V2V TECHNOLOGY

September 9, 2017


You probably know this by now if you read my postings—my wife and I love to go to the movies.  I said GO TO THE MOVIES, not download movies but GO.  If you go to a matinée, and if you are senior, you get a reduced rate.  We do that. Normally a movie beginning at 4:00 P.M. will get you out by 6:00 or 6:30 P.M. Just in time for dinner. Coming from the Carmike Cinema on South Terrace, I looked left and slowly moved over to the inside lane—just in time to hit car in my “blind side”.  Low impact “touching” but never the less an accident anyway.  All cars, I’m told, have blind sides and ours certainly does.  Side mirrors do NOT cover all areas to the left and right of any vehicle.   Maybe there is a looming solution to that dilemma.

V2V:

The global automotive industry seems poised and on the brink of a “Brave New World” in which connectivity and sensor technologies come together to create systems that can eliminate life-threatening collisions and enable automobiles that drive themselves.  Knows as Cooperative Intelligent Transportation Systems, vehicle-to-vehicle or V2V technologies open the door for automobiles to share information and interact with each other, as well as emerging smart infrastructure. These systems, obviously, make transportation safer but offer the promise of reducing traffic congestion.

Smart features of V2V promise to enhance drive awareness via traffic alerts, providing notifications on congestion, obstacles, lane changing, traffic merging and railway crossing alerts.  Additional applications include:

  • Blind spot warnings
  • Forward collision warnings
  • Sudden brake-ahead warnings
  • Approaching emergency vehicle warnings
  • Rollover warnings
  • Travel condition data to improve maintenance services.

Already The Department of Transportation “Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application”, DOT HS 812 014, details the technology as follows:

“The purpose of this research report is to assess the readiness for application of vehicle-to-vehicle (V2V) communications, a system designed to transmit basic safety information between vehicles to facilitate warnings to drivers concerning impending crashes. The United States Department of Transportation and NHTSA have been conducting research on this technology for more than a decade. This report explores technical, legal, and policy issues relevant to V2V, analyzing the research conducted thus far, the technological solutions available for addressing the safety problems identified by the agency, the policy implications of those technological solutions, legal authority and legal issues such as liability and privacy. Using this report and other available information, decision-makers will determine how to proceed with additional activities involving vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-pedestrian (V2P) technologies.”

The agency estimates there are approximately five (5) million annual vehicle crashes, with attendant property damage, injuries, and fatalities. While it may seem obvious, if technology can help drivers avoid crashes, the damage due to crashes simply never occurs.  This is the intent of an operative V2V automotive system. While these “vehicle-resident” crash avoidance technologies can be highly beneficial, V2V communications represent an additional step in helping to warn drivers about impending danger. V2V communications use on-board dedicated short-range radio communication devices to transmit messages about a vehicle’s speed, heading, brake status, and other information to other vehicles and receive the same information from the messages, with range and “line-of-sight” capabilities that exceed current and near-term “vehicle-resident” systems — in some cases, nearly twice the range. This longer detection distance and ability to “see” around corners or “through” other vehicles and helps V2V-equipped vehicles perceive some threats sooner than sensors, cameras, or radar.  This can warn drivers accordingly. V2V technology can also be fused with those vehicle-resident technologies to provide even greater benefits than either approach alone. V2V can augment vehicle-resident systems by acting as a complete system, extending the ability of the overall safety system to address other crash scenarios not covered by V2V communications, such as lane and road departure. A fused system could also augment system accuracy, potentially leading to improved warning timing and reducing the number of false warnings.

Communications represent the keystone of V2V systems.  The current technology builds upon a wireless standard called Dedicated Shor- Range Communication or DSRC.  DSRC is based upon the IEEE 802.11p protocol.  Transmissions of these systems consists of highly secure, short-to-medium-range, high-speed wireless communication channels, which enable vehicles to connect with each other for short periods of time.  Using DSRC, two or more vehicles can exchange basic safety messages, which describe each vehicle’s speed, position, heading, acceleration rate, size and braking status.  The system sends these messages to the onboard units of surrounding vehicles ten (10) times per second, where they are interpreted and provide warnings to the driver.  To achieve this, V2V systems leverage telematics to track vehicles via GPS monitoring the location, movements, behavior and status of each vehicle.

Based on preliminary information, NHTSA currently estimates that the V2V equipment and supporting communications functions (including a security management system) would cost approximately $341 to $350 per vehicle in 2020 dollars. It is possible that the cost could decrease to approximately $209 to $227 by 2058, as manufacturers gain experience producing this equipment (the learning curve). These costs would also include an additional $9 to $18 per year in fuel costs due to added vehicle weight from the V2V system. Estimated costs for the security management system range from $1 to $6 per vehicle, and they will increase over time due to the need to support an increasing number of vehicles with the V2V technologies. The communications costs range from $3 to $13 per vehicle. Cost estimates are not expected to change significantly by the inclusion of V2V-based safety applications, since the applications themselves are software and their costs are negligible.  Based on preliminary estimates, the total projected preliminary annual costs of the V2V system fluctuate year after year but generally show a declining trend. The estimated total annual costs range from $0.3 to $2.1 billion in 2020 with the specific costs being dependent upon the technology implementation scenarios and discount rates. The costs peak to $1.1 to $6.4 billion between 2022 and 2024, and then they gradually decrease to $1.1 to $4.6 billion.

In terms of safety impacts, the agency estimates annually that just two of many possible V2V safety applications, IMA (Integrated Motor Assists) and LTA (Land Transport Authority), would on an annual basis potentially prevent 25,000 to 592,000 crashes, save 49 to 1,083 lives, avoid 11,000 to 270,000 MAIS 1-5 injuries, and reduce 31,000 to 728,000 property-damage-only crashes by the time V2V technology had spread through the entire fleet. We chose those two applications for analysis at this stage because they are good illustrations of benefits that V2V can provide above and beyond the safety benefits of vehicle-resident cameras and sensors. Of course, the number of lives potentially saved would likely increase significantly with the implementation of additional V2V and V2I safety applications that would be enabled if vehicles were equipped with DSRC capability.

CONCLUSIONS: 

It is apparent to me that we are driving (pardon the pun) towards self-driving automobiles. I have no idea as to when this technology will become fully adopted, if ever.  If that happens in part or across the vehicle spectrum, there will need to be some form of V2V. One car definitely needs to know where other cars are relative to position, speed, acceleration, and overall movement. My wife NEVER goes to sleep or naps while I’m driving—OK maybe one time as mentioned previously.  She is always remarkably attentive and aware when I’m behind the wheel.  This comes from experience gained over fifty-two years of marriage.  “The times they are a-changing”.   The great concern I have is how we are to maintain the systems and how “hackable” they may become.  As I awoke this morning, I read the following:

The credit reporting agency Equifax said Thursday that hackers gained access to sensitive personal data — Social Security numbers, birth dates and home addresses — for up to 143 million Americans, a major cybersecurity breach at a firm that serves as one of the three major clearinghouses for Americans’ credit histories.

I am sure, like me, that gives you pause.  If hackers can do that, just think about the chaos that can occur if V2V systems can be accessed and controlled.  Talk about keeping one up at night.

As always, I welcome your comments.

Advertisements

WHERE WE ARE:

The manufacturing industry remains an essential component of the U.S. economy.  In 2016, manufacturing accounted for almost twelve percent (11.7%) of the U.S. gross domestic product (GDP) and contributed slightly over two trillion dollars ($2.18 trillion) to our economy. Every dollar spent in manufacturing adds close to two dollars ($1.81) to the economy because it contributes to development in auxiliary sectors such as logistics, retail, and business services.  I personally think this is a striking number when you compare that contribution to other sectors of our economy.  Interestingly enough, according to recent research, manufacturing could constitute as much as thirty-three percent (33%) of the U.S. GDP if both its entire value chain and production for other sectors are included.  Research from the Bureau of Labor Statistics shows that employment in manufacturing has been trending up since January of 2017. After double-digit gains in the first quarter of 2017, six thousand (6,000) new jobs were added in April.  Currently, the manufacturing industry employs 12,396,000 people, which equals more than nine percent (9%) of the U.S. workforce.   Nonetheless, many experts are concerned that these employment gains are soon to be halted by the ever-rising adoption of automation. Yet automation is inevitable—and like in the previous industrial revolutions, automation is likely to result in job creation in the long term.  If we look back at the Industrial Revolution.

INDUSTRIAL REVOLUTION:

The Industrial Revolution began in the late 18th century when a series of new inventions such as the spinning jenny and steam engine transformed manufacturing in Britain. The changes in British manufacturing spread across Europe and America, replacing traditional rural lifestyles as people migrated to cities in search of work. Men, women and children worked in the new factories operating machines that spun and wove cloth, or made pottery, paper and glass.

Women under 20 made comprised the majority of all factory workers, according to an article on the Industrial Revolution by the Economic History Association. Many power loom workers, and most water frame and spinning jenny workers, were women. However, few women were mule spinners, and male workers sometimes violently resisted attempts to hire women for this position, although some women did work as assistant mule spinners. Many children also worked in the factories and mines, operating the same dangerous equipment as adult workers.  As you might suspect, this was a great departure from times prior to the revolution.

WHERE WE ARE GOING:

In an attempt to create more jobs, the new administration is reassessing free trade agreements, leveraging tariffs on imports, and promising tax incentives to manufacturers to keep their production plants in the U.S. Yet while these measures are certainly making the U.S. more attractive for manufacturers, they’re unlikely to directly increase the number of jobs in the sector. What it will do, however, is free up more capital for manufacturers to invest in automation. This will have the following benefits:

  • Automation will reduce production costs and make U.S. companies more competitive in the global market. High domestic operating costs—in large part due to comparatively high wages—compromise the U.S. manufacturing industry’s position as the world leader. Our main competitor is China, where low-cost production plants currently produce almost eighteen percent (17.6%) of the world’s goods—just zero-point percent (0.6%) less than the U.S. Automation allows manufacturers to reduce labor costs and streamline processes. Lower manufacturing costs results in lower product prices, which in turn will increase demand.

Low-cost production plants in China currently produce 17.6% of the world’s goods—just 0.6% less

than the U.S.

  • Automation increases productivity and improves quality. Smart manufacturing processes that make use of technologies such as robotics, big data, analytics, sensors, and the IoT are faster, safer, more accurate, and more consistent than traditional assembly lines. Robotics provide 24/7 labor, while automated systems perform real-time monitoring of the production process. Irregularities, such as equipment failures or quality glitches, can be immediately addressed. Connected plants use sensors to keep track of inventory and equipment performance, and automatically send orders to suppliers when necessary. All of this combined minimizes downtime, while maximizing output and product quality.
  • Manufacturers will re-invest in innovation and R&D. Cutting-edge technologies. such as robotics, additive manufacturing, and augmented reality (AR) are likely to be widely adopted within a few years. For example, Apple® CEO Tim Cook recently announced the tech giant’s $1 billion investment fund aimed at assisting U.S. companies practicing advanced manufacturing. To remain competitive, manufacturers will have to re-invest a portion of their profits in R&D. An important aspect of innovation will involve determining how to integrate increasingly sophisticated technologies with human functions to create highly effective solutions that support manufacturers’ outcomes.

Technologies such as robotics, additive manufacturing, and augmented reality are likely to be widely adopted soon. To remain competitive, manufacturers will have to re-invest a portion of their profits in R&D.

HOW AUTOMATION WILL AFFECT THE WORKFORCE:

Now, let’s look at the five ways in which automation will affect the workforce.

  • Certain jobs will be eliminated.  By 2025, 3.5 million jobs will be created in manufacturing—yet due to the skills gap, two (2) million will remain unfilled. Certain repetitive jobs, primarily on the assembly line will be eliminated.  This trend is with us right now.  Retraining of employees is imperative.
  • Current jobs will be modified.  In sixty percent (60%) of all occupations, thirty percent (30%) of the tasks can be automated.  For the first time, we hear the word “co-bot”.  Co-bot is robotic assisted manufacturing where an employee works side-by-side with a robotic system.  It’s happening right now.
  • New jobs will be created. There are several ways automation will create new jobs. First, lower operating costs will make U.S. products more affordable, which will result in rising demand. This in turn will increase production volume and create more jobs. Second, while automation can streamline and optimize processes, there are still tasks that haven’t been or can’t be fully automated. Supervision, maintenance, and troubleshooting will all require a human component for the foreseeable future. Third, as more manufacturers adopt new technologies, there’s a growing need to fill new roles such as data scientists and IoT engineers. Fourth, as technology evolves due to practical application, new roles that integrate human skills with technology will be created and quickly become commonplace.
  • There will be a skills gap between eliminated jobs and modified or new roles. Manufacturers should partner with educational institutions that offer vocational training in STEM fields. By offering students on-the-job training, they can foster a skilled and loyal workforce.  Manufacturers need to step up and offer additional job training.  Employees need to step up and accept the training that is being offered.  Survival is dependent upon both.
  • The manufacturing workforce will keep evolving. Manufacturers must invest in talent acquisition and development—both to build expertise in-house and to facilitate continuous innovation.  Ten years ago, would you have heard the words, RFID, Biometrics, Stereolithography, Additive manufacturing?  I don’t think so.  The workforce MUST keep evolving because technology will only improve and become a more-present force on the manufacturing floor.

As always, I welcome your comments.


Portions of this post were taken from Design News Daily publication written by Chris Witz, August 2017.

I generally don’t “do” politics but recent activity relative to the Federal Jobs Initiative program have fallen upon hard times.  President Donald Trump has decided to disband the council of his Manufacturing Jobs Initiative. The announcement came Wednesday morning, after a significant exodus of council membership.  This exodus was in response to the President’s comments regarding a recent white supremacist protest in Charlottesville, VA.  By Tweet, the president said:

Rather than putting pressure on the businesspeople of the Manufacturing Council & Strategy & Policy Forum, I am ending both. Thank you all!

— Donald J. Trump (@realDonaldTrump) August 16, 2017

I personally was very surprised by his reaction to several members pulling out of his committee and wonder if there was not more to ending the activities than meets the eye.

The members counseling President Trump were:

Brian Krzanich—CEO Intel

Ken Frazier—CEO Merk & Company

Kevin Plank—CEO UnderArmour

Elon Musk—CEO of SpaceX and Tesla

Bob Iger—CEO of Disney

Travis Kalanick—Former CEO of Uber

Scott Paul—President, Alliance for American Manufacturing

Richard Trumka—President, AFL-CIO

Inge Thulin—CEO 3M

Jamie Dimon—CEO of JPMorganChase

Steven Schwarzman—CEO of Blackstone

Rich Lesser—CEO of Boston Consulting Group

Doug McMillon—CEO of Walmart

Indra Nooyi—CEO and Chairperson of PepsiCo

Ginni Rometty—President and CEO of IBM

Jack Welch—Former CEO of General Electric Company

Toby Cosgrove—CEO of the Cleveland Clinic

Mary Barra—President and CEO of General Motors

Kevin Warsh—Fellow at the Hoover Institute

Paul Atkins– CEO of Patomak Global Partners LLC

Mark Weinberger– Global chairman and CEO, EY

Jim McNerney– Former chairman, president and CEO, Boeing

Adebayo Ogunlesi– Chairman, managing partner, Global Infrastructure Partners

Phillip Howard– Lawyer, Covington; founder of Common Good

Larry Fink—CEO of BlackRock

Matt Rose– Executive chairman, BNSF Railway

Andrew Liveris– Chairman, CEO, The Dow Chemical Company

Bill Brown—CEO, Harris Corporation

Michael Dell—CEO, Dell Technologies

John Ferriola– Chairman, president, CEO, Nucor Corporation

Jeff Fettig– Chairman, former CEO, Whirlpool Corporation

Alex Gorsky– Chairman, CEO, Johnson & Johnson

Greg Hayes– Chairman, CEO, United Technologies Corp

Marillyn Hewson– Chairman, president, CEO, Lockheed Martin Corporation

Jim Kamsickas– President, CEO, Dana Inc

Rich Kyle– President, CEO, The Timken Company

Jeff Immelt– Chairman, former CEO, General Electric

Denise Morrison– President, CEO, Campbell Soup Company

Dennis Muilenburg– Chairman, president, CEO, Boeing

Michael Polk– CEO, Newell Brands

Mark Sutton– Chairman, CEO, International Paper

Wendell Weeks—CEO, Corning

Mark Fields– Former CEO, Ford Motor Company

Mario Longhi– Former CEO, U.S. Steel

Doug Oberhelman– Former CEO, Caterpillar

Klaus Kleinfeld– Former Chairman, CEO, Arconic

I think we can all agree; this group of individuals are “BIG HITTERS”.  People on top of their game.  In looking at the list, I was very surprised at the diversity of products they represent.

As of Wednesday, members departing the committee are as follows:   Kenneth Frazier, CEO of pharmaceutical company Merck; Under Armour CEO Kevin Plank; Scott Paul, the president of the Alliance for American Manufacturing; Richard Trumka, of the AFL-CIO, along with Thea Lee, the AFL-CIO’s deputy chief of staff; 3M CEO Inge Thulin; and Intel CEO Brian Krzanich.

In a blog post , Intel’s Krzanich explained his departure, saying:

“I resigned to call attention to the serious harm our divided political climate is causing to critical issues, including the serious need to address the decline of American manufacturing. Politics and political agendas have sidelined the important mission of rebuilding America’s manufacturing base. … I am not a politician. I am an engineer who has spent most of his career working in factories that manufacture the world’s most advanced devices. Yet, it is clear even to me that nearly every issue is now politicized to the point where significant progress is impossible. Promoting American manufacturing should not be a political issue.”

Under Armour’s Plank, echoed Krzanich’s sentiment, expressing a desire to focus on technological innovation over political entanglements. In a statement released by Under Amour, Plank said,

“We remain resolute in our potential and ability to improve American manufacturing. However, Under Armour engages in innovation and sports, not politics …” In the past year Under Armour has gained attention for applying 3D printing techniques to shoe design and manufacturing.

Paul, of the Alliance of American Manufacturing, tweeted about his departure, saying, “… it’s the right thing to do.”

I’m resigning from the Manufacturing Jobs Initiative because it’s the right thing for me to do.

— Scott Paul (@ScottPaulAAM) August 15, 2017

President Trump’s Manufacturing Jobs Initiative, first announced back in January, was supposed to be a think tank, bringing together the most prominent business leaders in American manufacturing to tackle the problem of creating job growth in the manufacturing sector. At its inception the council boasted CEOs from companies including Tesla, Ford, Dow Chemical, Dell, Lockheed-Martin, and General Electric among its 28 members. However, over the course of the year the council had been steadily dwindling, with the largest exodus coming this week.

The first major blow to the council’s membership came in June when Tesla CEO Elon Musk resigned from the council in response to President Trump pulling out of the Paris climate accord. Musk, a known environmentalist , tweeted:

Am departing presidential councils. Climate change is real. Leaving Paris is not good for America or the world.

— Elon Musk (@elonmusk) June 1, 2017

At that same conference, when asked why he believed CEOs were leaving the manufacturing council, the President accused members of the council of being at odds with his plans to re-shore more jobs back to the US:

“Because [these CEOs] are not taking their job seriously as it pertains to this country. We want jobs, manufacturing in this country. If you look at some of those people that you’re talking about, they’re outside of the country. … We want products made in the country. Now, I have to tell you, some of the folks that will leave, they are leaving out of embarrassment because they make their products outside and I’ve been lecturing them … about you have to bring it back to this country. You can’t do it necessarily in Ireland and all of these other places. You have to bring this work back to this country. That’s what I want. I want manufacturing to be back into the United States so that American workers can benefit.”

Symbolic or Impactful?

It is unclear whether the dissolution of the manufacturing council will have an impact on Trump’s efforts to grow jobs in the US manufacturing sector. Some analysts have called the council little more than a symbolic gesture that was unlikely to have had any long-term impact on American manufacturing to begin with. Other analysts have credit Trump as a driving factor behind a spike in re-shoring in 2017. However other factors including labor costs and lack of skilled workers overseas are also playing a significant role as more advanced technologies in industries such as automotive and electronics hit the market.

CONCLUSIONS:

I personally regret the dissolution of the committee.  I think, given the proper leadership, they could have been very helpful regarding suggestions as to how to create and/or bring back jobs to our country.  In my opinion, President Trump simply did not have the leadership ability to hold the group together.  His actions over the past few months, beginning with leaving the Paris Climate Accord, simply gave them the excuse to leave the committee.  They simply flaked out.

As always, I welcome your comments.


Portions of the following post were taken from an article by Rob Spiegel publishing through Design News Daily.

Two former Apple design engineers – Anna Katrina Shedletsky and Samuel Weiss have leveraged machine learning to help brand owners improve their manufacturing lines. The company, Instrumental , uses artificial intelligence (AI) to identify and fix problems with the goal of helping clients ship on time. The AI system consists of camera-equipped inspection stations that allow brand owners to remotely manage product lines at their contact manufacturing facilities with the purpose of maximizing up-time, quality and speed. Their digital photo is shown as follows:

Shedletsky and Weiss took what they learned from years of working with Apple contract manufacturers and put it into AI software.

“The experience with Apple opened our eyes to what was possible. We wanted to build artificial intelligence for manufacturing. The technology had been proven in other industries and could be applied to the manufacturing industry,   it’s part of the evolution of what is happening in manufacturing. The product we offer today solves a very specific need, but it also works toward overall intelligence in manufacturing.”

Shedletsky spent six (6) years working at Apple prior to founding Instrumental with fellow Apple alum, Weiss, who serves Instrumental’s CTO (Chief Technical Officer).  The two took their experience in solving manufacturing problems and created the AI fix. “After spending hundreds of days at manufacturers responsible for millions of Apple products, we gained a deep understanding of the inefficiencies in the new-product development process,” said Shedletsky. “There’s no going back, robotics and automation have already changed manufacturing. Intelligence like the kind we are building will change it again. We can radically improve how companies make products.”

There are number examples of big and small companies with problems that prevent them from shipping products on time. Delays are expensive and can cause the loss of a sale. One day of delay at a start-up could cost $10,000 in sales. For a large company, the cost could be millions. “There are hundreds of issues that need to be found and solved. They are difficult and they have to be solved one at a time,” said Shedletsky. “You can get on a plane, go to a factory and look at failure analysis so you can see why you have problems. Or, you can reduce the amount of time needed to identify and fix the problems by analyzing them remotely, using a combo of hardware and software.”

Instrumental combines hardware and software that takes images of each unit at key states of assembly on the line. The system then makes those images remotely searchable and comparable in order for the brand owner to learn and react to assembly line data. Engineers can then take action on issues. “The station goes onto the assembly line in China,” said Shedletsky. “We get the data into the cloud to discover issues the contract manufacturer doesn’t know they have. With the data, you can do failure analysis and reduced the time it takes to find an issue and correct it.”

WHAT IS AI:

Artificial intelligence (AI) is intelligence exhibited by machines.  In computer science, the field of AI research defines itself as the study of “intelligent agents“: any device that perceives its environment and takes actions that maximize its chance of success at some goal.   Colloquially, the term “artificial intelligence” is applied when a machine mimics “cognitive” functions that humans associate with other human minds, such as “learning” and “problem solving”.

As machines become increasingly capable, mental facilities once thought to require intelligence are removed from the definition. For instance, optical character recognition is no longer perceived as an example of “artificial intelligence”, having become a routine technology.  Capabilities currently classified as AI include successfully understanding human speech,  competing at a high level in strategic game systems (such as chess and Go), autonomous cars, intelligent routing in content delivery networks, military simulations, and interpreting complex data.

FUTURE:

Some would have you believe that AI IS the future and we will succumb to the “Rise of the Machines”.  I’m not so melodramatic.  I feel AI has progressed and will progress to the point where great time saving and reduction in labor may be realized.   Anna Katrina Shedletsky and Samuel Weiss realize the potential and feel there will be no going back from this disruptive technology.   Moving AI to the factory floor will produce great benefits to manufacturing and other commercial enterprises.   There is also a significant possibility that job creation will occur as a result.  All is not doom and gloom.

NATIONAL TELEPHONE DAY

April 25, 2017


OK, are you ready for a bit of ridiculous trivia?  Today, 25 April 2017, is National Telephone Day.  I do not think there will be any denial that the telephone has revolutionized communication the world over.

It was February 14, 1876, when Marcellus Bailey, one of Alexander Graham Bell’s attorneys rushed into the US Patent office in Boston to file for what would later be called the telephone. Later that same day, Elisha Gray filed a patent caveat for a similar device. A caveat is an intent to file for a patent. There is also a third contender, Antonio Meucci.  Mr. Meucci filed a caveat in November of 1871 for a talking telegraph but failed to renew the caveat due to hardships. Because Bell’s patent was submitted first, it was awarded to him on March 7, 1876. Gray contested this decision in court, but without success.

Born March 3, 1847, in Edinburgh, United Kingdom, Bell was an instructor at a boys’ boarding school. The sounds of speech were an integral part of his life. His father developed a “Visible Speech” system for deaf students to communicate. Bell would later become friend and benefactor of Helen Keller. Three days after his patent was approved, Bell spoke the first words by telephone to his assistant. “Mr. Watson, come here! I want to see you!”  By May of the same year, Bell and his team were ready for a public demonstration, and there would be no better place than the World’s Fair in Philadelphia. On May 10, 1876, in a crowded Machinery Hall a man’s voice was transmitted from a small horn and carried out through a speaker to the audience. One year later, the White House installed its first phone. The telephone revolution began. Bell Telephone Company was founded on July 9, 1877, and the first public telephone lines were installed from Boston to Sommerville, Massachusetts the same year.  By the end of the decade, there were nearly 50,000 phones in the United States.  In May of 1967, the 1 millionth telephone was installed.

Growing up in in the 50’s, I remember the rotary telephone shown by the digital picture below.  We were on a three-party line.  As I recall, ours was a two-ring phone call.  Of course, there was snooping.  Big time snooping by the other two families on our line.

Let’s take a quick look at how the cell phone has literally taken over this communication method.

  • The number of mobile devices rose nine (9) percent in the first six months of 2011, to 327.6 million — more than the 315 million people living in the U.S., Puerto Rico, Guam and the U.S. Virgin Islands. Wireless network data traffic rose 111 percent, to 341.2 billion megabytes, during the same period.
  • Nearly two-thirds of Americans are now smartphone owners, and for many these devices are a key entry point to the online world. Sixty-four percent( 64) ofAmerican adults now own a smartphone of some kind, up from thirty-five percent (35%) in the spring of 2011. Smartphone ownership is especially high among younger Americans, as well as those with relatively high income and education levels.
  • Ten percent (10%) of Americans own a smartphone but do not have any other form of high-speed internet access at home beyond their phone’s data plan.
  • Using a broader measure of the access options available to them, fifteen percent (15% of Americans own a smartphone but say that they have a limited number of ways to get online other than their cell phone.
  • Younger adults — Fifteen percent (15%) of Americans ages 18-29 are heavily dependent on a smartphone for online access.
  • Those with low household incomes and levels of educational attainment — Some thirteen percent (13%) of Americans with an annual household income of less than $30,000 per year are smartphone-dependent. Just one percent (1%) of Americans from households earning more than $75,000 per year rely on their smartphones to a similar degree for online access.
  • Non-whites — Twelve percent (12%) of African Americans and thirteen percent (13%) of Latinos are smartphone-dependent, compared with four percent (4%) of whites
  • Sixty-two percent (62%) of smartphone owners have used their phone in the past year to look up information about a health condition
  • Fifty-seven percent (57%) have used their phone to do online banking.
  • Forty-four percent (44%) have used their phone to look up real estate listings or other information about a place to live.
  • Forty-three percent (43%) to look up information about a job.
  • Forty percent (40%) to look up government services or information.
  • Thirty percent (30%) to take a class or get educational content
  • Eighteen percent (18%) to submit a job application.
  • Sixty-eight percent (68%) of smartphone owners use their phone at least occasionally to follow along with breaking news events, with thirty-three percent (33%) saying that they do this “frequently.”
  • Sixty-seven percent (67%) use their phone to share pictures, videos, or commentary about events happening in their community, with 35% doing so frequently.
  • Fifty-six percent (56%) use their phone at least occasionally to learn about community events or activities, with eighteen percent (18%) doing this “frequently.”

OK, by now you get the picture.  The graphic below will basically summarize the cell phone phenomenon relative to other digital devices including desktop and laptop computers. By the way, laptop and desktop computer purchases have somewhat declined due to the increased usage of cell phones for communication purposes.

The number of smart phone users in the United States from 2012 to a projected 2021 in millions is given below.

CONCLUSION: “Big Al” (Mr. Bell that is.) probably knew he was on to something.  At any rate, the trend will continue towards infinity over the next few decades.

 

RETURN OF X-PLANES

April 22, 2017


In the April 2017 issue of “Machine Design” a fascinating article entitled “NASA’S Green Thumb for Green Aviation” was presented. This article was written by Carlos M. Gonzales and encouraged me to explore, at least through NASA’s web site, the status of their “X-Plane” program.  Aviation is definitely a growth industry. Millions upon millions of individuals travel each year for business, recreation, and tourism.  There is no doubt that aviation is the “Greyhound Bus” for the twenty-first century.

The aviation system is the high-speed transportation backbone of the United States and global economies. Global aviation is forecast to grow from today’s three point five (3.5) billion passenger trips per year to seven (7) billion passenger trips by the mid- 2030s, and to eleven (11) billion passenger trips by mid-century. Such growth brings with it the direct economic potential of trillions of dollars in the fields of manufacturing, operations and maintenance, and the high-quality jobs they support.

At the same time, international competition for leadership of this critical industry is growing, as more nations invest in developing their own aviation technology and industrial capabilities. Such massive growth also creates substantial operational and environmental challenges. For example, by mid-century the aviation industry will need to build and fly enough new aircraft to accommodate more than three times as many passenger trips while at the same time reducing total emissions by half from that new hardware. Moreover, large reductions in emissions and aircraft noise levels will be needed, if not mandated. To meet those demands, revolutionary levels of aircraft performance improvements – well beyond today’s technology – must be achieved. In terms of air traffic control and the National Airspace System, maintaining safe and efficient operations is a continuing and growing challenge as the system expands, and especially as new business and operational models – such as unmanned aerial systems – are introduced. Enabling aircraft (with pilots aboard or not) to fly optimized trajectories through high density airspace with real-time, systemwide safety assurance are among the most critical operational improvements that must be achieved.

In looking at global growth, we see the following:

These numbers would be very frightening without the aviation industry deciding to be pro-active relative to the sheer numbers of passenger miles anticipated over the next two decades.  That’s where NASA comes in.

NEW AVIATION HORIZONS:

In FY 2017, NASA plans to begin a major ten-year research effort to accelerate aviation energy efficiency, transform propulsion systems, and enable major improvements in air traffic mobility. The centerpiece of NASA’s ten-year acceleration for advanced technologies testing is called New Aviation Horizons, or NAH. It is an ambitious plan to build a series of five mostly large-scale experimental aircraft – X-planes – that will flight test new technologies, systems and novel aircraft and engine configurations. X-planes are a key piece of the “three-legged stool” that characterizes aviation research.

  • One leg represents computational capabilities – the high-speed super computers that can model the physics of air flowing over an object – be it a wing, a rudder or a full airplane.
  • A second leg represents experimental methods. This is where scientists put what is most often a scale model of an object or part of an object – be it a wing, a rudder or an airplane – in a wind tunnel to take measurements of air flowing over the object. These measurements help improve the computer model, and the computer model helps inform improvements to the airplane design, which can then be tested again in the wind tunnel.
  • The third leg of the stool is to actually fly the design. Whether it’s flying an X-plane or a full-scale prototype of a new aircraft, the data recorded in actual flight can be used to validate and improve the computational and experimental methods used to develop the design in the first place. This third leg makes it possible to lower the risk enough to completely trust what the numbers are saying.

With NAH, NASA will:

  • Demonstrate revolutionary advancements in aircraft and engine configurations that break the mold of traditional tube and wing designs.
  • Support accelerated delivery to the U.S. aviation community of advanced verified design and analysis tools that support new flight-validated concepts, systems and technologies.
  • Provide to appropriate organizations and agencies research results that inform their work to update domestic and international aviation standards and regulations.
  • Enable U.S. industry to put into service flight-proven transformative technology that will solve tomorrow’s global aviation challenges.
  • Inspire a new generation of aeronautical innovators and equip them to engineer future aviation systems. Of the five X-planes, NASA has determined that three subsonic aircraft will be enough to span the range of possible configurations necessary to demonstrate in flight the major enabling fuel, emissions and noise reducing technologies.

The graphic below indicates possible designs for aircraft of the future.  All of these craft are now on the drawing board with computational prototyping underway.

INDUSTRY:

U.S. industry plays an integral role in the NAH initiative, leading the design, development and building of all X-planes under contract to NASA. Industry will be a research partner in the ground test and analysis, as well as the flight tests of the X-planes. Industry also partners in the advancement of the physics-based design and analysis capabilities. Through the lead and partnering roles, U.S. industry will be fully capable of confidently taking the next steps in commercializing the transformational configurations and technologies. The Lockheed Martin Aeronautics Company has already been awarded a preliminary design contract for the Quiet Supersonic Technology demonstrator. As indicated in a white paper published by the Aerospace Industries Association and the American Institute of Aeronautics and Astronautics, “The U.S. government must support robust, long-term Federal civil aeronautics research and technology initiatives funded at a level that will ensure U.S. leadership in aeronautics. Congress should support NASA’s ten-year Strategic Implementation Plan at least at the levels recommended in the fiscal year 2017 NASA Budget request to sustain a strong economy, maintain a skilled workforce, support national security, and drive a world-class educational system.”

UNIVERSITIES:

NASA has already launched the University Leadership Initiative, which provides U.S.-based universities the opportunity to take full independent leadership in defining and solving key technical challenges aligned with the NASA Aeronautics strategy. Solicitations and proposals are managed through the NASA Research Announcement process; the first round of awards will be made in Fall 2016. These awards could lead to new experiments that would fly onboard one or more X-planes. In addition, NASA is formulating new mechanisms for direct university and student participation in the X-plane design, development and flight test process. The objective is to ensure U.S. universities remain the leading global institutions for aviation research and education, and to ensure the next generation workforce has the vision and skills needed to lead aviation system transformation.

POSSIBLE CONFIGURATIONS:

As mentioned above, NASA, industry and universities have already begun looking at possible configurations.  The most promising on-going programs are given below.

As you can see, the designs are absolutely striking and “doable” relative to existing technology.  The key goals are to:

  • Produce environmentally sound or “GREEN” designs lessening air pollution.
  • Create better fuel usage and conservation.
  • Extend flight range
  • Structure designs so minimal airport alternations will be necessary
  • Improve passenger experience

Tall orders but keep in mind NASA got us to the moon and back.  Why do we feel they will not be able to meet the goals indicated?  As always, I welcome your comments.

THE NEXT FIVE (5) YEARS

February 15, 2017


As you well know, there are many projections relative to economies, stock market, sports teams, entertainment, politics, technology, etc.   People the world over have given their projections for what might happen in 2017.  The world of computing technology is absolutely no different.  Certain information for this post is taken from the publication “COMPUTER.org/computer” web site.  These guys are pretty good at projections and have been correct multiple times over the past two decades.  They take their information from the IEEE.

The IEEE Computer Society is the world’s leading membership organization dedicated to computer science and technology. Serving more than 60,000 members, the IEEE Computer Society is the trusted information, networking, and career-development source for a global community of technology leaders that includes researchers, educators, software engineers, IT professionals, employers, and students.  In addition to conferences and publishing, the IEEE Computer Society is a leader in professional education and training, and has forged development and provider partnerships with major institutions and corporations internationally. These rich, self-selected, and self-paced programs help companies improve the quality of their technical staff and attract top talent while reducing costs.

With these credentials, you might expect them to be on the cutting edge of computer technology and development and be ahead of the curve as far as computer technology projections.  Let’s take a look.  Some of this absolutely blows me away.

human-brain-interface

This effort first started within the medical profession and is continuing as research progresses.  It’s taken time but after more than a decade of engineering work, researchers at Brown University and a Utah company, Blackrock Microsystems, have commercialized a wireless device that can be attached to a person’s skull and transmit via radio thought commands collected from a brain implant. Blackrock says it will seek clearance for the system from the U.S. Food and Drug Administration, so that the mental remote control can be tested in volunteers, possibly as soon as this year.

The device was developed by a consortium, called BrainGate, which is based at Brown and was among the first to place implants in the brains of paralyzed people and show that electrical signals emitted by neurons inside the cortex could be recorded, then used to steer a wheelchair or direct a robotic arm (see “Implanting Hope”).

A major limit to these provocative experiments has been that patients can only use the prosthetic with the help of a crew of laboratory assistants. The brain signals are collected through a cable screwed into a port on their skull, then fed along wires to a bulky rack of signal processors. “Using this in the home setting is inconceivable or impractical when you are tethered to a bunch of electronics,” says Arto Nurmikko, the Brown professor of engineering who led the design and fabrication of the wireless system.

capabilities-hardware-projection

Unless you have been living in a tree house for the last twenty years you know digital security is a huge problem.  IT professionals and companies writing code will definitely continue working on how to make our digital world more secure.  That is a given.

exascale

We can forget Moor’s Law which refers to an observation made by Intel co-founder Gordon Moore in 1965. He noticed that the number of transistors per square inch on integrated circuits had doubled every year since their invention.  Moore’s law predicts that this trend will continue into the foreseeable future. Although the pace has slowed, the number of transistors per square inch has since doubled approximately every 18 months. This is used as the current definition of Moore’s law.  We are well beyond that with processing speed literally progressing at “warp six”.

non-volitile-memory

If you are an old guy like me, you can remember when computer memory costs an arm and a leg.  Take a look at the JPEG below and you get an idea as to how memory costs has decreased over the years.

hard-drive-cost-per-gbyte

As you can see, costs have dropped remarkably over the years.

photonics

texts-for-photonoics

power-conservative-multicores

text-for-power-conservative-multicores

CONCLUSION:

If you combine the above predictions with 1.) Big Data, 2.) Internet of Things (IoT), 3.) Wearable Technology, 4.) Manufacturing 4.0, 5.) Biometrics, and other fast-moving technologies you have a world in which “only the adventurous thrive”.  If you do not like change, I recommend you enroll in a monastery.  You will not survive gracefully without technology on the rampage. Just a thought.

%d bloggers like this: