C.T.E.

September 22, 2017


Portions of this post are taken from the New York Times, By KEN BELSON SEPT. 21, 2017.

There has been a great deal of discussion in this country about the effect of “impact sports” on cogitative ability.  From the NYTs article highlighted below, you can see the possible implications from repetitive concussions received during a very short time in the NFL.

The brain scan came as a surprise even to researchers who for years have been studying the relationship between brain disease and deaths of professional football players.

Aaron Hernandez, the former New England Patriots tight end and a convicted murderer, was 27 when he committed suicide in April. Yet a posthumous examination of his brain showed he had such a severe form of the degenerative brain disease C.T.E. that the damage was akin to that of players well into their 60s. 

C.T.E., or chronic traumatic encephalopathy, has been found in more than one hundred (100) former N.F.L. players, some of whom committed suicide, according to researchers at Boston University.

Yet the results of the study of Mr. Hernandez’s brain are adding another dimension to his meteoric rise and fall that could raise questions about the root of his erratic, violent behavior and lead to a potentially tangled legal fight with the N.F.L., the most powerful sports league in the United States.

WHAT IS C.T.E.
Chronic Traumatic Encephalopathy (CTE) is a degenerative brain disease found in athletes, military veterans, and others with a history of repetitive brain trauma. In CTE, a protein called Tau forms clumps that slowly spread throughout the brain, killing brain cells. CTE has been seen in people as young as seventeen (17) years of age, but symptoms do not generally begin appearing until years after the onset of head impacts.  If a picture is worth a thousand words, we can see the effects of CTE with the image below:

As you can certainly see, there is a tremendous difference between the appearance of a healthy brain on the left and a brain ravaged by CTE on the right.

Early symptoms of CTE usually appear in a patient’s late twenties (20s) or thirties (30s), and affect a patient’s mood and behavior. Some common changes seen include impulse control problems, aggression, depression, and paranoia.

As the disease progresses, some patients may experience problems with thinking and memory, including memory loss, confusion, impaired judgment, and eventually progressive dementia. Cognitive symptoms tend to appear later than mood and behavioral symptoms, and generally first appear in a patient’s forties (40s) or fifties (50s). Patients may exhibit one or both symptom clusters. In some cases, symptoms worsen with time (even if the patient suffers no additional head impacts). In other cases, symptoms may be stable for years before worsening.

The best available evidence tells us that CTE is caused by repetitive hits to the head sustained over a period of years. This doesn’t mean a handful of concussions: most people diagnosed with CTE suffered hundreds or thousands of head impacts over the course of many years playing contact sports or serving in the military. And it’s not just concussions: the best available evidence points towards sub-concussive impacts, or hits to the head that don’t cause full-blown concussions, as the biggest factor. With that being the case, just who is at risk.  The chart below will give some idea.

SYMPTOMS OF C.T.E.:

Early symptoms of CTE usually appear in a patient’s late twenties (20s) or thirties (30s), and affect a patient’s mood and behavior. Some common changes seen include impulse control problems, aggression, depression, and paranoia. A short list is as follows:

  • Difficulty thinking (cognitive impairment). This might be in the form of confusion or significant delays in taking action.
  • Impulsive behavior. This impulsive behavior is generally “new” to the individual and does not represent normal behavior
  • Depression or apathy.
  • Short-term memory loss. This is continuous short-term memory loss and much more significant that forgetfulness.
  • Difficulty planning and carrying out tasks (executive function)
  • Emotional instability. Emotional instability and impulsive behavior and different reactions to a set of circumstances. You may look at the clinical differences.
  • Substance abuse.
  • Suicidal thoughts or behavior. This is exactly what happened to Aaron Hernandez.  CTE and being locked up 24/7 probably caused feelings of hopelessness.

CONCLUSIONS:

I remember as a kid just about getting down on one knee asking my mom to allow me to play football.  There was a real battle in our house over that.  I was instructed to bring home the equipment I drew from the football inventory so mom and dad could take a look.   We immediately went to Martin-Thompson Sporting Goods to buy me a new helmet with a proper face mask.  Even back in the early sixties head trauma was an issue and every parent knew what could happen.  Equipment improves but so does the size of the players.  STILL A PROBLEM.

Advertisements

In preparation for this post, I asked my fifteen-year old grandson to define product logistics and product supply chain.  He looked at me as though I had just fallen off a turnip truck.  I said you know, how does a manufacturer or producer of products get those products to the customer—the eventual user of the device or commodity.  How does that happen? I really need to go do my homework.  Can I think about this and give you an answer tomorrow?

SUPPLY CHAIN LOGISTICS:

Let’s take a look at Logistics and Supply Chain Management:

“Logistics typically refers to activities that occur within the boundaries of a single organization and Supply Chain refers to networks of companies that work together and coordinate their actions to deliver a product to market. Also, traditional logistics focuses its attention on activities such as procurement, distribution, maintenance, and inventory management. Supply Chain Management (SCM) acknowledges all of traditional logistics and also includes activities such as marketing, new product development, finance, and customer service” – from Essential of Supply Chain Management by Michael Hugos.

“Logistics is about getting the right product, to the right customer, in the right quantity, in the right condition, at the right place, at the right time, and at the right cost (the seven Rs of Logistics)” – from Supply Chain Management: A Logistics Perspective By John J. Coyle et al

Now, that wasn’t so difficult, was it?  A good way to look at is as follows:

MOBILITY AND THE SUPPLY CHAIN:

There have been remarkable advancements in supply chain logistics over the past decade.  Most of those advancements have resulted from companies bringing digital technologies into the front office, the warehouse, and transportation to the eventual customer.   Mobile technologies are certainly changing how products are tracked outside the four walls of the warehouse and the distribution center.  Realtime logistics management is within the grasp of many very savvy shippers.  To be clear:

Mobile networking refers to technology that can support voice and/or data network connectivity using wireless, via a radio transmission solution. The most familiar application of mobile networking is the mobile phone or tablet or i-pad.  From real-time goods tracking to routing assistance to the Internet of Things (IoT) “cutting wires” in the area that lies between the warehouse and the customer’s front door is gaining ground as shippers grapple with fast order fulfillment, smaller order sizes, and ever-evolving customer expectations.

In return for their tech investments, shippers and logistics managers are gaining benefits such as short-ended lead times, improved supply chain visibility, error reductions, optimized transportation networks and better inventory management.  If we combine these advantages we see that “wireless” communications are helping companies work smarter and more efficiently in today’s very fast-paced business world.

MOBILITY TRENDS:

Let’s look now at six (6) mobility trends.

  1. Increasingly Sophisticated Vehicle Communications—There was a time when the only contact a driver had with home base was after an action, such as load drop-off, took place or when there was an in-route problem. Today, as you might expect, truck drivers, pilots and others responsible for getting product to the customer can communicate real-time.  Cell phones have revolutionized and made possible real-time communication.
  2. Trucking Apps—By 2015, Frost & Sullivan indicated the size of the mobile trucking app market hit $35.4 billion dollars. Mobile apps are being launched, targeting logistics almost constantly. With the launch of UBER Freight, the competition in the trucking app space has heated up considerably, pressing incumbents to innovate and move much faster than ever before.
  3. Its’ Not Just for the Big Guys Anymore: At one time, fleet mobility solutions were reserved for larger companies that could afford them.  As technology has advanced and become more mainstream and affordable, so have fleet mobility solution.
  4. Mobility Helps Pinpoint Performance and Productivity Gaps: Knowing where everything is at any one given time is “golden”. It is the Holy Grail for every logistics manager.  Mobility is putting that goal within their reach.
  5. More Data Means More Mobile Technology to Generate and Support Logistics: One great problem that is now being solved, is how to handle perishable goods and refrigerated consumer items.  Shippers who handle these commodities are now using sensors to detect trailer temperatures, dead batteries, and other problems that would impact their cargos.  Using sensors, and the data they generate, shippers can hopefully make much better business decisions and head off problems before they occur.  Sensors, if monitored properly, can indicate trends and predict eventual problems.
  6. Customers Want More Information and Data—They Want It Now: Customer’s expectations for real-time shipment data is now available at their fingertips without having to pick up a telephone or send an e-mail.  Right now, that information is available quickly online or with a smartphone.

CONCLUSIONS: 

The world is changing at light speed, and mobility communications is one technology making this possible.  I have no idea as to where we will be in ten years, but it just might be exciting.

TRUCKING

September 19, 2017


I have several clients I try to keep happy each week.  One is in Cleveland, Tennessee. That’s about a forty-five (45) minute drive for me, one way, so I get to see a great deal of Interstate traffic.  This is my thirteenth year with this company as a client so I have made that trip multiple times.  There is NO time of the day that I do not see an armada of fifty-three (53) foot rigs hauling their load from point “A” to point “B”.  The numbers are quite frankly staggering.  According to the American Trucking Association (ATA) for the year 2016:

  • The big rigs moved 10.42 billion tons of freight or seventy percent (70%) of all domestic freight tonnage.
  • The nation’s commercial trucks paid $41.3 billion in state and federal highway user fees and taxes. The average five-axel-trailer pays more than $5,600.00 in taxes annually.
  • There were 33.8 million trucks registered for business purposes, including 3.68 million Class 8 trucks. (NOTE: The Class 8 truck gross vehicle weight rating (GVWR) is a vehicle with a GVWR exceeding 33000 pounds (14969 kg). These include tractor trailer tractors as well as single-unit dump trucks of a GVWR over 33,000 pounds; such trucks typically have 3 or more axles.)
  • The 33.8 million trucks mentioned above burned 38.8 billion gallons of diesel fuel and 15.5 billion gallons of gasoline. Today’s average price per gallon for diesel is $2.71.
  • They traveled 450.4 billion miles.
  • Approximately 7.4 million Americans are employed in trucking-related jobs, including 3.5 million as truck drivers.
  • Trucking is an industry made up of small businesses; 91% of motor carriers operate six or fewer trucks and 97.3% operate less than 20.
  • Annual revenues for 2016 totaled $676.2 billion.
  • Freight volumes are projected to grow 2.8% in 2017 with an annual growth rate of 3.4% through 2023.
  • Truckload volumes are expected to grow 2.7% per year from 2017 to 2023.
  • Short haul or LTL shipments, will increase 3.3% per year from 2017 to 2023.

Companies, small and large, are making concerted efforts to lessen costs for diesel fuel and obtain greater efficencies thereby reducing overall total costs of operation.  This is a nationwide exercise all movers long-haul and short-haul are participating in.  We are already seeing FedEx, UPS, the Federal Post Office, DHL, police departments, taxi cab companies and others convert from diesel to propane or natural gas as the fuel of choice.  This not only reduces operating expense but reduces carbon emissions.   We also see companies who design and build engines for these big rigs, working hard to improve mileage and engine efficencies.  Progress is being made on a yearly basis.  So, the next time you pass an LTL or STL hauler, think about the industry and the efforts they are in the process of adopting to improve their company.

MULTITASKING

September 14, 2017


THE DEFINITION:

“Multitasking, in a human context, is the practice of doing multiple things simultaneously, such as editing a document or responding to email while attending a teleconference.”

THE PROCESS:

The concept of multitasking began in a computing context. Computer multitasking, similarly to human multitasking, refers to performing multiple tasks at the same time. In a computer, multitasking refers to things like running more than one application simultaneously.   Modern-day computers are designed for multitasking. For humans, however, multitasking has been decisively proven to be an ineffective way to work. Research going back to the 1980s has indicated repeatedly that performance suffers when people multitask.

REALITY:

Multitasking is not a natural human trait.  In a few hundred years, natural evolution may improve human abilities but for now, we are just not good at it.  In 2007, an ABC Evening News broadcast cited, “People are interrupted once every ten and one-half minutes (10.5).  It takes twenty-three (23) minutes to regain your train of thought.  People lose two point one (2.1) hours each day in the process of multitasking.”

A great article entitled “No Task Left Behind” by Mark Gloria, indicated that a person juggled twelve (12) work spheres each day and fifty-seven percent (57%) of the work got interrupted.  As a result, twenty-three percent (23%) of the work to be accomplished that day got pushed to the next day and beyond. That was the case twelve years ago.  We all have been there trying to get the most of each day only to return home with frustration and more to do the next day.

Experience tells us that:

  • For students, an increase in multitasking predicted poorer academic results.
  • Multitaskers took longer to complete tasks and produced more errors.
  • People had more difficulty retaining new information while multitasking.
  • When tasks involved making selections or producing actions, even very simple tasks performed concurrently were impaired.
  • Multitaskers lost a significant amount of time switching back and forth between tasks, reducing their productivity up to forty percent (40%).
  • Habitual multitaskers were less effective than non-multitaskers even when doing one task at any given time because their ability to focus was impaired.
  • Multitasking temporarily causes an IQ drop of 10 points, the equivalent of going without sleep for a full night.
  • Multitaskers typically think they are more effective than is actually the case.
  • There are limited amounts of energy for any one given day.
  • Multitasking can lessen inter-personal skills and actually detract from the total work force.
  • It encourages procrastination.
  • A distracted mind may become permanent.

THE MYTH OF MULTITASKING:

People believe multitasking is a positive attribute, one to be admired. But multitasking is simply the lack of self-discipline. Multitasking is really switching your attention from one to task to another to another, instead of giving yourself over to a single task. Multitasking is easy; disciplined focus and attention is difficult.

The quality of your work is determined by how much of your time, your focus and your attention you give it. While multitasking feels good and feels busy, the quality of the work is never what it could be with the creator’s full attention. More and more, this is going to be apparent to those who are judging the work, especially when compared to work of someone who is disciplined and who has given the same or similar project their full focus and attention.

MENTAL FLOW:

In positive psychology, flow, also known as the zone, is the mental state of operation in which a person performing an activity is fully immersed in a feeling of energized focus, full involvement, and enjoyment in the process of the activity.

The individual who coined the phrase “flow” was Mihaly Csikszentmihalyi. (Please do NOT ask me to pronounce Dr. Csikszentmihalyi’s last name.)  He made the following statement:

“The best moments in our lives are not the passive, receptive, relaxing times… The best moments usually occur if a person’s body or mind is stretched to its limits in a voluntary effort to accomplish something difficult and worthwhile.”

– Mihaly Csikszentmihalyi  

EIGHT CHARACTERISTICS OF “FLOW”:

  1. Complete concentration on the task.  By this we mean really complete.
  2. Clarity of goals and reward in mind and immediate feedback. No need to focus and concentrate when there are no goals in mind to indicate completion.
  3. Transformation of time (speeding up/slowing down of time). When in full “flow” mode, you lost time.
  4. The experience is intrinsically rewarding, has an end itself.
  5. Effortlessness and ease.
  6. There is a balance between challenge and skills.
  7. Actions and awareness are merged, losing self-conscious rumination.
  8. There is a feeling of control over the task.

I personally do not get there often but the point is—you cannot get in the “zone”, you will not be able to achieve mental “flow” when you are in the multitasking mode.  I just will not happen.

As always, I welcome your comments.

V2V TECHNOLOGY

September 9, 2017


You probably know this by now if you read my postings—my wife and I love to go to the movies.  I said GO TO THE MOVIES, not download movies but GO.  If you go to a matinée, and if you are senior, you get a reduced rate.  We do that. Normally a movie beginning at 4:00 P.M. will get you out by 6:00 or 6:30 P.M. Just in time for dinner. Coming from the Carmike Cinema on South Terrace, I looked left and slowly moved over to the inside lane—just in time to hit car in my “blind side”.  Low impact “touching” but never the less an accident anyway.  All cars, I’m told, have blind sides and ours certainly does.  Side mirrors do NOT cover all areas to the left and right of any vehicle.   Maybe there is a looming solution to that dilemma.

V2V:

The global automotive industry seems poised and on the brink of a “Brave New World” in which connectivity and sensor technologies come together to create systems that can eliminate life-threatening collisions and enable automobiles that drive themselves.  Knows as Cooperative Intelligent Transportation Systems, vehicle-to-vehicle or V2V technologies open the door for automobiles to share information and interact with each other, as well as emerging smart infrastructure. These systems, obviously, make transportation safer but offer the promise of reducing traffic congestion.

Smart features of V2V promise to enhance drive awareness via traffic alerts, providing notifications on congestion, obstacles, lane changing, traffic merging and railway crossing alerts.  Additional applications include:

  • Blind spot warnings
  • Forward collision warnings
  • Sudden brake-ahead warnings
  • Approaching emergency vehicle warnings
  • Rollover warnings
  • Travel condition data to improve maintenance services.

Already The Department of Transportation “Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application”, DOT HS 812 014, details the technology as follows:

“The purpose of this research report is to assess the readiness for application of vehicle-to-vehicle (V2V) communications, a system designed to transmit basic safety information between vehicles to facilitate warnings to drivers concerning impending crashes. The United States Department of Transportation and NHTSA have been conducting research on this technology for more than a decade. This report explores technical, legal, and policy issues relevant to V2V, analyzing the research conducted thus far, the technological solutions available for addressing the safety problems identified by the agency, the policy implications of those technological solutions, legal authority and legal issues such as liability and privacy. Using this report and other available information, decision-makers will determine how to proceed with additional activities involving vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-pedestrian (V2P) technologies.”

The agency estimates there are approximately five (5) million annual vehicle crashes, with attendant property damage, injuries, and fatalities. While it may seem obvious, if technology can help drivers avoid crashes, the damage due to crashes simply never occurs.  This is the intent of an operative V2V automotive system. While these “vehicle-resident” crash avoidance technologies can be highly beneficial, V2V communications represent an additional step in helping to warn drivers about impending danger. V2V communications use on-board dedicated short-range radio communication devices to transmit messages about a vehicle’s speed, heading, brake status, and other information to other vehicles and receive the same information from the messages, with range and “line-of-sight” capabilities that exceed current and near-term “vehicle-resident” systems — in some cases, nearly twice the range. This longer detection distance and ability to “see” around corners or “through” other vehicles and helps V2V-equipped vehicles perceive some threats sooner than sensors, cameras, or radar.  This can warn drivers accordingly. V2V technology can also be fused with those vehicle-resident technologies to provide even greater benefits than either approach alone. V2V can augment vehicle-resident systems by acting as a complete system, extending the ability of the overall safety system to address other crash scenarios not covered by V2V communications, such as lane and road departure. A fused system could also augment system accuracy, potentially leading to improved warning timing and reducing the number of false warnings.

Communications represent the keystone of V2V systems.  The current technology builds upon a wireless standard called Dedicated Shor- Range Communication or DSRC.  DSRC is based upon the IEEE 802.11p protocol.  Transmissions of these systems consists of highly secure, short-to-medium-range, high-speed wireless communication channels, which enable vehicles to connect with each other for short periods of time.  Using DSRC, two or more vehicles can exchange basic safety messages, which describe each vehicle’s speed, position, heading, acceleration rate, size and braking status.  The system sends these messages to the onboard units of surrounding vehicles ten (10) times per second, where they are interpreted and provide warnings to the driver.  To achieve this, V2V systems leverage telematics to track vehicles via GPS monitoring the location, movements, behavior and status of each vehicle.

Based on preliminary information, NHTSA currently estimates that the V2V equipment and supporting communications functions (including a security management system) would cost approximately $341 to $350 per vehicle in 2020 dollars. It is possible that the cost could decrease to approximately $209 to $227 by 2058, as manufacturers gain experience producing this equipment (the learning curve). These costs would also include an additional $9 to $18 per year in fuel costs due to added vehicle weight from the V2V system. Estimated costs for the security management system range from $1 to $6 per vehicle, and they will increase over time due to the need to support an increasing number of vehicles with the V2V technologies. The communications costs range from $3 to $13 per vehicle. Cost estimates are not expected to change significantly by the inclusion of V2V-based safety applications, since the applications themselves are software and their costs are negligible.  Based on preliminary estimates, the total projected preliminary annual costs of the V2V system fluctuate year after year but generally show a declining trend. The estimated total annual costs range from $0.3 to $2.1 billion in 2020 with the specific costs being dependent upon the technology implementation scenarios and discount rates. The costs peak to $1.1 to $6.4 billion between 2022 and 2024, and then they gradually decrease to $1.1 to $4.6 billion.

In terms of safety impacts, the agency estimates annually that just two of many possible V2V safety applications, IMA (Integrated Motor Assists) and LTA (Land Transport Authority), would on an annual basis potentially prevent 25,000 to 592,000 crashes, save 49 to 1,083 lives, avoid 11,000 to 270,000 MAIS 1-5 injuries, and reduce 31,000 to 728,000 property-damage-only crashes by the time V2V technology had spread through the entire fleet. We chose those two applications for analysis at this stage because they are good illustrations of benefits that V2V can provide above and beyond the safety benefits of vehicle-resident cameras and sensors. Of course, the number of lives potentially saved would likely increase significantly with the implementation of additional V2V and V2I safety applications that would be enabled if vehicles were equipped with DSRC capability.

CONCLUSIONS: 

It is apparent to me that we are driving (pardon the pun) towards self-driving automobiles. I have no idea as to when this technology will become fully adopted, if ever.  If that happens in part or across the vehicle spectrum, there will need to be some form of V2V. One car definitely needs to know where other cars are relative to position, speed, acceleration, and overall movement. My wife NEVER goes to sleep or naps while I’m driving—OK maybe one time as mentioned previously.  She is always remarkably attentive and aware when I’m behind the wheel.  This comes from experience gained over fifty-two years of marriage.  “The times they are a-changing”.   The great concern I have is how we are to maintain the systems and how “hackable” they may become.  As I awoke this morning, I read the following:

The credit reporting agency Equifax said Thursday that hackers gained access to sensitive personal data — Social Security numbers, birth dates and home addresses — for up to 143 million Americans, a major cybersecurity breach at a firm that serves as one of the three major clearinghouses for Americans’ credit histories.

I am sure, like me, that gives you pause.  If hackers can do that, just think about the chaos that can occur if V2V systems can be accessed and controlled.  Talk about keeping one up at night.

As always, I welcome your comments.


WHERE WE ARE:

The manufacturing industry remains an essential component of the U.S. economy.  In 2016, manufacturing accounted for almost twelve percent (11.7%) of the U.S. gross domestic product (GDP) and contributed slightly over two trillion dollars ($2.18 trillion) to our economy. Every dollar spent in manufacturing adds close to two dollars ($1.81) to the economy because it contributes to development in auxiliary sectors such as logistics, retail, and business services.  I personally think this is a striking number when you compare that contribution to other sectors of our economy.  Interestingly enough, according to recent research, manufacturing could constitute as much as thirty-three percent (33%) of the U.S. GDP if both its entire value chain and production for other sectors are included.  Research from the Bureau of Labor Statistics shows that employment in manufacturing has been trending up since January of 2017. After double-digit gains in the first quarter of 2017, six thousand (6,000) new jobs were added in April.  Currently, the manufacturing industry employs 12,396,000 people, which equals more than nine percent (9%) of the U.S. workforce.   Nonetheless, many experts are concerned that these employment gains are soon to be halted by the ever-rising adoption of automation. Yet automation is inevitable—and like in the previous industrial revolutions, automation is likely to result in job creation in the long term.  If we look back at the Industrial Revolution.

INDUSTRIAL REVOLUTION:

The Industrial Revolution began in the late 18th century when a series of new inventions such as the spinning jenny and steam engine transformed manufacturing in Britain. The changes in British manufacturing spread across Europe and America, replacing traditional rural lifestyles as people migrated to cities in search of work. Men, women and children worked in the new factories operating machines that spun and wove cloth, or made pottery, paper and glass.

Women under 20 made comprised the majority of all factory workers, according to an article on the Industrial Revolution by the Economic History Association. Many power loom workers, and most water frame and spinning jenny workers, were women. However, few women were mule spinners, and male workers sometimes violently resisted attempts to hire women for this position, although some women did work as assistant mule spinners. Many children also worked in the factories and mines, operating the same dangerous equipment as adult workers.  As you might suspect, this was a great departure from times prior to the revolution.

WHERE WE ARE GOING:

In an attempt to create more jobs, the new administration is reassessing free trade agreements, leveraging tariffs on imports, and promising tax incentives to manufacturers to keep their production plants in the U.S. Yet while these measures are certainly making the U.S. more attractive for manufacturers, they’re unlikely to directly increase the number of jobs in the sector. What it will do, however, is free up more capital for manufacturers to invest in automation. This will have the following benefits:

  • Automation will reduce production costs and make U.S. companies more competitive in the global market. High domestic operating costs—in large part due to comparatively high wages—compromise the U.S. manufacturing industry’s position as the world leader. Our main competitor is China, where low-cost production plants currently produce almost eighteen percent (17.6%) of the world’s goods—just zero-point percent (0.6%) less than the U.S. Automation allows manufacturers to reduce labor costs and streamline processes. Lower manufacturing costs results in lower product prices, which in turn will increase demand.

Low-cost production plants in China currently produce 17.6% of the world’s goods—just 0.6% less

than the U.S.

  • Automation increases productivity and improves quality. Smart manufacturing processes that make use of technologies such as robotics, big data, analytics, sensors, and the IoT are faster, safer, more accurate, and more consistent than traditional assembly lines. Robotics provide 24/7 labor, while automated systems perform real-time monitoring of the production process. Irregularities, such as equipment failures or quality glitches, can be immediately addressed. Connected plants use sensors to keep track of inventory and equipment performance, and automatically send orders to suppliers when necessary. All of this combined minimizes downtime, while maximizing output and product quality.
  • Manufacturers will re-invest in innovation and R&D. Cutting-edge technologies. such as robotics, additive manufacturing, and augmented reality (AR) are likely to be widely adopted within a few years. For example, Apple® CEO Tim Cook recently announced the tech giant’s $1 billion investment fund aimed at assisting U.S. companies practicing advanced manufacturing. To remain competitive, manufacturers will have to re-invest a portion of their profits in R&D. An important aspect of innovation will involve determining how to integrate increasingly sophisticated technologies with human functions to create highly effective solutions that support manufacturers’ outcomes.

Technologies such as robotics, additive manufacturing, and augmented reality are likely to be widely adopted soon. To remain competitive, manufacturers will have to re-invest a portion of their profits in R&D.

HOW AUTOMATION WILL AFFECT THE WORKFORCE:

Now, let’s look at the five ways in which automation will affect the workforce.

  • Certain jobs will be eliminated.  By 2025, 3.5 million jobs will be created in manufacturing—yet due to the skills gap, two (2) million will remain unfilled. Certain repetitive jobs, primarily on the assembly line will be eliminated.  This trend is with us right now.  Retraining of employees is imperative.
  • Current jobs will be modified.  In sixty percent (60%) of all occupations, thirty percent (30%) of the tasks can be automated.  For the first time, we hear the word “co-bot”.  Co-bot is robotic assisted manufacturing where an employee works side-by-side with a robotic system.  It’s happening right now.
  • New jobs will be created. There are several ways automation will create new jobs. First, lower operating costs will make U.S. products more affordable, which will result in rising demand. This in turn will increase production volume and create more jobs. Second, while automation can streamline and optimize processes, there are still tasks that haven’t been or can’t be fully automated. Supervision, maintenance, and troubleshooting will all require a human component for the foreseeable future. Third, as more manufacturers adopt new technologies, there’s a growing need to fill new roles such as data scientists and IoT engineers. Fourth, as technology evolves due to practical application, new roles that integrate human skills with technology will be created and quickly become commonplace.
  • There will be a skills gap between eliminated jobs and modified or new roles. Manufacturers should partner with educational institutions that offer vocational training in STEM fields. By offering students on-the-job training, they can foster a skilled and loyal workforce.  Manufacturers need to step up and offer additional job training.  Employees need to step up and accept the training that is being offered.  Survival is dependent upon both.
  • The manufacturing workforce will keep evolving. Manufacturers must invest in talent acquisition and development—both to build expertise in-house and to facilitate continuous innovation.  Ten years ago, would you have heard the words, RFID, Biometrics, Stereolithography, Additive manufacturing?  I don’t think so.  The workforce MUST keep evolving because technology will only improve and become a more-present force on the manufacturing floor.

As always, I welcome your comments.


Portions of this post were taken from Design News Daily publication written by Chris Witz, August 2017.

I generally don’t “do” politics but recent activity relative to the Federal Jobs Initiative program have fallen upon hard times.  President Donald Trump has decided to disband the council of his Manufacturing Jobs Initiative. The announcement came Wednesday morning, after a significant exodus of council membership.  This exodus was in response to the President’s comments regarding a recent white supremacist protest in Charlottesville, VA.  By Tweet, the president said:

Rather than putting pressure on the businesspeople of the Manufacturing Council & Strategy & Policy Forum, I am ending both. Thank you all!

— Donald J. Trump (@realDonaldTrump) August 16, 2017

I personally was very surprised by his reaction to several members pulling out of his committee and wonder if there was not more to ending the activities than meets the eye.

The members counseling President Trump were:

Brian Krzanich—CEO Intel

Ken Frazier—CEO Merk & Company

Kevin Plank—CEO UnderArmour

Elon Musk—CEO of SpaceX and Tesla

Bob Iger—CEO of Disney

Travis Kalanick—Former CEO of Uber

Scott Paul—President, Alliance for American Manufacturing

Richard Trumka—President, AFL-CIO

Inge Thulin—CEO 3M

Jamie Dimon—CEO of JPMorganChase

Steven Schwarzman—CEO of Blackstone

Rich Lesser—CEO of Boston Consulting Group

Doug McMillon—CEO of Walmart

Indra Nooyi—CEO and Chairperson of PepsiCo

Ginni Rometty—President and CEO of IBM

Jack Welch—Former CEO of General Electric Company

Toby Cosgrove—CEO of the Cleveland Clinic

Mary Barra—President and CEO of General Motors

Kevin Warsh—Fellow at the Hoover Institute

Paul Atkins– CEO of Patomak Global Partners LLC

Mark Weinberger– Global chairman and CEO, EY

Jim McNerney– Former chairman, president and CEO, Boeing

Adebayo Ogunlesi– Chairman, managing partner, Global Infrastructure Partners

Phillip Howard– Lawyer, Covington; founder of Common Good

Larry Fink—CEO of BlackRock

Matt Rose– Executive chairman, BNSF Railway

Andrew Liveris– Chairman, CEO, The Dow Chemical Company

Bill Brown—CEO, Harris Corporation

Michael Dell—CEO, Dell Technologies

John Ferriola– Chairman, president, CEO, Nucor Corporation

Jeff Fettig– Chairman, former CEO, Whirlpool Corporation

Alex Gorsky– Chairman, CEO, Johnson & Johnson

Greg Hayes– Chairman, CEO, United Technologies Corp

Marillyn Hewson– Chairman, president, CEO, Lockheed Martin Corporation

Jim Kamsickas– President, CEO, Dana Inc

Rich Kyle– President, CEO, The Timken Company

Jeff Immelt– Chairman, former CEO, General Electric

Denise Morrison– President, CEO, Campbell Soup Company

Dennis Muilenburg– Chairman, president, CEO, Boeing

Michael Polk– CEO, Newell Brands

Mark Sutton– Chairman, CEO, International Paper

Wendell Weeks—CEO, Corning

Mark Fields– Former CEO, Ford Motor Company

Mario Longhi– Former CEO, U.S. Steel

Doug Oberhelman– Former CEO, Caterpillar

Klaus Kleinfeld– Former Chairman, CEO, Arconic

I think we can all agree; this group of individuals are “BIG HITTERS”.  People on top of their game.  In looking at the list, I was very surprised at the diversity of products they represent.

As of Wednesday, members departing the committee are as follows:   Kenneth Frazier, CEO of pharmaceutical company Merck; Under Armour CEO Kevin Plank; Scott Paul, the president of the Alliance for American Manufacturing; Richard Trumka, of the AFL-CIO, along with Thea Lee, the AFL-CIO’s deputy chief of staff; 3M CEO Inge Thulin; and Intel CEO Brian Krzanich.

In a blog post , Intel’s Krzanich explained his departure, saying:

“I resigned to call attention to the serious harm our divided political climate is causing to critical issues, including the serious need to address the decline of American manufacturing. Politics and political agendas have sidelined the important mission of rebuilding America’s manufacturing base. … I am not a politician. I am an engineer who has spent most of his career working in factories that manufacture the world’s most advanced devices. Yet, it is clear even to me that nearly every issue is now politicized to the point where significant progress is impossible. Promoting American manufacturing should not be a political issue.”

Under Armour’s Plank, echoed Krzanich’s sentiment, expressing a desire to focus on technological innovation over political entanglements. In a statement released by Under Amour, Plank said,

“We remain resolute in our potential and ability to improve American manufacturing. However, Under Armour engages in innovation and sports, not politics …” In the past year Under Armour has gained attention for applying 3D printing techniques to shoe design and manufacturing.

Paul, of the Alliance of American Manufacturing, tweeted about his departure, saying, “… it’s the right thing to do.”

I’m resigning from the Manufacturing Jobs Initiative because it’s the right thing for me to do.

— Scott Paul (@ScottPaulAAM) August 15, 2017

President Trump’s Manufacturing Jobs Initiative, first announced back in January, was supposed to be a think tank, bringing together the most prominent business leaders in American manufacturing to tackle the problem of creating job growth in the manufacturing sector. At its inception the council boasted CEOs from companies including Tesla, Ford, Dow Chemical, Dell, Lockheed-Martin, and General Electric among its 28 members. However, over the course of the year the council had been steadily dwindling, with the largest exodus coming this week.

The first major blow to the council’s membership came in June when Tesla CEO Elon Musk resigned from the council in response to President Trump pulling out of the Paris climate accord. Musk, a known environmentalist , tweeted:

Am departing presidential councils. Climate change is real. Leaving Paris is not good for America or the world.

— Elon Musk (@elonmusk) June 1, 2017

At that same conference, when asked why he believed CEOs were leaving the manufacturing council, the President accused members of the council of being at odds with his plans to re-shore more jobs back to the US:

“Because [these CEOs] are not taking their job seriously as it pertains to this country. We want jobs, manufacturing in this country. If you look at some of those people that you’re talking about, they’re outside of the country. … We want products made in the country. Now, I have to tell you, some of the folks that will leave, they are leaving out of embarrassment because they make their products outside and I’ve been lecturing them … about you have to bring it back to this country. You can’t do it necessarily in Ireland and all of these other places. You have to bring this work back to this country. That’s what I want. I want manufacturing to be back into the United States so that American workers can benefit.”

Symbolic or Impactful?

It is unclear whether the dissolution of the manufacturing council will have an impact on Trump’s efforts to grow jobs in the US manufacturing sector. Some analysts have called the council little more than a symbolic gesture that was unlikely to have had any long-term impact on American manufacturing to begin with. Other analysts have credit Trump as a driving factor behind a spike in re-shoring in 2017. However other factors including labor costs and lack of skilled workers overseas are also playing a significant role as more advanced technologies in industries such as automotive and electronics hit the market.

CONCLUSIONS:

I personally regret the dissolution of the committee.  I think, given the proper leadership, they could have been very helpful regarding suggestions as to how to create and/or bring back jobs to our country.  In my opinion, President Trump simply did not have the leadership ability to hold the group together.  His actions over the past few months, beginning with leaving the Paris Climate Accord, simply gave them the excuse to leave the committee.  They simply flaked out.

As always, I welcome your comments.

%d bloggers like this: