female individual recipient of the honor. At the age of 85, she died in Arlington, Virginia, on January 1, 1992. She was laid to rest in the Arlington National Cemetery.

CONCLUSIONS:

In 1997, the guided missile destroyer, USS Hopper, was commissioned by the Navy in San Francisco. In 2004, the University of Missouri has honored Hopper with a computer museum on their campus, dubbed “Grace’s Place.” On display are early computers and computer components to educator visitors on the evolution of the technology. In addition to her programming accomplishments, Hopper’s legacy includes encouraging young people to learn how to program. The Grace Hopper Celebration of Women in Computing Conference is a technical conference that encourages women to become part of the world of computing, while the Association for Computing Machinery offers a Grace Murray Hopper Award. Additionally, on her birthday in 2013, Hopper was remembered with a “Google Doodle.”

In 2016, Hopper was posthumously honored with the Presidential Medal of Freedom by Barack Obama.

Who said women could not “do” STEM (Science, Technology, Engineering and Mathematics)?


WHERE WE ARE:

The manufacturing industry remains an essential component of the U.S. economy.  In 2016, manufacturing accounted for almost twelve percent (11.7%) of the U.S. gross domestic product (GDP) and contributed slightly over two trillion dollars ($2.18 trillion) to our economy. Every dollar spent in manufacturing adds close to two dollars ($1.81) to the economy because it contributes to development in auxiliary sectors such as logistics, retail, and business services.  I personally think this is a striking number when you compare that contribution to other sectors of our economy.  Interestingly enough, according to recent research, manufacturing could constitute as much as thirty-three percent (33%) of the U.S. GDP if both its entire value chain and production for other sectors are included.  Research from the Bureau of Labor Statistics shows that employment in manufacturing has been trending up since January of 2017. After double-digit gains in the first quarter of 2017, six thousand (6,000) new jobs were added in April.  Currently, the manufacturing industry employs 12,396,000 people, which equals more than nine percent (9%) of the U.S. workforce.   Nonetheless, many experts are concerned that these employment gains are soon to be halted by the ever-rising adoption of automation. Yet automation is inevitable—and like in the previous industrial revolutions, automation is likely to result in job creation in the long term.  If we look back at the Industrial Revolution.

INDUSTRIAL REVOLUTION:

The Industrial Revolution began in the late 18th century when a series of new inventions such as the spinning jenny and steam engine transformed manufacturing in Britain. The changes in British manufacturing spread across Europe and America, replacing traditional rural lifestyles as people migrated to cities in search of work. Men, women and children worked in the new factories operating machines that spun and wove cloth, or made pottery, paper and glass.

Women under 20 made comprised the majority of all factory workers, according to an article on the Industrial Revolution by the Economic History Association. Many power loom workers, and most water frame and spinning jenny workers, were women. However, few women were mule spinners, and male workers sometimes violently resisted attempts to hire women for this position, although some women did work as assistant mule spinners. Many children also worked in the factories and mines, operating the same dangerous equipment as adult workers.  As you might suspect, this was a great departure from times prior to the revolution.

WHERE WE ARE GOING:

In an attempt to create more jobs, the new administration is reassessing free trade agreements, leveraging tariffs on imports, and promising tax incentives to manufacturers to keep their production plants in the U.S. Yet while these measures are certainly making the U.S. more attractive for manufacturers, they’re unlikely to directly increase the number of jobs in the sector. What it will do, however, is free up more capital for manufacturers to invest in automation. This will have the following benefits:

  • Automation will reduce production costs and make U.S. companies more competitive in the global market. High domestic operating costs—in large part due to comparatively high wages—compromise the U.S. manufacturing industry’s position as the world leader. Our main competitor is China, where low-cost production plants currently produce almost eighteen percent (17.6%) of the world’s goods—just zero-point percent (0.6%) less than the U.S. Automation allows manufacturers to reduce labor costs and streamline processes. Lower manufacturing costs results in lower product prices, which in turn will increase demand.

Low-cost production plants in China currently produce 17.6% of the world’s goods—just 0.6% less

than the U.S.

  • Automation increases productivity and improves quality. Smart manufacturing processes that make use of technologies such as robotics, big data, analytics, sensors, and the IoT are faster, safer, more accurate, and more consistent than traditional assembly lines. Robotics provide 24/7 labor, while automated systems perform real-time monitoring of the production process. Irregularities, such as equipment failures or quality glitches, can be immediately addressed. Connected plants use sensors to keep track of inventory and equipment performance, and automatically send orders to suppliers when necessary. All of this combined minimizes downtime, while maximizing output and product quality.
  • Manufacturers will re-invest in innovation and R&D. Cutting-edge technologies. such as robotics, additive manufacturing, and augmented reality (AR) are likely to be widely adopted within a few years. For example, Apple® CEO Tim Cook recently announced the tech giant’s $1 billion investment fund aimed at assisting U.S. companies practicing advanced manufacturing. To remain competitive, manufacturers will have to re-invest a portion of their profits in R&D. An important aspect of innovation will involve determining how to integrate increasingly sophisticated technologies with human functions to create highly effective solutions that support manufacturers’ outcomes.

Technologies such as robotics, additive manufacturing, and augmented reality are likely to be widely adopted soon. To remain competitive, manufacturers will have to re-invest a portion of their profits in R&D.

HOW AUTOMATION WILL AFFECT THE WORKFORCE:

Now, let’s look at the five ways in which automation will affect the workforce.

  • Certain jobs will be eliminated.  By 2025, 3.5 million jobs will be created in manufacturing—yet due to the skills gap, two (2) million will remain unfilled. Certain repetitive jobs, primarily on the assembly line will be eliminated.  This trend is with us right now.  Retraining of employees is imperative.
  • Current jobs will be modified.  In sixty percent (60%) of all occupations, thirty percent (30%) of the tasks can be automated.  For the first time, we hear the word “co-bot”.  Co-bot is robotic assisted manufacturing where an employee works side-by-side with a robotic system.  It’s happening right now.
  • New jobs will be created. There are several ways automation will create new jobs. First, lower operating costs will make U.S. products more affordable, which will result in rising demand. This in turn will increase production volume and create more jobs. Second, while automation can streamline and optimize processes, there are still tasks that haven’t been or can’t be fully automated. Supervision, maintenance, and troubleshooting will all require a human component for the foreseeable future. Third, as more manufacturers adopt new technologies, there’s a growing need to fill new roles such as data scientists and IoT engineers. Fourth, as technology evolves due to practical application, new roles that integrate human skills with technology will be created and quickly become commonplace.
  • There will be a skills gap between eliminated jobs and modified or new roles. Manufacturers should partner with educational institutions that offer vocational training in STEM fields. By offering students on-the-job training, they can foster a skilled and loyal workforce.  Manufacturers need to step up and offer additional job training.  Employees need to step up and accept the training that is being offered.  Survival is dependent upon both.
  • The manufacturing workforce will keep evolving. Manufacturers must invest in talent acquisition and development—both to build expertise in-house and to facilitate continuous innovation.  Ten years ago, would you have heard the words, RFID, Biometrics, Stereolithography, Additive manufacturing?  I don’t think so.  The workforce MUST keep evolving because technology will only improve and become a more-present force on the manufacturing floor.

As always, I welcome your comments.

CLOUD COMPUTING

May 20, 2017


OK, you have heard the term over and over again but, just what is cloud computing? Simply put, cloud computing is the delivery of computing services—servers, storage, databases, networking, software, analytics, and more—over the Internet (“the cloud”). Companies offering these computing services are called cloud providers and typically charge for cloud computing services based on usage, similar to how you’re billed for water or electricity at home. It is a type of Internet-based computing that provides shared computer processing resources and data to computers and other devices on demand. It is a model for enabling ubiquitous, on-demand access to a shared pool of configurable computing resources (e.g., computer networks, servers, storage, applications and services), which can be rapidly provisioned and released with minimal management effort. Cloud computing and storage solutions provide users and enterprises with various capabilities to store and process their data in either privately owned, or third-party data centers that may be located far from the user–ranging in distance from across a city to across the world. Cloud computing relies on sharing of resources to achieve coherence and economy of scale, similar to a utility (like the electricity grid) over an electricity network.

ADVANTAGES AND DISADVANTAGES:

Any new technology has an upside and downside. There are obviously advantages and disadvantages when using the cloud.  Let’s take a look.

 Advantages

  • Lower cost for desktop clients since the applications are running in the cloud. This means clients with smaller hard drive requirements and possibly even no CD or DVD drives.
  • Peak computing needs of a business can be off loaded into cloud applications saving the funds normally used for additional in-house servers.
  • Lower maintenance costs. This includes both hardware and software cost reductions since client machine requirements are much lower cost and software purchase costs are being eliminated altogether for applications running in the cloud.
  • Automatic application software updates for applications in the cloud. This is another maintenance savings.
  • Vastly increased computing power availability. The scalability of the server farm provides this advantage.
  • The scalability of virtual storage provides unlimited storage capacity.

 Disadvantages

  • Requires an “always on” Internet connection.
  • There are clearly concerns with data security. e.g. questions like: “If I can get to my data using a web browser, who else can?”
  • Concerns for loss of data.
  • Reliability. Service interruptions are rare but can happen. Google has already had an outage.

MAJOR CLOUD SERVICE PROVIDERS:

The following names are very recognizable.  Everyone know the “open-market” cloud service providers.

  • AMAZON
  • SALESFORCE
  • GOOGLE
  • IBM
  • MICROSOFT
  • SUN MICROSYSTEMS
  • ORACLE
  • AT & T

PRIVATE CLOUD SERVICE PROVIDERS:

With all the interest in cloud computing as a service, there is also an emerging concept of private clouds. It is a bit reminiscent of the early days of the Internet and the importing that technology into the enterprise as intranets. The concerns for security and reliability outside corporate control are very real and troublesome aspects of the otherwise attractive technology of cloud computing services. The IT world has not forgotten about the eight hour down time of the Amazon S3 cloud server on July, 20, 2008. A private cloud means that the technology must be bought, built and managed within the corporation. A company will be purchasing cloud technology usable inside the enterprise for development of cloud applications having the flexibility of running on the private cloud or outside on the public clouds? This “hybrid environment” is in fact the direction that some believe the enterprise community will be going and some of the products that support this approach are listed below.

  • Elastra (http://www.elastra.com ) is developing a server that can be used as a private cloud in a data center. Tools are available to design applications that will run in both private and public clouds.
  • 3Tetra (http://www.3tetra.com ) is developing a grid operating system called ParaScale that will aggregate disk storage.
  • Cassatt(http://www.cassatt.com )will be offering technology that can be used for resource pooling.
  • Ncomputing ( http://www.ncomputing.com ) has developed standard desktop PC virtualization software system that allows up to 30 users to use the same PC system with their own keyboard, monitor and mouse. Strong claims are made about savings on PC costs, IT complexity and power consumption by customers in government, industry and education communities.

CONCLUSION:

OK, clear as mud—right?  For me, the biggest misconception is the terminology itself—the cloud.   The word “cloud” seems to imply a IT system in the sky.  The exact opposite is the case.  The cloud is an earth-based IT system serving as a universal host.  A network of computers. A network of servers.  No cloud.

%d bloggers like this: