EMBRAER

March 27, 2015


You know Dasher and Dancer and Prancer and Vixson, Gulfstream and Piper and Beechcraft and Cessna; but do you recall the least-known aircraft of all?  OK, so I’m not a poet or songwriter.  Have you ever heard of an aircraft manufacturer called EMBRAER?  Do you recognize their logotype?

LOGO

Well, I’ll bet you have flown on one of their aircraft.

HISTORY:

Embraer S.A. is a Brazilian aerospace conglomerate that produces commercial, military, executive and agricultural aircraft.  The company also provides corporate and private aeronautical services. It is headquartered in ão José dos Campos in the State of São Paulo.

On August 19, 1969, Embraer; (Empresa Brasileira de Aeronáutica S.A.) was created. With the support of the Brazilian government, the Company turned science and technology into engineering and industrial capacity. The Brazilian government was seeking a domestic aircraft manufacture thus making several investment attempts during the 1940s and ’50s to fulfill this need.    Its first president, Ozires Silva, was appointed by the Brazilian government to run the company.   EMBRAER initially produced one turboprop passenger aircraft, the Embraer EMB 110 Bandeirante, a project organized and executed by Ozires Silva. The first EMB 110 Bandeirante to be produced in series made its maiden flight on August 9, 1972. On the 19th of that same month, a public ceremony was held at the Embraer headquarters, attended by officials, employees and journalists from not only Brazil but several countries in South America. That aircraft is shown by the digital below.

40 Years Ago

By the end of the ‘70s, the development of new products, such as the EMB 312 Tucano and the EMB 120 Brasilia, followed by the AMX program in cooperation with Aeritalia (currently Alenia) and Aermacchi companies, allowed Embraer to reach a new technological and industrial level.  At exactly 8:44 AM, on April 8, 1982, the twin-engines EMB 121 Xingu PP-ZXA and PP-ZXB took off from São José dos Campos, piloted by Brasílico Freire Netto, Carlos Arlindo Rondom, Paulo César Schuler Remido and Luiz Carlos Miguez Urbano, en route to France. They were the first two aircraft of a total of forty-one (41) ordered by the French government for use in training military pilots from the Air Force (Armé de L’Air) and Naval Aviation (Aeronavale) department. The aircraft were delivered to the French authorities on April 16, at Le Bourget Airport.  That aircraft may be seen as follows:

Comissioned by the French

The EMB 120 Brasilia aircraft became an important milestone in the history of Embraer. Developed as a response to the evolving demands of the regional air transport industry, its design took advantage of the most advanced technologies available at the time. It was the fastest, lightest and most economical airplane in its category.  Most of the EMB 120s were sold in the United States and other destinations in the Western Hemisphere. Some European airlines such as Régional in France, Atlant-Soyuz Airlines in Russia, DAT in Belgium, and DLT in Germany also purchased EMB-120s. Serial production ended in 2001. As of 2007, it is still available for one-off orders, as it shares much of the production equipment with the ERJ-145 family, which is still being produced. The Angolan Air Force, for example, received a new EMB 120 in 2007.  If you’ve done much flying at all you probably have flown on the EMB 120. SkyWest Airlines operates the largest fleet of EMB 120s under the United Express and Delta Connection brand. Great Lakes Airlines operates six EMB 120s in its fleet, and Ameriflight flies eight as freighters.  This configuration has been a real short-haul workhorse. Another, and possibly better look, is as follows:

Air Moldova

COMMERCIAL LONG-HAUL:

Another workhorse is the EMBRAER 195.  That aircraft may be seen below.  It costs approximately $40 Million, which is just as expensive as the average narrow-body passenger jet and seats 108 passengers in a typical layout, 8 more than the average narrow-body passenger plane. The maximum seating capacity is 122 passengers in an all-economy class configuration.   The 195 uses roughly $11.64 worth of fuel per nautical mile flown (assuming $6 per gallon of jet fuel).  On a per-seat basis, this translates to being 7.3% more cost-efficient than the average aircraft.

A maximum range of 2,200 nautical miles (equal to 2,530 miles) makes this aircraft most appropriate for long domestic flights, or very short international flights.   With a service ceiling (max cruise altitude) of 41,000 feet, it is just slightly higher than the norm for this type of aircraft and can certainly get above most weather patterns along the flight route.

EMBRAER 195.doc

BUSINESS JET:

The Embraer EMB-505 Phenom 300 is a light jet aircraft developed by Embraer which can carry eight (8) or nine (9) occupants.  It has a flying range of 1,971 nmi (3,650 km) and carries a price estimate between US $ 5 million and US $ 8 million in 2012.

At 45,000 feet (14,000 m), the Phenom 300 is pressurized to a cabin altitude of 6,600 feet (2,000 m). The jet features single-point refueling and an externally serviced private rear lavatory, refreshment center and baggage area. It received FAA Type Certification on 14 December 2009 as the Embraer EMB-505.

On 29 December 2009 Embraer delivered the first Phenom 300 to Executive Flight Services at the company’s headquarters at São José dos Campos, Brazil.  In just four years, the Phenom 300 climbed to the top position on the list of most delivered business jets, with 60 units delivered in 2013. The Phenom 300 is the fastest seller in NetJets‘ inventory, counting thirty-six (36).  A beautiful aircraft with the ten (10)  most recent deliveries totaling $90 million. 

BUSINESS

MILITARY ISSUE:

Embraer has started work on modernizing a second production of Northrop F-5E fighters and F-model trainers for the Brazilian air force.

Three aircraft from a total of 11 are already being worked on at the company’s facilities in Gavião Peixoto, Brazil, with deliveries expected to start later this year. Embraer says it completed the delivery of a first batch of 46 modified F-5EM/FMs in 2012.  That aircraft is shown below.

Fighter

Both the modernized F-5M and AMX are being upgraded to a common avionics configuration. “What we are doing in Brazil is basically a commonality between the Super Tucano, F-5 and the AMX so that the pilots would not have many problems for transition,” Embraer says. “You also reduce costs and assist in training.”

The AMX and F-5 fleets are also receiving Elbit Systems-built radars, in addition to upgraded electronic warfare equipment, in-flight refueling systems and other improvements.

Meanwhile, the Brazilian navy is also upgrading its small fleet of 12 Douglas A-4 Skyhawk carrier-based light strike aircraft. At least one of the Skyhawks is currently being modernized at Gavião Peixoto, but Embraer could not immediately offer any details.

Alongside the modernization work for the Brazilian military, the factory at Gavião Peixoto is at work building a number of Super Tucanos for export customers in Angola and Indonesia.

Brazil is has previously increased spending on defense to prepare hosting the FIFA World Cup in 2014 and Olympic Games 2016 respectively.

There is also a growing realization in the country that it will have to work diligently in the future to protect its vast natural resources. This could unfortunately require military preparedness.

Another example of Embraer’s military ability may be seen from the following aircraft:

Heavy Duty Cargo Aircraft

The Embraer KC-390 is a medium-size, twin-engine jet-powered military transport aircraft now under development.  It is able to perform aerial refueling and to transport cargo and troops and will be the heaviest aircraft the company has in its inventory.  It will be able to transport up to 21 metric tons (23 short tons) of cargo, including wheeled armored fighting vehicles.

AGRICULTURAL:

The Ipanema is the market leader, with 50 years of continuous production and over 1,300 units sold, representing about 75% of the nation’s fleet in this segment.   The Ipanema agricultural aircraft is a leading agricultural market in Brazil, with about 60% share.  There has been 40 years of continuous production and constant research to improve the aircraft.  That concentration of effort always focused on the needs of the customers and the national agricultural market.  This brand demonstrates the reliability, solidity and tradition of Ipanema.  One other fact, the Ipanema is the first aircraft certified to fly powered solely by ethanol.  In addition to the economic advantages and obtained improvement in engine performance, ethanol is a renewable source of energy, which helps protect the environment.

Agricultural

CONCLUSION:

As you can see, the United States aircraft manufacturers do have competition and excellent competition at that.    This foreign entry keeps us on our toes.

BOEING 777

March 22, 2015


The following post used the following references as resources: 1.) Aviation Week and 2.) the Boeing Company web site for the 777 aircraft configurations and history of the Boeing Company.

I don’t think there is much doubt that The Boeing Company is and has been the foremost company in the world when it comes to building commercial aircraft. The history of aviation, specifically commercial aviation, would NOT be complete without Boeing being in the picture. There have been five (5) companies that figured prominently in aviation history relative to the United States. Let’s take a look.

THE COMPANIES:

During the last one hundred (100) years, humans have gone from walking on Earth to walking on the moon. They went from riding horses to flying jet airplanes. With each decade, aviation technology crossed another frontier, and, with each crossing, the world changed.

During the 20th century, five companies charted the course of aerospace history in the United States. They were the Boeing Airplane Co., Douglas Aircraft Co., McDonnell Aircraft Corp., North American Aviation and Hughes Aircraft. By the dawning of the new millennium, they had joined forces to share a legacy of victory and discovery, cooperation and competition, high adventure and hard struggle.

Their stories began with five men who shared the vision that gave tangible wings to the eternal dream of flight. William Edward Boeing, born in 1881 in Detroit, Mich., began building floatplanes near Seattle, Wash. Donald Wills Douglas, born in 1892 in New York, began building bombers and passenger transports in Santa Monica, Calif. James Smith McDonnell, born in 1899 in Denver, Colo., began building jet fighters in St. Louis, Mo. James Howard “Dutch” Kindelberger, born in 1895 in Wheeling, W.Va., began building trainers in Los Angeles, Calif. Howard Hughes Jr. was born in Houston, Texas, in 1905. The Hughes Space and Communications Co. built the world’s first geosynchronous communications satellite in 1963.

These companies began their journey across the frontiers of aerospace at different times and under different circumstances. Their paths merged and their contributions are the common heritage of The Boeing Company today.

In 1903, two events launched the history of modern aviation. The Wright brothers made their first flight at Kitty Hawk, N.C., and twenty-two (22) year-old William Boeing left Yale engineering college for the West Coast.

After making his fortune trading forest lands around Grays Harbor, Wash., Boeing moved to Seattle, Wash., in 1908 and, two years later, went to Los Angeles, Calif., for the first American air meet. Boeing tried to get a ride in one of the airplanes, but not one of the dozen aviators participating in the event would oblige. Boeing came back to Seattle disappointed, but determined to learn more about this new science of aviation.

For the next five years, Boeing’s air travel was mostly theoretical, explored during conversations at Seattle’s University Club with George Conrad Westervelt, a Navy engineer who had taken several aeronautics courses from the Massachusetts Institute of Technology.

The two checked out biplane construction and were passengers on an early Curtiss Airplane and Motor Co.-designed biplane that required the pilot and passenger to sit on the wing. Westervelt later wrote that he “could never find any definite answer as to why it held together.” Both were convinced they could build a biplane better than any on the market.

In the autumn of 1915, Boeing returned to California to take flying lessons from another aviation pioneer, Glenn Martin. Before leaving, he asked Westervelt to start designing a new, more practical airplane. Construction of the twin-float seaplane began in Boeing’s boathouse, and they named it the B & W, after their initials. THIS WAS THE BEGINNING.  Boeing has since developed a position in global markets unparallel relative to competition.

This post is specifically involved with the 777 product and changes in the process of being made to upgrade that product to retain markets and fend off competition such as the Airbus. Let’s take a look.

SPECIFICATION FOR THE 777:

In looking at the external physical characteristics, we see the following:

BOEING GENERAL EXTERNAL ARRANGEMENTS

As you can see, this is one BIG aircraft with a wingspan of approximately 200 feet and a length of 242 feet for the “300” version.  The external dimensions are for passenger and freight configurations.  Both enjoy significantly big external dimensions.

Looking at the internal layout for passengers, we see the following:

TYPICAL INTERIOR SEATING ARRANGEMENTS

TECHNICAL CHARACTERISTICS:

If will drill down to the nitty-gritty, we find the following:

TECHNICAL CHARACTERISTICS(1)

TECHNICAL CHARACTERISTICS(2)

As mentioned, the 777 also provides much needed services for freight haulers the world over.  In looking at payload vs. range, we see the following global “footprint” and long range capabilities from Dubai.  I have chosen but similar “footprints” may be had from Hong Kong, London, Los Angles, etc etc.

FREIGHTER PAYLOAD AND RANGE

Even with these very impressive numbers, Boeing felt an upgrade was necessary to remain competitive to other aircraft manufacturers.

UPGRADES:

Ever careful with its stewardship of the cash-generating 777 program, Boeing is planning a series of upgrades to ensure the aircraft remains competitive in the long-range market well after the 777X derivative enters service.

The plan, initially revealed this past January, was presented in detail by the company for the first time on March 9 at the International Society of Transport Air Trading meeting in Arizona. Aimed at providing the equivalent of two percent (2%) fuel-burn savings in baseline performance, the rolling upgrade effort will also include a series of optional product improvements to increase capacity by up to fourteen (14) seats that will push the total potential fuel-burn savings on a per-seat basis to as much as five percent (5%) over the current 777-300ER by late 2016.

At least 0.5% of the overall specific fuel-burn savings will be gained from an improvement package to the aircraft’s GE90-115B engine, the first elements of which General Electric will test later this year.  The bulk of the savings will come from broad changes to reduce aerodynamic drag and structural weight. Additional optional improvements to the cabin will also provide operators with more seating capacity and upgraded features that would offer various levels of extra savings on a per-seat basis, depending on specific configurations and layouts.  The digital below will highlight the improvements announced.

UPGRADES FOR 777

“We are making improvements to the fuel-burn performance and the payload/range and, at same time, adding features and functionality to allow the airlines to continue to keep the aircraft fresh in their fleets,” says 777 Chief Project Engineer and Vice President Larry Schneider. The upgrades, many of which will be retro-fittable, come as Boeing continues to pursue new sales of the current-generation twin to help maintain the 8.3-per-month production rate until the transition to the 777X at the end of the decade. Robert Stallard, an analyst at RBS Europe, notes that Boeing has a firm backlog of 273 777-300s and 777Fs, which equates to around 2.7 years of current production. “We calculate that Boeing needs to get 272 new orders for the 777 to bridge the current gap and then transition production phase on the 777X,” he says.

The upgrades will also boost existing fleets, Boeing says. “Our 777s are operated by the world’s premier airlines and now we are seeing the Chinese carriers moving from 747 fleets to big twins,” says Schneider. “There are huge 777 fleets in Europe and the Middle East, as well as the U.S., so enabling [operators] to be able to keep those up to date and competitive in the market—even though some of them are 15 years old—is a big element of this.”

Initial parts of the upgrade are already being introduced and, in the tradition of the continuous improvements made to the family since it entered service, will be rolled into the aircraft between now and the third quarter of 2016. “There is not a single block point in 2016 where one aircraft will have everything on it. It is going to be a continuous spin-out of those capabilities,” Schneider says. Fuel-burn improvements to both the 777-200LR and -300ER were introduced early in the service life of both derivatives, and the family has also received several upgrades to the interior, avionics and maintenance features over the last decade.

The overall structural weight of the 777-300ER will be reduced by 1,200 lb. “When the -300ER started service in 2004 it was 1,800 lb. heavier, so we have seen a nice healthy improvement in weight,” he adds. The reductions have been derived from production-line improvements being introduced as part of the move to the automated drilling and riveting process for the fuselage, which Boeing expects will cut assembly flow time by almost half. The manufacturer is adopting the fuselage automated upright build (FAUB) process as part of moves to streamline production ahead of the start of assembly of the first 777-9X in 2017.

One significant assembly change is a redesign of the fuselage crown, which follows the simplified approach taken with the 787. “All the systems go through the crown, which historically is designed around a fore and aft lattice system that is quite heavy. This was designed with capability for growth, but that was not needed from a systems standpoint. So we are going to a system of tie rods and composite integration panels, like the 787. The combination has taken out hundreds of pounds and is a significant improvement for workers on the line who install it as an integrated assembly,” Schneider says. Other reductions will come from a shift to a lower weight, less dense form of cabin insulation and adoption of a lower density hydraulic fluid.

Boeing has also decided to remove the tail skid from the 777-300ER as a weight and drag reduction improvement after developing new flight control software to protect the tail during abused takeoffs and landings. “We redesigned the flight control system to enable pilots to fly like normal and give them full elevator authority, so they can control the tail down to the ground without touching it. The system precludes the aircraft from contacting the tail,” Schneider says. Although Boeing originally developed the baseline electronic tail skid feature to prevent this from occurring on the -300ER, the “old system allowed contact, and to be able to handle those loads we had a lot of structure in the airplane to transfer them through the tailskid up through the aft body into the fuselage,” he adds. “So there are hundreds of pounds in the structure, and to be able to take all that out with the enhanced tail strike-protection system is a nice improvement.”

Boeing is also reducing the drag of the 777 by making a series of aerodynamic changes to the wing based on design work conducted for the 787 and, perhaps surprisingly, the long-canceled McDonnell Douglas MD-12. The most visible change, which sharp-eyed observers will also be able to spot from below the aircraft, is a 787-inspired inboard flap fairing redesign.

“We are using some of the technology we developed on the 787 to use the fairing to influence the pressure distribution on the lower wing. In the old days, aerodynamicists were thrilled if you could put a fairing on an airplane for just the penalty of the skin friction drag. On the 787, we spent a lot of time working on the contribution of the flap fairing shape and camber to control the pressures on the lower wing surface.”

Although Schneider admits that the process was a little easier with the 787’s all-new wing, Boeing “went back and took a look at the 777 and we found a nice healthy improvement,” he says. The resulting fairing will be longer and wider, and although the larger wetted area will increase skin friction, the overall benefits associated with the optimized lift distribution over the whole wing will more than compensate. It’s a little counterintuitive,” says Schneider, adding that wind-tunnel test results of the new shape showed close correlation with benefits predicted by computational fluid dynamics (CFD) analysis using the latest boundary layer capabilities and Navier-Stokes codes.

Having altered the pressure distribution along the underside of the wing, Boeing is matching the change on the upper surface by reaching back to technology developed for the MD-12 in the 1990s. The aircraft’s outboard raked wingtip, a feature added to increase span with the development of the longer-range variants, will be modified with a divergent trailing edge. “Today it has very low camber, and by using some Douglas Aircraft technology from the MD-12 we get a poor man’s version of a supercritical airfoil,” says Schneider. The tweak will increase lift at the outboard wing, making span loading more elliptical and reducing induced drag.

Boeing has been conducting loads analysis on the 777 wing to “make sure we understand where all those loads will go,” he says. A related loads analysis to evaluate whether the revisions could also be incorporated into a potential retrofit kit will be completed this month. “When we figure out at which line number those two changes will come together (as they must be introduced simultaneously by necessity), we will do a single flight to ensure we don’t have any buffet issues from the change in lift distribution. That’s our certification plan,” Schneider says.

A third change to the wing will focus on reducing the base drag of the leading-edge slat by introducing a version with a sharper trailing edge. “The trailing-edge step has a bit of drag associated with it, so we will be making it sharper and smoothing the profile,” he explains. The revised part will be made thinner and introduced around mid-2016. Further drag reductions will be made by extending the seals around the inboard end of the elevator to reduce leakage and by making the passenger windows thicker to ensure they are fully flush with the fuselage surface. The latter change will be introduced in early 2016.

In another change adopted from the 787, Boeing also plans to alter the 777 elevator trim bias. The software-controlled change will move the elevator trailing edge position in cruise by up to 2 deg., inducing increased inverse camber. This will increase the download, reducing the overall trim drag and improving long-range cruise efficiency.

The package of changes means that range will be increased by 100nm or, alternatively, an additional 5,000 lb. of payload can be carried. Some of this extra capacity could be utilized by changes in the cabin that will free up space for another fourteen (14) seats. These will include a revised seat track arrangement in the aft of the cabin to enable additional seats where the fuselage tapers. Some of the extra seating, which will increase overall seat count by three percent (3%), could feature the option of arm rests integrated into the cabin wall. Schneider says the added seats, on top of the baseline  two percent (2%) fuel-burn improvement, will improve total operating efficiency by five percent (5%) on a block fuel per-seat basis.

Other cabin change options will include repackaged Jamco-developed lavatory units that provide the same internal space as today’s units but are eight (8) inch narrower externally. The redesign includes the option of a foldable wall between two modules, providing access for a disabled passenger and an assistant. Boeing is also developing noise-damping modifications to reduce cabin sound by up to 2.5 db, full cabin-length LED lighting and a 787-style entryway around Door 2. Boeing is also preparing to offer a factory-fitted option for electrically controlled window shades, similar to the 777 system developed as an aftermarket modification by British Airways.

CONCLUSIONS:

As you can see, the 777 is preparing to continue service for decades ahead by virtue of the modifications and improvements shown above.

As always, I welcome your comments.


The following post uses as references:  Bloomberg Business, National Council on Higher Education, The Business Insider, and The College Board.

May 7 (Bloomberg) — A group of bankers that advises the Federal Reserve’s Board of Governors has warned that farmland prices are inflating “a bubble” and growth in student-loan debt has “parallels to the housing crisis.  “Recent growth in student-loan debt, to nearly $1 trillion, now exceeds credit-card outstandings and has parallels to the housing crisis,” the council said in its Feb. 3, 2012, meeting. The trend has continued, with the Consumer Financial Protection Bureau saying in March 2012 that student debt had topped a record $1 trillion.

I was extremely surprised when first reading this statement published in Bloomberg Business.  That surprise lasted about ten seconds.  My wife and I put three boys through college; Mercer University, Tulane University and the University of Georgia.  Even though they worked and had scholarships, the cost of a university education, even ten years ago, was daunting to a working engineer and his working wife.  I can categorically state the cost of tuition for our three increased between three (3) and ten (10) percent each year depending upon the school.  Have you purchased textbooks lately?  Our youngest son had a book bill approaching $600.00 one semester. He was an undergraduate.  Absolutely ridiculous.  Of course this is not to mention lab fees, parking permits, mandated university health insurance and a host of other requirements the universities levied upon students and their parents. The chart below will indicate the increases by year.  As you can see, these numbers are for public colleges.

TUITION INFLATION

The next chart will indicate tuition and total costs by region for two and four year colleges both public and private.

TUITION AND TOTAL COSTS

Seven in ten (10) seniors (69%) who graduated from public and nonprofit colleges in 2013 had student loan debt, with an average of $28,400 per borrower. This represents a two percent increase from the average debt of 2012 public and nonprofit graduates.  The map below indicates graphically the problem by region.

STUDENT LOAN BY STATE AND REGION

The twenty (20) high-debt public colleges had an individual average debt levels ranging from $33,950 to $48,850, while the twenty (20) high-debt nonprofit colleges ranged from $41,750 to $71,350. Of the twenty (20) low-debt colleges listed, nine were public and eleven (11) were nonprofit schools, with reported average debt levels ranging between $2,250 and $11,200.

Let’s now congratulate the class of 2014. You now “enjoy” being the class with the most individual student debt in history.  This comes at a time when job opportunities are at a minimum.

THE CLASS OF 2014

From the experience my wife and I had with our three boys, I’m not surprised at the following chart.  As you can see, those who wish to obtain a college degree are sometimes forced to secure loans due to the extremely high tuition, book and living expenses. In looking at the graph below, we see that number approaching seventy percent (70%).

MORE STUDENTS TAKING ON DEBT

The next one is really scary.  Take a look.

YOUNG PEOPLE AND WHAT THEY OWE VS WHAT THEY MAKE

Student debt up approximately thirty-five percent (35%) and earned income down five percent (5%) from the year 2009.

One individual, in business, has recognized the gravity relative to this issue—Mr. Mark Cuban.

Mark Cuban states:

“It’s inevitable at some point there will be a cap on student loan guarantees. And when that happens you’re going to see a repeat of what we saw in the housing market: when easy credit for buying or flipping a house disappeared we saw a collapse in the price housing, and we’re going to see that same collapse in the price of student tuition, and that’s going to lead to colleges going out of business.”

I honestly believe Mr. Cuban is correct.  Our economy either improves with significant increases in individual earning power or great issues with student debt will create a situation where smaller less prestigious colleges and even universities will have to close.  The drop in enrollment will be significant.  We have already experienced that in our town with two four year colleges closing.

OK, the big question.  With the economy being in “the tank”, is a four year college degree worth it?  Would it be better and with less stress to look at the “trades”?

  • Plumber. The median salary for a plumber was $50,180 in 2013, the BLS reports. The best-paid pulled in about $86,120, while those in the bottom 10 percent earned $29,590 a year.
  • Electrician Salary: $55,783 (average).
  • Average Machinist Salary: $37,000.
  • Auto Mechanic. The median annual salary for mechanic and automotive technicians was $36,710 in 2013. The highest earners in the field made about $61,210, while the lowest-paid took home $20,920.
  • CAD Technician Salary: $47,966 (average)

Please don’t misunderstand, I have a four year degree in Engineering and love the profession.  The university experience is wonderful and extremely rewarding, but maybe learning a trade and going to night school to obtain that four year degree is not such a bad idea after all.  Even if it does mean an eight or ten year journey.  If there is one thing I have learned in my seventy-two years: we have time. YES, there is time to do what you wish to do.  You have to develop a plan, set realistic goals, stay focused and DO NOT GIVE UP.

I welcome your comments.

FACIAL RECOGNITION

March 6, 2015


THE TECHNOLOGY:

Humans have always had the innate ability to recognize and distinguish between faces, yet computers only recently have shown the same ability and that ability results from proper software being installed into PCs with memory adequate to manipulate the mapping process.

In the mid 1960s, scientists began working to us computers to recognize human faces.  This certainly was not easy at first. Facial recognition software and hardware have come a long way since those fledgling early days and definitely involve mathematical algorithms.

ALGORITHMS;

An algorithm is defined by Merriam-Webster as follows:

“a procedure for solving a mathematical problem (as of finding the greatest common divisor) in a finite number of steps that frequently involves repetition of an operation; broadly :  a step-by-step procedure for solving a problem or accomplishing some end especially by a computer.”

Some facial recognition algorithms identify facial features by extracting landmarks, or features, from an image of the subject’s face. For example, an algorithm may analyze the relative position, size, and/or shape of the eyes, nose, cheekbones, and jaw. These features are then used to search for other images with matching features. Other algorithms normalize a gallery of face images and then compress the face data, only saving the data in the image that is useful for face recognition. A probe image is then compared with the face data. One of the earliest successful systems is based on template matching techniques applied to a set of salient facial features, providing a sort of compressed face representation.

Recognition algorithms can be divided into two main approaches, geometric, which looks at distinguishing features, or photometric, which is a statistical approach that distills an image into values and compares the values with templates to eliminate variances.

Every face has numerous, distinguishable landmarks, the different peaks and valleys that make up facial features. These landmarks are defined as nodal points. Each human face has approximately 80 nodal points. Some of these measured by the software are:

  • Distance between the eyes
  • Width of the nose
  • Depth of the eye sockets
  • The shape of the cheekbones
  • The length of the jaw line

These nodal points are measured thereby creating a numerical code, called a face-print, representing the face in the database.

In the past, facial recognition software has relied on a 2D image to compare or identify another 2D image from the database. To be effective and accurate, the image captured needed to be of a face that was looking almost directly at the camera, with little variance of light or facial expression from the image in the database. This created quite a problem.

In most instances the images were not taken in a controlled environment. Even the smallest changes in light or orientation could reduce the effectiveness of the system, so they couldn’t be matched to any face in the database, leading to a high rate of failure. In the next section, we will look at ways to correct the problem.

A newly-emerging trend in facial recognition software uses a 3D model, which claims to provide more accuracy. Capturing a real-time 3D image of a person’s facial surface, 3D facial recognition uses distinctive features of the face — where rigid tissue and bone is most apparent, such as the curves of the eye socket, nose and chin — to identify the subject. These areas are all unique and don’t change over time.

Using depth and an axis of measurement that is not affected by lighting, 3D facial recognition can even be used in darkness and has the ability to recognize a subject at different view angles with the potential to recognize up to 90 degrees (a face in profile).

Using the 3D software, the system goes through a series of steps to verify the identity of an individual.

 

The nodal points or recognition points are demonstrated with the following graphic.

POINTS OF RECOGNITION

This is where Machine Vision or MV comes into the picture.  Without MV, facial recognition would not be possible.  An image must first be taken, then that image is digitized and processed.

MACHINE VISION:

Facial recognition is one example of a non-industrial application for machine vision (MV).   This technology is generally considered to be one facet in the biometrics technology suite.  Facial recognition is playing a major role in identifying and apprehending suspected criminals as well as individuals in the process of committing a crime or unwanted activity.  Casinos in Las Vegas are using facial recognition to spot “players” with shady records or even employees complicit with individuals trying to get even with “the house”.   This technology incorporates visible and infrared modalities face detection, image quality analysis, verification and identification.   Many companies use cloud-based image-matching technology to their product range providing the ability to apply theory and innovation to challenging problems in the real world.  Facial recognition technology is extremely complex and depends upon many data points relative to the human face.

Facial recognition has a very specific methodology associated with it. You can see from the graphic above points of recognition are “mapped” highlighting very specific characteristics of the human face.  Tattoos, scars, feature shapes, etc. all play into identifying an individual.  A grid is constructed of “surface features”; those features are then compared with photographs located in data bases or archives.  In this fashion, positive identification can be accomplished. The graphic below will indicate the grid developed and used for the mapping process.  Cameras are also shown that receive the image and send that image to software used for comparisons.

MAPPING AND CAMERAS USED

One of the most successful cases for the use of facial recognition was last year’s bombing during the Boston Marathon.   Cameras mounted at various locations around the site of the bombing captured photographs of Tamerian and Dzhokhar Tsarnaev prior to their backpack being positioned for both blasts.  Even though this is not facial recognition in the truest since of the word, there is no doubt the cameras were instrumental in identifying both criminals.

TAMERIAN AND DZHOKHAR

Dzhokhar Tsarnaev is now the only of the court case that will determine life or death.  There is no doubt, thanks to MV, concerning his guilt or innocence.  He is guilty. Jurors in Boston heard harrowing testimony this week in his trial. Survivors, as well as police and first responders, recounted often-disturbing accounts of their suffering and the suffering of runners and spectators as a result of the attack. Facial recognition was paramount in his identification and ultimate capture.

As always, your comments are very welcome.

%d bloggers like this: