Portions of this post are taken from “Design News Daily Magazine”, online version, FW 18, 2019.

I often hear there will come a time when education will be completely online, in other words, no classroom.  The teacher will lecture via the internet and all classes may come to us through video conferencing or SKYPE-like services.  I know I am ‘old-school” but I do not think that will nearly fill all requirements students have relative to obtaining enough information and structure needed to enter the workforce after graduation.  I KNOW, eliminating the classroom will not suffice as far as fulfilling an engineering degree that is usable. (Usable is the operative word here.)  There is too much give-and take in the classroom for that to occur.   Too many questions would go unanswered providing a dearth of preparation for the “outside and real” world.

The factor that just may prove me incorrect is the cost of an engineering education.  Getting an engineering degree is tough, and the soaring cost of colleges doesn’t make it any easier. For many years, college costs have been rising at twice the rate of inflation, and today’s most expensive engineering degrees reflect that, having recently cracked the seventy thousand dollars ($70,000)-a-year plateau.

To be sure, all of those seventy thousand plus schools offer financial aid, often in substantial amounts. In some cases, the final dollar figure may be comparable to that of a state school after all the aid is totaled up. That, of course, is if the applicant receives financial aid. I am using current figures from US News & World Reports Best Colleges, and have put together a list of the most expensive engineering schools in the US. All of the colleges on the list offer great educations. You really need to sit down for this one.  Here we go.

1. Harvey Mudd College, $75,003. The country’s most expensive engineering degree belongs to a school that may not have the Harvard- or MIT-name-brand, but nevertheless features a top-notch engineering program. In this year’s edition of US News & World Reports Best Colleges, Mudd tied for first as the best engineering program among schools where the top degree is a bachelors or masters. A tiny school with just 844 students, Mudd takes a different approach to education. A big part of the school’s method involves fellowships for students, enabling them to make a strong connection between engineering theory and the real world. The final cost — $75,003 – includes tuition, room and board. About 50% of “Mudders,” as its students are known, receive financial aid, with $43,208 being the average package. (Image source: Wikipedia/by Imagine)

2. Columbia University, $73,446. Columbia University’s engineering school is the country’s third oldest, and is ranked 18th among schools whose highest degree is a Ph.D. The New York City-based college is extremely selective, offering entry to only about 6% of applicants. The average accepted applicant has an ACT score ranging between 32-35, with 96% in the top 10% of their class. Financial aid is generous – averaging about $58,000 – but only about half of incoming students receive such aid. (Image source: Wikipedia/by Andrew Chen)

3. University of Southern California, $71,625. As private universities go, USC is a whopper, with about 18,000 undergraduates, of which about 10% are enrolled in engineering. US News & World Report ranks USC’s Viterbi Engineering School 24th among colleges whose highest degree is a Ph.D. Departments include mechanical, aerospace, astronautical, biomedical, industrial, chemical, electrical, and civil. About 38% of admitted students receive financial aid, with the average package being $51,509. (Image source: Wikipedia/by Bestweekevr)

4. University of Pennsylvania, $71,200. A private university in the Ivy League, the University of Pennsylvania is both a great and expensive source of education. Its engineering school is legendary for its development of the first general-purpose computer, ENIAC, in 1946. US News & World Report ranks it 24th among engineering schools whose highest degree is a Ph.D. About 46% of students receive financial aid, with the average package being $48,971. (Image source: Wikipedia/by Bryan Y.W. Shin)

5. Northwestern University, $71,193. Northwestern University in Evanston, IL features one of the premier engineering colleges in the US, with a ranking of 14th from US News & World Report. It is, however, extremely selective, with only about 9% of candidates accepted. The average incoming ACT is 32-35, and 91% of accepted applicants are in the top 10% of their high school class. About 45% of undergrads receive financial aid, with the average package coming to $49,030. (Image source: Wikipedia)

6. Tufts University, $70,942. Tufts University of Medford, MA, isn’t a household name, but it’s a stellar, highly selective school. In 2019, only 14% of applicants were admitted, and the average incoming student had an ACT score ranging from 31-34. About 9% of Tufts’ small undergrad population (enrollment, 5,483) is enrolled in the engineering curriculum. Its engineering school is ranked 59th among those whose highest degree is a Ph.D. Financial aid is awarded to 38% of applicants. (Image source: Wikipedia/by Halpaugh)

7. Dartmouth College, $70,791. New Hampshire-based Dartmouth College is a liberal arts school, and as such gives a bachelor of arts degree (B.A.) to all engineering science majors, then encourages them to stay on and earn a Bachelor of Engineering (B.E.) degree. Like all Ivy League schools, it’s extremely selective, with only about 10% of applicants gaining admission. Dartmouth’s Thayer School of Engineering is ranked 48th among schools whose top degree is a Ph.D. About 50% of undergrads receive financial aid, with the average package coming to $50,625. (Image source: Wikipedia/by Kane5187)

8. Brown University, $70,326. Brown University in Providence, RI, is yet another of the highly-selective Ivies, with only about 8% of applicants being admitted. It’s engineering college, which makes up about 6% of Brown’s undergrad population, is ranked 38th among schools whose highest degree is a Ph.D. About 44% of new students receive financial aid, with the average package being $49,269. (Image source: Wikipedia/by Apavio

9. Smith College, $69,924. Smith College in Northampton, MA is typically thought of as a liberal arts school, and is in fact rated 11th among all the nation’s liberal arts colleges by US News & World Report. Still, the small all-women’s school completed a new science and engineering facility in 2009, with the idea that it would “blur the boundaries between traditional disciplines, creating an optimum environment for students and faculty to address key scientific and technological developments of our time.” Smith’s engineering program is ranked 15th among schools whose top degree is a bachelors or masters. (Image source: Wikipedia/by Samasinter)

10. Carnegie Mellon University, $69,883. Carnegie Mellon University in Pittsburgh has long been regarded as one of the nation’s premier engineering schools. In 2019, US News & World Report ranked it sixth among schools whose highest degree is a Ph.D. The university is relatively small, with an undergrad population of just 6,664, but engineering makes up a whopping 24% of those students. Carnegie Mellon is world-renown for its work in robotics, with many of its grad students filling key spots in companies making autonomous cars. About 39% of undergrads receive financial aid, with the average package being $43,182. (Image source: Wikipedia/by Dllu).

CONCLUSION:  You will notice that MIT, Stanford, Georgia Tech, Duke, Rose-Hulman, University of Wisconsin, Perdue, etc. were not even mentioned.  These are remarkable schools when considering an engineering degree.  Really, most accredited engineering universities do an excellent job, certainly for undergraduate work leading to a BS in engineering.  Look at the faculty, the location, the cost and you will do just fine choosing a university that meets all of your engineering-student needs.

Advertisements

THE FARMHOUSE INN

April 16, 2019


Have you ever just happened upon and experienced a serendipity moment?  A period in time or circumstance that made you say, “why have we not done this before?”  Where have we been.  Well, that happened to my wife and I this past weekend.  We visited Madison, Georgia and stayed at the Farmhouse Inn.  The pictures you will see were taken by me as we walked the grounds.  Let’s first see just where Madison, Georgia is.

MADISON, GEORGIA

Madison is located about an hour and one-half from Atlanta as you go east on Interstate 20.  According to the 2000 census, it is a town of approximately four thousand permanent residents and is the county seat for Morgan County.

The first town lots in Madison were sold in 1809 so this is an old town.  As the cotton economy of the county expanded, so did the population of Madison. Many of the wealthy plantation owners who lived in the county began building town houses.  Many of these Antebellum homes have survived and can be seen on the walking/driving tour of the historic district. In 1844 the first of three great fires struck the community. The county courthouse, begun in 1809 and finally completed 15 years later, burned to the ground. However, most of the county records were saved. In 1869 the entire business district burned after fire broke out in Albert Shaw’s furniture store on South Main Street. Twenty-six (26) businesses were destroyed. The heat was so intense that many of the salvaged goods placed in the middle of the street burned also. In this fire, the city hall and all the town records were destroyed. The community began rebuilding immediately; however, it took ten years before all the lots burned in the fire had buildings on them.  Madison’s Antebellum homes and Victorian homes, as well as its tastefully restored downtown, offer a wide range of shops, tastes, sights and services that delight visitors from this country and abroad, as they travel along Georgia’s Antebellum Trail, the Georgia Antiques Trail and the Historic Heartland travel region.

FARMHOUSE INN:

The description above gives you a very brief understanding of the town itself. Now let’s take a look at where my wife and I stayed.

As you approach the facility you can certainly see the one hundred (100) acres that constitute a working farm.  Cows, chickens, goats, turkeys, a peacock, and most of the animals you would expect on a farm.

This is the driveway as viewed from the guest house.

I know the picture below looks very rustic but the interior was clean, comfortable and “up-to-date”.  The owners of the facility completely renovated an actual farmhouse barn and constructed a dining area, kitchen, common space and rooms.  I have no idea as to how much money they spent on the reconstruction and refurbishment of the overall complex.  I would say close to one million dollars.

There were two rooms in the barn and twelve rooms in the “Common House” adjacent to the barn.  The two JPEGs below will show the main guest house and the walkway to the guest rooms.   These digitals will give you some idea as to the layout of the overall complex.

No farm would be complete without a garden, or gardens.

No garden is complete without a scarecrow.

On the grounds of the Farmhouse Inn is a Baptist Church established in the early 1800s.  It is still a “working” church with services every Sunday morning and Sunday evening.  The view below is looking at the church from the garden.

The interior is just as you might expect, Spartan, but with air conditioning.

The exterior of the church.

One HUGE surprise, was dinner that night at the 220 Restaurant in downtown Madison.  We were tired but hungry.  As you can see, the dining area is absolutely exquisite with every detail being considered.  The food was gourmet—absolutely gourmet.  This was really a surprise coming from such a small town.  I expected BBQ, fast food and meat-and-three diners.  Not Madison, Georgia.  Great dining and we did not break the bank.  They also had a marvelous wine selection.

CONCLUSIONS:

You never know what you might find when you take a long weekend but this time, my wife and I were certainly surprised.  We will definitely go back.  I would love to have your comments.

 

 

HERE WE GO AGAIN

April 6, 2019


If you read my posts you know that I rarely “do politics”.  Politicians are very interesting people only because I find all people interesting.  Everyone has a story to tell.  Everyone has at least one good book in them and that is their life story.   With that being the case, I’m going to break with tradition by taking a look at the “2020” presidential lineup.  I think it’s a given that Donald John Trump will run again but have you looked at the Democratic lineup lately?  I am assuming with the list below that former Vice President Joe Biden will run so he, even though unannounced to date, will eventually make that probability known.

  • Joe Biden—AGE 76
  • Bernie Sanders—AGE 77
  • Kamala Harris—AGE 54
  • Beto O’Rourke—AGE 46
  • Elizabeth Warren—AGE 69
  • Cory Booker—AGE 49
  • Amy Klobuchar—AGE 58
  • Pete Buttigieg—AGE 37
  • Julian Castro—AGE 44
  • Kirsten Gillibrand—AGE 52
  • Jay Inslee—AGE 68
  • John Hickenlooper—AGE 67
  • John Delaney—AGE 55
  • Tulsi Gabbard—AGE 37
  • Tim Ryan—AGE 45
  • Andrew Yang—AGE 44
  • Marianne Williamson—AGE 66
  • Wayne Messam—AGE 44

 CANDIDATES NOW EXPLORING THE POSSIBILITIES:

  • William F. Weld—AGE 73
  • Michael Bennett—AGE 33
  • Eric Swalwell—AGE 38
  • Steve Bullock—AGE 52
  • Bill DeBlasio—AGE 57
  • Terry McAuliffe—AGE 62
  • Howard Schultz—AGE 65

Eighteen (18) people have declared already and I’m sure there will be others as time goes by. If we slice and dice, we see the following:

  • Six (6) women or 33.33 %—Which is the greatest number to ever declare for a presidential election.
  • AGE GROUPS
    • 70-80: 2              11 %
    • 60-70: 4             22 %
    • 50-60: 4              22 %
    • 40-50:  6              33 %
    • Younger than 40: 2         11 %

I am somewhat amazed that these people, declared and undeclared, feel they can do what is required to be a successful president.  In other words, they think they have what it takes to be the Chief Executive of this country.  When I look at the list, I see people whose name I do NOT recognize at all and I wonder, just who would want the tremendous headaches the job will certainly bring?  And the scrutiny—who needs that?  The President of the United States is in the fishbowl from dawn to dusk.  Complete loss of privacy. Let’s looks at some of the perks the job provides:

  • The job pays $400,000.00 per year.
  • The president is also granted a $50,000 annual expense account, $100,000 nontaxable travel account, and $19,000 for entertainment.
  • Former presidents receive a pension equal to the pay that the head of an executive department (Executive Level I) would be paid; as of 2017, it is $207,800 per year. The pension begins immediately after a president’s departure from office.
  • The Presidents gets to fly on Air Force 1 and Marine 1. (That was 43’s best perk according to him.)
  • You get to ride in the “BEAST”.
  • Free room and board at 1600 Pennsylvania Avenue
  • Access to Camp David
  • The hired help is always around catering to your every need.
  • Incredible security
  • You have access to a personal trainer if so desired
  • Free and unfettered medical
  • The White House has a movie theater
  • You are a life-time member of the “President’s Club”
  • The President has access to a great guest house—The Blair House.
  • You get a state funeral. (OK this might not be considered a perk relative to our list.)

The real question:  Are all of these perks worth the trouble?  President George Bush (43) could not wait to move back to Texas.  Other than Air Force 1, he really hated the job.  President Bill Clinton loved the job and would still be president if our constitution would allow it.


We all wish for our children and grandchildren the very best education available to them whether it’s public or private.  Local school districts many times struggle with maintaining older schools and providing the upgrades necessary to make and keep schools safe and functional.  There have been tremendous changes to needs demanded by this digital age as well as security so necessary.  Let’s take a look at what The Consulting-Specifying Engineer Magazine tells us they have discovered relative to NEW school trends and designs that fulfill needs of modern-day students.

  • Technology is touching all aspects of modern school systems and is a key component of content display and communication within the classroom. Teachers and students are no longer static within the classroom.  They are very mobile and flexible which creates the necessity for robust, flexible, and in most cases wireless infrastructure that responds to and does not distract from learning.
  • Multiple-purpose use facilities with large central areas which can serve as cafeteria, theater and even gymnasium are key to this trend. Individual classrooms are quickly becoming a thing of the past. The mechanical, electrical and plumbing equipment must be flexible for the many-purposed uses as well as being able to quickly transition from one to the next.
  • SECURITY is an absolute must when considering a new school building. Site access must be limited with movement throughout the building being secure with in-service cameras and a card access.  This must be accomplished without the school looking like a prison.
  • Color tuning, a new word for me, is accomplished by painting and lighting and creates an atmosphere for maximum learning. These efforts facilitate a more natural atmosphere and are more in line with circadian rhythms.  Warmer color temperature paints can increase relaxation and reduce stressful learning.
  • IAQ-Indoor Air Quality. According to the EPA:
    • Fifty percent (50%) of the schools in the U.S. today have issues linked to deficient or failing IAQ.
    • Deficient IAQ increases asthma risk by fifty percent (50%)
    • Test scores can drop by twenty-one percent (21%) with insufficient IAQ.
    • Schools with deficient IAQ have lower average student attendance rates
    • Cleaner indoor air promotes better health for students and teachers.
    • Implementing IAQ management can boost test scores by over fifteen percent (15%)
    • Greater ventilation can reduce absenteeism by ten (10) absences per one thousand students.
  • School administrators and school boards demand facilities that are equipped with sufficient lighting and sufficient fire protection. Heating and air conditioning as well as the electrical systems necessary to drive these pieces of hardware must be energy efficient.  Emergency generators are becoming a basic requirement to facilitate card readers and emergency door access.
  • Voice evacuation fire alarm and performance sound and telecommunication systems must be provided and must be kept active by emergency generators if power failures occur.
  • More and more high schools offer advanced placement generating college credits required for admission to universities and colleges. State-of-the art equipment facilitates this possibility. We are talking about laboratories, compressed air systems, medical and dental equipment, IT facilities, natural gas distribution systems, environment systems supporting biodiesel, solar and wind turbines, and other specialized equipment.  Many schools offer education at night as well as in the daytime.
  • All codes, local, state, federal and international MUST be adhered to with no exceptions.
  • Construction costs account for twenty to forty percent (20-40%) of the total life-cycle costs so maintenance and replacement must be considered when designing facilities.
  • Control systems providing for energy savings during off-peak hours must be designed into school building facilities.
  • LED lighting is becoming a must with dimmable controls, occupancy/vacancy sensors and daylight harvesting is certainly desirable.
  • For schools in the mid-west and other areas of our country, tornado shelters must be considered and certainly could save lives when available.

These are just a few of the requirements architects and design engineers face when quoting a package to school boards and regional school systems.  Much more sophisticated that ever before with requirements never thought of before.  Times are changing—and for the better.

SMARTS

March 17, 2019


Who was the smartest person in the history of our species? Solomon, Albert Einstein, Jesus, Nikola Tesla, Isaac Newton, Leonardo de Vinci, Stephen Hawking—who would you name.  We’ve had several individuals who broke the curve relative to intelligence.   As defined by the Oxford Dictionary of the English Language, IQ:

“an intelligence test score that is obtained by dividing mental age, which reflects the age-graded level of performance as derived from population norms, by chronological age and multiplying by100: a score of100 thus indicates performance at exactly the normal level for that age group. Abbreviation: IQ”

An intelligence quotient or IQ is a score derived from one of several different intelligence measures.  Standardized tests are designed to measure intelligence.  The term “IQ” is a translation of the German Intellizenz Quotient and was coined by the German psychologist William Stern in 1912.  This was a method proposed by Dr. Stern to score early modern children’s intelligence tests such as those developed by Alfred Binet and Theodore Simin in the early twentieth century.  Although the term “IQ” is still in use, the scoring of modern IQ tests such as the Wechsler Adult Intelligence Scale is not based on a projection of the subject’s measured rank on the Gaussian Bell curve with a center value of one hundred (100) and a standard deviation of fifteen (15).  The Stanford-Binet IQ test has a standard deviation of sixteen (16).  As you can see from the graphic below, seventy percent (70%) of the human population has an IQ between eighty-five and one hundred and fifteen.  From one hundred and fifteen to one hundred and thirty you are considered to be highly intelligent.  Above one hundred and thirty you are exceptionally gifted.

What are several qualities of highly intelligent people?  Let’s look.

QUALITIES:

  • A great deal of self-control.
  • Very curious
  • They are avid readers
  • They are intuitive
  • They love learning
  • They are adaptable
  • They are risk-takers
  • They are NOT over-confident
  • They are open-minded
  • They are somewhat introverted

You probably know individuals who fit this profile.  We are going to look at one right now:  John von Neumann.

JON von NEUMANN:

The Financial Times of London celebrated John von Neumann as “The Man of the Century” on Dec. 24, 1999. The headline hailed him as the “architect of the computer age,” not only the “most striking” person of the 20th century, but its “pattern-card”—the pattern from which modern man, like the newest fashion collection, is cut.

The Financial Times and others characterize von Neumann’s importance for the development of modern thinking by what are termed his three great accomplishments, namely:

(1) Von Neumann is the inventor of the computer. All computers in use today have the “architecture” von Neumann developed, which makes it possible to store the program, together with data, in working memory.

(2) By comparing human intelligence to computers, von Neumann laid the foundation for “Artificial Intelligence,” which is taken to be one of the most important areas of research today.

(3) Von Neumann used his “game theory,” to develop a dominant tool for economic analysis, which gained recognition in 1994 when the Nobel Prize for economic sciences was awarded to John C. Harsanyi, John F. Nash, and Richard Selten.

John von Neumann, original name János Neumann, (born December 28, 1903, Budapest, Hungary—died February 8, 1957, Washington, D.C. Hungarian-born American mathematician. As an adult, he appended von to his surname; the hereditary title had been granted his father in 1913. Von Neumann grew from child prodigy to one of the world’s foremost mathematicians by his mid-twenties. Important work in set theory inaugurated a career that touched nearly every major branch of mathematics. Von Neumann’s gift for applied mathematics took his work in directions that influenced quantum theory theory of automation, economics, and defense planning. Von Neumann pioneered game theory, and, along with Alan Turing and Claude Shannon was one of the conceptual inventors of the stored-program digital computer .

Von Neumann did exhibit signs of genius in early childhood: he could joke in Classical Greek and, for a family stunt, he could quickly memorize a page from a telephone book and recite its numbers and addresses. Von Neumann learned languages and math from tutors and attended Budapest’s most prestigious secondary school, the Lutheran Gymnasium . The Neumann family fled Bela Kun’s short-lived communist regime in 1919 for a brief and relatively comfortable exile split between Vienna and the Adriatic resort of Abbazia. Upon completion of von Neumann’s secondary schooling in 1921, his father discouraged him from pursuing a career in mathematics, fearing that there was not enough money in the field. As a compromise, von Neumann simultaneously studied chemistry and mathematics. He earned a degree in chemical engineering from the Swiss Federal Institute in  Zurich and a doctorate in mathematics (1926) from the University of Budapest.

OK, that all well and good but do we know the IQ of Dr. John von Neumann?

John Von Neumann IQ is 190, which is considered as a super genius and in top 0.1% of the population in the world.

With his marvelous IQ, he wrote one hundred and fifty (150) published papers in his life; sixty (60) in pure mathematics, twenty (20) in physics, and sixty (60) in applied mathematics. His last work, an unfinished manuscript written while in the hospital and later published in book form as The Computer and the Brain, gives an indication of the direction of his interests at the time of his death. It discusses how the brain can be viewed as a computing machine. The book is speculative in nature, but discusses several important differences between brains and computers of his day (such as processing speed and parallelism), as well as suggesting directions for future research. Memory is one of the central themes in his book.

I told you he was smart!

OUR SHRINKING WORLD

March 16, 2019


We sometimes do not realize how miniaturization has affected our every-day lives.  Electromechanical products have become smaller and smaller with one great example being the cell phone we carry and use every day.  Before we look at several examples, let’s get a definition of miniaturization.

Miniaturization is the trend to manufacture ever smaller mechanical, optical and electronic products and devices. Examples include miniaturization of mobile phones, computers and vehicle engine downsizing. In electronics, Moore’s Law predicted that the number of transistors on an integrated circuit for minimum component cost doubles every eighteen (18) months. This enables processors to be built in smaller sizes. We can tell that miniaturization refers to the evolution of primarily electronic devices as they become smaller, faster and more efficient. Miniaturization also includes mechanical components although it sometimes is very difficult to reduce the size of a functioning part.

The revolution of electronic miniaturization began during World War II and is continuing to change the world till now. Miniaturization of computer technology has been the source of a seemingly endless battle between technology giants over the world. The market has become so competitive that the companies developing microprocessors are constantly working towards erecting a smaller microchip than that of their competitor, and as a result, computers become obsolete almost as soon as they are commercialized.  The concept that underlies technological miniaturization is “the smaller the better”; smaller is faster, smaller is cheaper, smaller is more profitable. It is not just companies that profit from miniaturization advances, but entire nations reap rewards through the capitalization of new developments. Devices such as personal computers, cellular telephones, portable radios, and camcorders have created massive markets through miniaturization, and brought billions of dollars to the countries where they were designed and built. In the 21st century, almost every electronic device has a computer chip inside. The goal of miniaturization is to make these devices smaller and more powerful, and thus made available everywhere. It has been said, however, that the time for continued miniaturization is limited – the smaller the computer chip gets, the more difficult it becomes to shrink the components that fit on the chip.  I personally do not think this is the case but I am a mechanical engineer and not an electronic or electrical engineer.  I use the products but I do not develop the products.

The world of miniaturization would not be possible at all if it were not for semiconductor technology.  Devices made of semiconductors, notably silicon, are essential components of most electronic circuits.  A process of lithography is used to create circuitry layered over a silicon substrate. A transistor is a semiconductor device with three connections capable of amplification in addition to rectification. Miniaturization entails increasing the number of transistors that can hold on a single chip, while shrinking the size of the chip. As the surface area of a chip decreases, the task of designing newer and faster circuit designs becomes more difficult, as there is less room left for the components that make the computer run faster and store more data.

There is no better example of miniaturization than cell phone development.  The digital picture you see below will give some indication as to the development of the cell phone and how the physical size has decreased over the years.  The cell phone to the far left is where it all started.  To the right, where we are today.  If you look at the modern-day cell phone you see a remarkable difference in size AND ability to communicate.  This is all possible due to shrinking computer chips.

One of the most striking changes due to miniaturization is the application of digital equipment into a modern-day aircraft cockpit.  The JPEG below is a mockup of an actual Convair 880.  With analog gauges, an engineering panel and an exterior shell, this cockpit reads 1960/1970 style design and fabrication.  In fact, this is the actual cockpit mock up that was used in the classic comedy film “Airplane”.

Now, let us take a look at a digital cockpit.  Notice any differences?  Cleaner and fewer.  The GUI or graphical user interface can take the place of numerous dials and gauges that clutter and possibly confuse a pilot’s vision.

I think you have the picture so I would challenge you to take a look this upcoming week to discover those electromechanical items, we take for granted, to discover how they have been reduced in size.  You just may be surprised.

 


For most of us, the city where we were born is the “best city on earth”.  EXAMPLE:   About ten (10) years ago I traveled with three other guys to Sweetwater, Texas.  About sixteen (16) hours of nonstop travel, each of us taking four (4) hour shifts.  We attended the fifth (50th) “Rattlesnake Roundup”. (You are correct—what were we thinking?)  Time of year—March.  The winter months are when the critters are less active and their strike is much slower.  Summer months, forget it.  You will not win that contest.  We were there about four (4) days and got to know the great people of Sweetwater.  The city itself is very hot, even for March, but most of all windy and dusty.  The wind never seems to stop.  Ask about Sweetwater— “best little city on the planet”.  Wouldn’t leave for all the money in the world.  That’s just how I feel about my home town—Chattanooga, Tennessee.

Public Art Chattanooga decided to add a splash of color to the monolithic grey hulk of the AT&T building, located on the Southside of Chattanooga proper.  This building is a tall windowless structure resembling the “BORG” habitat detailed in several Star Trek episodes.  Not really appealing in any sense of the word.  When Public Art received permission to go forward, they called internationally respected artist Meg Saligman.  Meg was the obvious choice for the work.  This is her largest mural to date covering approximately 42,000 square feet.  It is definitely one of the five (5) largest murals in the country and the largest in the Southeastern part of the United States.

The ML King District Mural Project reinforces the critical role public art plays in lending a sense of place to a specific neighborhood, and certainly contributes to future neighborhood beautification and economic development efforts. The images and people in the mural are inspired by real stories, individuals, and the history of the neighborhood.  For approximately six (6) months, people living and visiting the Southside were interviewed to obtain their opinion and perspective as to what stories would be displayed by the mural.  The proper balance was required, discussed, and met, with the outcome being spectacular.

This is a Meg Saligman Studios project.  Co-Principal Artists are Meg Saligman and Lizzie Kripke. Lead Artists Hollie Berry and James Tafel Shuster In 2006, Public Art Review featured Meg Saligman as one of the ten most influential American muralists of the past decade. She has received numerous awards, including the Philadelphia Mural Arts Program’s Visionary Artist Award, and honors from the National Endowment of the Arts, the MidAtlantic Arts Foundation, the Pennsylvania Council on the Arts, and Philadelphia’s Leeway Foundation.  Saligman has painted more than fifty murals all over the world, including Philadelphia, Shreveport, Mexico City, and now Chattanooga.  She has a way of mixing the classical and contemporary aspects of painting together. Prior to the M.L.K mural, Saligman’s most famous work is “Common Threads” located in the Philadelphia area. It is painted on the west wall of the Stevens Administrative Center at the corner of Broad and Spring Garden Streets. Other major works include “Philadelphia Muses” on 13th and Locust streets, a multimedia “Theatre of Life” on Broad and Lombard streets, “Passing Through”  over the Schuylkill Expressway, and the paint and LED light installation at Broad and Vine streets, “Evolving Face of Nursing”.  Saligman’s work can be viewed nationally in Shreveport, Louisiana, with “Once in a Millennium Moon”, and in Omaha, Nebraska, with “Fertile Ground.”

A key component of the M.L.K. Mural in Chattanooga was the local apprentice program offering an opportunity for local artists to work with the nationally recognized muralist and to learn techniques and methods for large scale projects such as this. From thirty-three (33) applicants, Meg interviewed and hired a team of six (6) locals who constituted an integral part of the program itself.  Each artist was hired for their artistic skill sets and their ability to work collaboratively as team members. Members of the local team are: 1.) Abdul Ahmad, 2.) Anna Carll, 3.) Rondell Crier, 4.) Shaun LaRose, 5.) Mercedes Llanos and 6.) Anier Reina.

Now, with that being said, let’s take a look.

From this digital photograph and the one below, you can get a feel for the scope of the project and the building the artwork is applied to.  As you can see, it’s a dull grey, windowless, concrete structure well-suited for such a face-lift.  Due to the height and size of the building, bucket trucks were used to apply the paint.

The layout, of course, was developed on paper first with designs applied to quadrants on the building.  You can see some of the interacies of the process from the JPEG above.

The planning for this project took the better part of one year due to the complexity and the layout necessary prior to initiating the project.  As I traveled down M.L.King Avenue, I would watch the progress in laying out the forms that would accept the colors and shades of paint.  In one respect, it was very similar to paint-by-numbers.  Really fascinating to watch the development of the artwork even prior to painting.

The completed mural covers all four (4) sides of the AT&T building and as you can see from the JPEG below—it is striking.

This gives you one more reason to visit Chattanooga.  As always, I welcome your comments.

%d bloggers like this: