NATIONAL TELEPHONE DAY

April 25, 2017


OK, are you ready for a bit of ridiculous trivia?  Today, 25 April 2017, is National Telephone Day.  I do not think there will be any denial that the telephone has revolutionized communication the world over.

It was February 14, 1876, when Marcellus Bailey, one of Alexander Graham Bell’s attorneys rushed into the US Patent office in Boston to file for what would later be called the telephone. Later that same day, Elisha Gray filed a patent caveat for a similar device. A caveat is an intent to file for a patent. There is also a third contender, Antonio Meucci.  Mr. Meucci filed a caveat in November of 1871 for a talking telegraph but failed to renew the caveat due to hardships. Because Bell’s patent was submitted first, it was awarded to him on March 7, 1876. Gray contested this decision in court, but without success.

Born March 3, 1847, in Edinburgh, United Kingdom, Bell was an instructor at a boys’ boarding school. The sounds of speech were an integral part of his life. His father developed a “Visible Speech” system for deaf students to communicate. Bell would later become friend and benefactor of Helen Keller. Three days after his patent was approved, Bell spoke the first words by telephone to his assistant. “Mr. Watson, come here! I want to see you!”  By May of the same year, Bell and his team were ready for a public demonstration, and there would be no better place than the World’s Fair in Philadelphia. On May 10, 1876, in a crowded Machinery Hall a man’s voice was transmitted from a small horn and carried out through a speaker to the audience. One year later, the White House installed its first phone. The telephone revolution began. Bell Telephone Company was founded on July 9, 1877, and the first public telephone lines were installed from Boston to Sommerville, Massachusetts the same year.  By the end of the decade, there were nearly 50,000 phones in the United States.  In May of 1967, the 1 millionth telephone was installed.

Growing up in in the 50’s, I remember the rotary telephone shown by the digital picture below.  We were on a three-party line.  As I recall, ours was a two-ring phone call.  Of course, there was snooping.  Big time snooping by the other two families on our line.

Let’s take a quick look at how the cell phone has literally taken over this communication method.

  • The number of mobile devices rose nine (9) percent in the first six months of 2011, to 327.6 million — more than the 315 million people living in the U.S., Puerto Rico, Guam and the U.S. Virgin Islands. Wireless network data traffic rose 111 percent, to 341.2 billion megabytes, during the same period.
  • Nearly two-thirds of Americans are now smartphone owners, and for many these devices are a key entry point to the online world. Sixty-four percent( 64) ofAmerican adults now own a smartphone of some kind, up from thirty-five percent (35%) in the spring of 2011. Smartphone ownership is especially high among younger Americans, as well as those with relatively high income and education levels.
  • Ten percent (10%) of Americans own a smartphone but do not have any other form of high-speed internet access at home beyond their phone’s data plan.
  • Using a broader measure of the access options available to them, fifteen percent (15% of Americans own a smartphone but say that they have a limited number of ways to get online other than their cell phone.
  • Younger adults — Fifteen percent (15%) of Americans ages 18-29 are heavily dependent on a smartphone for online access.
  • Those with low household incomes and levels of educational attainment — Some thirteen percent (13%) of Americans with an annual household income of less than $30,000 per year are smartphone-dependent. Just one percent (1%) of Americans from households earning more than $75,000 per year rely on their smartphones to a similar degree for online access.
  • Non-whites — Twelve percent (12%) of African Americans and thirteen percent (13%) of Latinos are smartphone-dependent, compared with four percent (4%) of whites
  • Sixty-two percent (62%) of smartphone owners have used their phone in the past year to look up information about a health condition
  • Fifty-seven percent (57%) have used their phone to do online banking.
  • Forty-four percent (44%) have used their phone to look up real estate listings or other information about a place to live.
  • Forty-three percent (43%) to look up information about a job.
  • Forty percent (40%) to look up government services or information.
  • Thirty percent (30%) to take a class or get educational content
  • Eighteen percent (18%) to submit a job application.
  • Sixty-eight percent (68%) of smartphone owners use their phone at least occasionally to follow along with breaking news events, with thirty-three percent (33%) saying that they do this “frequently.”
  • Sixty-seven percent (67%) use their phone to share pictures, videos, or commentary about events happening in their community, with 35% doing so frequently.
  • Fifty-six percent (56%) use their phone at least occasionally to learn about community events or activities, with eighteen percent (18%) doing this “frequently.”

OK, by now you get the picture.  The graphic below will basically summarize the cell phone phenomenon relative to other digital devices including desktop and laptop computers. By the way, laptop and desktop computer purchases have somewhat declined due to the increased usage of cell phones for communication purposes.

The number of smart phone users in the United States from 2012 to a projected 2021 in millions is given below.

CONCLUSION: “Big Al” (Mr. Bell that is.) probably knew he was on to something.  At any rate, the trend will continue towards infinity over the next few decades.

 

RETURN OF X-PLANES

April 22, 2017


In the April 2017 issue of “Machine Design” a fascinating article entitled “NASA’S Green Thumb for Green Aviation” was presented. This article was written by Carlos M. Gonzales and encouraged me to explore, at least through NASA’s web site, the status of their “X-Plane” program.  Aviation is definitely a growth industry. Millions upon millions of individuals travel each year for business, recreation, and tourism.  There is no doubt that aviation is the “Greyhound Bus” for the twenty-first century.

The aviation system is the high-speed transportation backbone of the United States and global economies. Global aviation is forecast to grow from today’s three point five (3.5) billion passenger trips per year to seven (7) billion passenger trips by the mid- 2030s, and to eleven (11) billion passenger trips by mid-century. Such growth brings with it the direct economic potential of trillions of dollars in the fields of manufacturing, operations and maintenance, and the high-quality jobs they support.

At the same time, international competition for leadership of this critical industry is growing, as more nations invest in developing their own aviation technology and industrial capabilities. Such massive growth also creates substantial operational and environmental challenges. For example, by mid-century the aviation industry will need to build and fly enough new aircraft to accommodate more than three times as many passenger trips while at the same time reducing total emissions by half from that new hardware. Moreover, large reductions in emissions and aircraft noise levels will be needed, if not mandated. To meet those demands, revolutionary levels of aircraft performance improvements – well beyond today’s technology – must be achieved. In terms of air traffic control and the National Airspace System, maintaining safe and efficient operations is a continuing and growing challenge as the system expands, and especially as new business and operational models – such as unmanned aerial systems – are introduced. Enabling aircraft (with pilots aboard or not) to fly optimized trajectories through high density airspace with real-time, systemwide safety assurance are among the most critical operational improvements that must be achieved.

In looking at global growth, we see the following:

These numbers would be very frightening without the aviation industry deciding to be pro-active relative to the sheer numbers of passenger miles anticipated over the next two decades.  That’s where NASA comes in.

NEW AVIATION HORIZONS:

In FY 2017, NASA plans to begin a major ten-year research effort to accelerate aviation energy efficiency, transform propulsion systems, and enable major improvements in air traffic mobility. The centerpiece of NASA’s ten-year acceleration for advanced technologies testing is called New Aviation Horizons, or NAH. It is an ambitious plan to build a series of five mostly large-scale experimental aircraft – X-planes – that will flight test new technologies, systems and novel aircraft and engine configurations. X-planes are a key piece of the “three-legged stool” that characterizes aviation research.

  • One leg represents computational capabilities – the high-speed super computers that can model the physics of air flowing over an object – be it a wing, a rudder or a full airplane.
  • A second leg represents experimental methods. This is where scientists put what is most often a scale model of an object or part of an object – be it a wing, a rudder or an airplane – in a wind tunnel to take measurements of air flowing over the object. These measurements help improve the computer model, and the computer model helps inform improvements to the airplane design, which can then be tested again in the wind tunnel.
  • The third leg of the stool is to actually fly the design. Whether it’s flying an X-plane or a full-scale prototype of a new aircraft, the data recorded in actual flight can be used to validate and improve the computational and experimental methods used to develop the design in the first place. This third leg makes it possible to lower the risk enough to completely trust what the numbers are saying.

With NAH, NASA will:

  • Demonstrate revolutionary advancements in aircraft and engine configurations that break the mold of traditional tube and wing designs.
  • Support accelerated delivery to the U.S. aviation community of advanced verified design and analysis tools that support new flight-validated concepts, systems and technologies.
  • Provide to appropriate organizations and agencies research results that inform their work to update domestic and international aviation standards and regulations.
  • Enable U.S. industry to put into service flight-proven transformative technology that will solve tomorrow’s global aviation challenges.
  • Inspire a new generation of aeronautical innovators and equip them to engineer future aviation systems. Of the five X-planes, NASA has determined that three subsonic aircraft will be enough to span the range of possible configurations necessary to demonstrate in flight the major enabling fuel, emissions and noise reducing technologies.

The graphic below indicates possible designs for aircraft of the future.  All of these craft are now on the drawing board with computational prototyping underway.

INDUSTRY:

U.S. industry plays an integral role in the NAH initiative, leading the design, development and building of all X-planes under contract to NASA. Industry will be a research partner in the ground test and analysis, as well as the flight tests of the X-planes. Industry also partners in the advancement of the physics-based design and analysis capabilities. Through the lead and partnering roles, U.S. industry will be fully capable of confidently taking the next steps in commercializing the transformational configurations and technologies. The Lockheed Martin Aeronautics Company has already been awarded a preliminary design contract for the Quiet Supersonic Technology demonstrator. As indicated in a white paper published by the Aerospace Industries Association and the American Institute of Aeronautics and Astronautics, “The U.S. government must support robust, long-term Federal civil aeronautics research and technology initiatives funded at a level that will ensure U.S. leadership in aeronautics. Congress should support NASA’s ten-year Strategic Implementation Plan at least at the levels recommended in the fiscal year 2017 NASA Budget request to sustain a strong economy, maintain a skilled workforce, support national security, and drive a world-class educational system.”

UNIVERSITIES:

NASA has already launched the University Leadership Initiative, which provides U.S.-based universities the opportunity to take full independent leadership in defining and solving key technical challenges aligned with the NASA Aeronautics strategy. Solicitations and proposals are managed through the NASA Research Announcement process; the first round of awards will be made in Fall 2016. These awards could lead to new experiments that would fly onboard one or more X-planes. In addition, NASA is formulating new mechanisms for direct university and student participation in the X-plane design, development and flight test process. The objective is to ensure U.S. universities remain the leading global institutions for aviation research and education, and to ensure the next generation workforce has the vision and skills needed to lead aviation system transformation.

POSSIBLE CONFIGURATIONS:

As mentioned above, NASA, industry and universities have already begun looking at possible configurations.  The most promising on-going programs are given below.

As you can see, the designs are absolutely striking and “doable” relative to existing technology.  The key goals are to:

  • Produce environmentally sound or “GREEN” designs lessening air pollution.
  • Create better fuel usage and conservation.
  • Extend flight range
  • Structure designs so minimal airport alternations will be necessary
  • Improve passenger experience

Tall orders but keep in mind NASA got us to the moon and back.  Why do we feel they will not be able to meet the goals indicated?  As always, I welcome your comments.


If you work or have worked in manufacturing you know robotic systems have definitely had a distinct impact on assembly, inventory acquisition from storage areas and finished-part warehousing.   There is considerable concern that the “rise of the machines” will eventually replace individuals performing a verity of tasks.  I personally do not feel this will be the case although there is no doubt robotic systems have found their way onto the manufacturing floor.

From the “Executive Summary World Robotics 2016 Industrial Robots”, we see the following:

2015:  By far the highest volume ever recorded in 2015, robot sales increased by 15% to 253,748 units, again by far the highest level ever recorded for one year. The main driver of the growth in 2015 was the general industry with an increase of 33% compared to 2014, in particular the electronics industry (+41%), metal industry (+39%), the chemical, plastics and rubber industry (+16%). The robot sales in the automotive industry only moderately increased in 2015 after a five-year period of continued considerable increase. China has significantly expanded its leading position as the biggest market with a share of 27% of the total supply in 2015.

In looking at the chart below, we can see the sales picture with perspective and show how system sales have increased from 2003.

It is very important to note that seventy-five percent (75%) of global robot sales comes from five (5) countries.

There were five major markets representing seventy-five percent (75%) of the total sales volume in 2015:  China, the Republic of Korea, Japan, the United States, and Germany.

As you can see from the bar chart above, sales volume increased from seventy percent (70%) in 2014. Since 2013 China is the biggest robot market in the world with a continued dynamic growth. With sales of about 68,600 industrial robots in 2015 – an increase of twenty percent (20%) compared to 2014 – China alone surpassed Europe’s total sales volume (50,100 units). Chinese robot suppliers installed about 20,400 units according to the information from the China Robot Industry Alliance (CRIA). Their sales volume was about twenty-nine percent (29%) higher than in 2014. Foreign robot suppliers increased their sales by seventeen percent (17%) to 48,100 units (including robots produced by international robot suppliers in China). The market share of Chinese robot suppliers grew from twenty-five percent (25%) in 2013 to twenty-nine percent (29%) in 2015. Between 2010 and 2015, total supply of industrial robots increased by about thirty-six percent (36%) per year on average.

About 38,300 units were sold to the Republic of Korea, fifty-five percent (55%) more than in 2014. The increase is partly due to a number of companies which started to report their data only in 2015. The actual growth rate in 2015 is estimated at about thirty percent (30%) to thirty-five percent (35%.)

In 2015, robot sales in Japan increased by twenty percent (20%) to about 35,000 units reaching the highest level since 2007 (36,100 units). Robot sales in Japan followed a decreasing trend between 2005 (reaching the peak at 44,000 units) and 2009 (when sales dropped to only 12,767 units). Between 2010 and 2015, robot sales increased by ten percent (10%) on average per year (CAGR).

Increase in robot installations in the United States continued in 2015, by five percent (5%) to the peak of 27,504 units. Driver of this continued growth since 2010 was the ongoing trend to automate production in order to strengthen American industries on the global market and to keep manufacturing at home, and in some cases, to bring back manufacturing that had previously been sent overseas.

Germany is the fifth largest robot market in the world. In 2015, the number of robots sold increased slightly to a new record high at 20,105 units compared to 2014 (20,051 units). In spite of the high robot density of 301 units per 10,000 employees, annual sales are still very high in Germany. Between 2010 and 2015, annual sales of industrial robots increased by an average of seven percent (7%) in Germany (CAGR).

From the graphic below, you can see which industries employ robotic systems the most.

Growth rates will not lessen with projections through 2019 being as follows:

A fascinating development involves the assistance of human endeavor by robotic systems.  This fairly new technology is called collaborative robots of COBOTS.  Let’s get a definition.

COBOTS:

A cobot or “collaborative robot” is a robot designed to assist human beings as a guide or assistor in a specific task. A regular robot is designed to be programmed to work more or less autonomously. In one approach to cobot design, the cobot allows a human to perform certain operations successfully if they fit within the scope of the task and to steer the human on a correct path when the human begins to stray from or exceed the scope of the task.

“The term ‘collaborative’ is used to distinguish robots that collaborate with humans from robots that work behind fences without any direct interaction with humans.  “In contrast, articulated, cartesian, delta and SCARA robots distinguish different robot kinematics.

Traditional industrial robots excel at applications that require extremely high speeds, heavy payloads and extreme precision.  They are reliable and very useful for many types of high volume, low mix applications.  But they pose several inherent challenges for higher mix environments, particularly in smaller companies.  First and foremost, they are very expensive, particularly when considering programming and integration costs.  They require specialized engineers working over several weeks or even months to program and integrate them to do a single task.  And they don’t multi-task easily between jobs since that setup effort is so substantial.  Plus, they can’t be readily integrated into a production line with people because they are too dangerous to operate in close proximity to humans.

For small manufacturers with limited budgets, space and staff, a collaborative robot such as Baxter (shown below) is an ideal fit because it overcomes many of these challenges.  It’s extremely intuitive, integrates seamlessly with other automation technologies, is very flexible and is quite affordable with a base price of only $25,000.  As a result, Baxter is well suited for many applications, such as those requiring manual labor and a high degree of flexibility, that are currently unmet by traditional technologies.

Baxter is one example of collaborative robotics and some say is by far the safest, easiest, most flexible and least costly robot of its kind today.  It features a sophisticated multi-tier safety design that includes a smooth, polymer exterior with fewer pinch points; back-drivable joints that can be rotated by hand; and series elastic actuators which help it to minimize the likelihood of injury during inadvertent contact.

It’s also incredibly simple to use.  Line workers and other non-engineers can quickly learn to train the robot themselves, by hand.  With Baxter, the robot itself is the interface, with no teaching pendant or external control system required.  And with its ease of use and diverse skill set, Baxter is extremely flexible, capable of being utilized across multiple lines and tasks in a fraction of the time and cost it would take to re-program other robots.  Plus, Baxter is made in the U.S.A., which is a particularly appealing aspect for many of our customers looking to re-shore their own production operations.

The digital picture above shows a lady work alongside a collaborative robotic system, both performing a specific task. The lady feels right at home with her mechanical friend only because usage demands a great element of safety.

Certifiable safety is the most important precondition for a collaborative robot system to be applied to an industrial setting.  Available solutions that fulfill the requirements imposed by safety standardization often show limited performance or productivity gains, as most of today’s implemented scenarios are often limited to very static processes. This means a strict stop and go of the robot process, when the human enters or leaves the work space.

Collaborative systems are still a work in progress but the technology has greatly expanded the use and this is primarily due to satisfying safety requirements.  Upcoming years will only produce greater acceptance and do not be surprised if you see robots and humans working side by side on every manufacturing floor over the next decade.

As always, I welcome your comments.

JOBS JOBS JOBS

April 5, 2017


I think we all hope meaningful employment for everyone wishing to work and physically able to work.

According to CNBC, we have the following statement:

“Companies added 263,000 jobs for the month, ADP and Moody’s Analytics said. That was well above the 185,000 expected from economists surveyed by Reuters and also better than the 245,000 reported for February.

The February number was revised significantly lower, however, from the originally reported 298,000.

In addition to the big gain on the headline number, the month also continued a trend away from services-oriented positions dominating job creation. Goods-producing firms contributed 82,000 to the total, as construction led the way with 49,000 new jobs.

Professional and business services was the leading sector, with 57,000, while leisure and hospitality added 55,000 and health care was up 46,000. Manufacturing payrolls grew by 30,000 and trade, transportation and utilities rose by 34,000.

In terms of company size, fewer than 50 employees represented the greatest growth area, with 118,000. Firms that employ 50 to 499 workers added 100,000.”

“The report comes amid hopes that President Donald Trump can deliver on his pro-growth agenda of lower taxes, less regulation and more infrastructure spending. Economic data points have been mixed lately, with sentiment surveys outpacing actual hard data of activity.”

The bar graph below indicates private sector job growth, or lack thereof for the last several months.  I do not think anyone would argue with the statement we are facing a growing economy but that growth is not robust by any stretch of the imagination.

Another very good sign our economy just might be on the mend:

“The U.S. trade deficit shrank by nearly 10 percent in February, hinting that the economy may be growing at a faster pace than many economists expect.

The deficit fell to a seasonally adjusted $43.6 billion, lower than the $44.6 billion economists surveyed by the Wall Street Journal had expected. Exports rose 0.2 percent to $192.9 billion in February while imports declined 1.8 percent to $236.4 billion, the Department of Commerce said Tuesday.”

 

The chart below indicates that drop.  We still are running a trade deficit but with the push for more “on-shoring” that deficit may continue to shrink.  This will undoubtedly improve the job market “state-side” and provide added employment.

The bar charts below will show Annual GDP growth rates, corporate profits, and single family home process.   I think each chart indicates recovery is still very incremental and some would say sluggish.  Our politicians in Washington indicate the following:

  • The repeal and replacement of the Affordable Healthcare Act will greatly reduce healthcare costs for the individual consumer.
  • The reduction of “red tape” and regulations for business owners will provide incentives for investment in companies and individual businesses.
  • Rework of the Federal Tax Code and subsequent reduction in corporate and individual tax rates will provide for much greater growth in GDP and corporate profits.
  • Increased trade with other nations will reduce the trade deficit and promote job growth
  • Significant increases in infrastructure spending will definitely improve job growth and job outlook.
  • “Leveling the playing field” relative to NAFTA and other global trade agreements can greatly improve job growth in the United States.

CONCLUSIONS:

All of these things can and possibly will improve job growth and aid our economy.  The big questions is—can Congress get together and pass legislation to get things moving again and in the proper fashion?  This week Congress is going home for Ester vacation.  Another vacation.   What if they remained in Washington, worked through Easter, stayed on the job, and provided their constituents with value-added?


I know I’m spoiled.  I like to know that when I get behind the wheel, put the key in the ignition, start my vehicle, pull out of the driveway, etc. I can get to my destination without mechanical issues.  I think we all are basically there.  Now, to do that, you have to maintain your “ride”.  I have a 1999 Toyota Pre-runner with 308,000 plus miles. Every three thousand miles I have it serviced.  Too much you say?  Well, I do have 308K and it’s still humming like a Singer Sewing Machine.

Mr. Charles Murry has been following the automotive industry for over thirty years.  Mr. Murry is also a senior editor for Design News Daily Magazine.  Much of the information below results from his recent post on the TEN MOST UNRELIABLE VEHICLES.  Each year Consumer Reports receives over one-half million consumer surveys on reliability information relative to the vehicles they drive.  The story is not always not a good one.  Let’s take a look at what CU readers consider the must unreliable vehicles and why.

Please keep in mind this is a CU report based upon feedback from vehicle owners.  Please do not shoot the messenger.  As always, I welcome your comments and hope this help your buying research.


FACTS:

  • 707,758 motor vehicles were reported stolen in the United States in 2015, up three point one (3.1) percent from 2014, according to the FBI.
  • A motor vehicle was stolen in the United States every forty-five (45) seconds in 2015.
  • Eight of the top ten cities with the highest rate of vehicle theft in 2015 were in California, according to the National Insurance Crime Bureau.
  • Nationwide, the 2015 motor vehicle theft rate per 100,000 people was 220.2, up two point two (2.2) percent from 2015.2 in 2014. The highest rate was reported in the West, 371.5 or up eight point two (8.2) percent from 342.2 in 2014.
  • In 2015, only thirteen point one (13.1) percent of motor vehicle thefts were cleared, either by arrests or by exceptional mean, compared with 2014 percent for arson and nineteen point four (19.4) percent for all property crimes. Very disappointing statistics indeed.
  • Autos accounted for 74.7 percent of all motor vehicles stolen in 2015, trucks and buses accounted for 14.8 percent and other vehicles for 10.5 percent.

Given below are the cities in which most vehicles are stolen:

top-10-cities-for-stolen-vehicles

TOP TEN VEHICLES STOLEN:

The National Insurance Crime Bureau ranked the 10 most stolen vehicles in the country with data from the NCIC. Let’s take a look.  The actual numbers are in parentheses.

  1. Honda Accord (52,244)
  2. Honda Civic(49,430)
  3. Ford pickup (full size) (29,396)
  4. Chevrolet pickup (full size) (27,771)
  5. Toyota Camry (15,466)
  6. Ram pickup (full size) (11,212)
  7. Toyota Corolla(10,547)
  8. Nissan Altima (10,374)
  9. Dodge Caravan (9,798)
  10. Chevrolet Impala(9,225)

Automotive engineers continue to examine smartphone system and design to provide models for the development of an increasingly sophisticated user experience, with large center information displays and capacitive touchscreen being a good example.  Now designers are adding another smartphone feature, the fingerprint sensor to enhance modernization of the driver’s interface to functions in and beyond the automobile. This and other forms of biometric authentication, show great promise if implemented with sensitivity to user privacy and the extremes of the automotive operating environment.

BIOMETRICS:

Just what is the science of Biometrics?

Biometrics may be a fairly new term to some individuals so it is entirely appropriate at this time to define the technology.  This will lay the groundwork for the discussion to follow.  According to the International Biometric Society:

“Biometrics is used to refer to the emerging field of technology devoted to identification of individuals using biological traits, such as those based on retinal or iris scanning, fingerprints, or face recognition.”

The terms “Biometrics” and “Biometry” have been used since early in the 20th century to refer to the field of development of statistical and mathematical methods applicable to data analysis problems in the biological sciences.

From the Free Dictionary, we see the following definition:

  • The statistical study of biological phenomena.
  • The measurement of physical characteristics, such as fingerprints, DNA, or retinal patterns for use in verifying the identity of individuals.
  • Biometricsrefers to metrics related to human characteristics. Biometrics authentication (or realistic authentication) is used in computer science as a form of identification and access control. It is also used to identify individuals in groups that are under surveillance.

Biometric identifiers are the distinctive, measurable characteristics used to label and describe individuals. Biometric identifiers are often categorized as physiological versus behavioral characteristics. Physiological characteristics are related to the shape of the body.  Examples include, but are not limited to fingerprint, palm veins and odor/scent.  Behavioral characteristics are related to the pattern of behavior of a person, including but not limited to typing rhythm, gait, and voice.  Some researchers have coined the term behaviometrics to describe the latter class of biometrics.

More traditional means of access control include token-based identification systems, such as a driver’s license or passport, and knowledge-based identification systems, such as a password or personal identification number.  Since biometric identifiers are unique to individuals, they are more reliable in verifying identity than token and knowledge-based methods; however, the collection of biometric identifiers raises privacy concerns about the ultimate use of this information.

The oldest biometric identifier is facial recognition. The dimensions, proportions and physical attributes of a person’s face are unique and occur very early in infants.   A child will (obviously) recognize a parent, a brother or sister.  It is only since the advent of computers and accompanying software that the ability to quantify facial features has become possible.

The FBI has long been a leader in biometrics and has used various forms of biometric identification since the very earliest day.  This Federal institution assumed responsibility for managing the national fingerprint collection in 1924.  As you know, fingerprints vary from person to person (even identical twins have different prints) and don’t change over time. As a result, they are an effective way of identifying fugitives and helping to prove both guilt and innocence.

AUTOMOTIVE BIOMETRICS USING FINGERPRINT TECHNOLOGY:

What areas of a typical vehicle might benefit from specifically identifying a human being and matching that person to a particular car? Several possibilities come to mind:

  • Secure Access;
    ● Ignition Permission;
    ● Seat Reservations;
    ● On board communication systems;
    ● Anti-Theft programs;
    ● Driving license suspension programs.

All of these would insure privacy and access.  The two digital photographs below will serve to indicate how this methodology might work for an automobile.

starting-the-car

The fingerprint reader can be located in the steering wheel so the driver can concentrate in a better fashion.  This definitely desirable if biometric fingerprints are used for purposes other than starting the vehicle.

starting-the-car2

With this in mind, there are three mainstream fingerprint-sensing technologies available for automotive applications. These are as follows:

  • Capacitive Sensing—This is used in the world’s best-selling smartphones due to very small size: a sensing pad a few tens of microns thick and a small controller allow for very low power consumption.
  • Optical Fingerprint Sensing—Optical sensors are highly reliable and accurate, and so are widely used at border crossings. However, the sensors require a backlight to illuminate the finer.  They are still comparatively bulky compared to capacitive solutions.
  • Ultrasonic Sensing—This offers reliable detection of fingerprints in 3 D but has not found its way into mainstream mobile devices and is relative expensive.

CONCLUSIONS:

I believe biometrics will play a much bigger role in the automotive industry over the next few years.  Biometric fingerprinting could be used in a host of areas including:

  • Access to cabin compartment
  • Starting
  • Accessing cellphone communications
  • Allowing for application software located on cellphone so warm up in very cold climates could be made possible.

Now—here is the downside.  Someone has to be capable of troubleshooting a failed device and fix same if difficulties arise.  As complexity grows, we move more toward replace than fix.  Replace is costly.

As always, I welcome your comments.


Forbes Magazine recently published what they consider to be the top ten (10) trends in technology.  It’s a very interesting list and I could not argue with any item. The writer of the Forbes article is David W. Cearley.  Mr. Cearley is the vice president and Gartner Fellow at Gartner.  He specializes in analyzing emerging and strategic business and technology trends and explores how these trends shape the way individuals and companies derive value from technology.   Let’s take a quick look.

  • DEVICE MESH—This trend takes us far beyond our desktop PC, Tablet or even our cell phone.  The trend encompasses the full range of endpoints with which humans might interact. In other words, just about anything you interact with could possibly be linked to the internet for instant access.  This could mean individual devices interacting with each other in a fashion desired by user programming.  Machine to machine, M2M.
  • AMBIENT USER EXPERIENCE–All of our digital interactions can become synchronized into a continuous and ambient digital experience that preserves our experience across traditional boundaries of devices, time and space. The experience blends physical, virtual and electronic environments, and uses real-time contextual information as the ambient environment changes or as the user moves from one place to another.
  • 3-D PRINTING MATERIALS—If you are not familiar with “additive manufacturing” you are really missing a fabulous technology. Right now, 3-D Printing is somewhat in its infancy but progress is not just weekly or monthly but daily.  The range of materials that can be used for the printing process improves in a remarkable manner. You really need to look into this.
  • INFORMATION OF EVERYTHING— Everything surrounding us in the digital mesh is producing, using and communicating with virtually unmeasurable amounts of information. Organizations must learn how to identify what information provides strategic value, how to access data from different sources, and explore how algorithms leverage Information of Everything to fuel new business designs. I’m sure by now you have heard of “big data”.  Information of everything will provide mountains of data that must be sifted through so usable “stuff” results.  This will continue to be an ever-increasing task for programmers.
  • ADVANCED MACHINE LEARNING– Rise of the Machines.  Machines talking to each other and learning from each other.  (Maybe a little more frightening that it should be.) Advanced machine learning gives rise to a spectrum of smart machine implementations — including robots, autonomous vehicles, virtual personal assistants (VPAs) and smart advisors — that act in an autonomous (or at least semiautonomous) manner. This feeds into the ambient user experience in which an autonomous agent becomes the main user interface. Instead of interacting with menus, forms and buttons on a smartphone, the user speaks to an app, which is really an intelligent agent.
  • ADAPTIVE SECURITY ARCHITECTURE— The complexities of digital business and the algorithmic economy, combined with an emerging “hacker industry,” significantly increase the threat surface for an organization. IT leaders must focus on detecting and responding to threats, as well as more traditional blocking and other measures to prevent attacks. I don’t know if you have ever had your identity stolen but it is NOT fun.  Corrections are definitely time-consuming.
  • ADVANCED SYSTEM ARCHITECTURE–The digital mesh and smart machines require intense computing architecture demands to make them viable for organizations. They’ll get this added boost from ultra-efficient-neuromorphic architectures. Systems built on graphics processing units (GPUs) and field-programmable gate-arrays (FPGAs) will function more like human brains that are particularly suited to be applied to deep learning and other pattern-matching algorithms that smart machines use. FPGA-based architecture will allow distribution with less power into the tiniest Internet of Things (IoT) endpoints, such as homes, cars, wristwatches and even human beings.
  • Mesh App and Service ArchitectureThe mesh app and service architecture are what enable delivery of apps and services to the flexible and dynamic environment of the digital mesh. This architecture will serve users’ requirements as they vary over time. It brings together the many information sources, devices, apps, services and microservices into a flexible architecture in which apps extend across multiple endpoint devices and can coordinate with one another to produce a continuous digital experience.
  • INTERNET OF THINGS (IoT) and ARCHITECTURE PLATFORMS– IoT platforms exist behind the mesh app and service architecture. The technologies and standards in the IoT platform form a base set of capabilities for communicating, controlling, managing and securing endpoints in the IoT. The platforms aggregate data from endpoints behind the scenes from an architectural and a technology standpoint to make the IoT a reality.
  • Autonomous Agents and ThingsAdvanced machine learning gives rise to a spectrum of smart machine implementations — including robots, autonomous vehicles, virtual personal assistants (VPAs) and smart advisors — that act in an autonomous (or at least semiautonomous) manner. This feeds into the ambient user experience in which an autonomous agent becomes the main user interface. Instead of interacting with menus, forms and buttons on a smartphone, the user speaks to an app, which is really an intelligent agent.

CONCLUSIONS:  You have certainly noticed by now that ALL of the trends, with the exception of 3-D Printing are rooted in Internet access and Internet protocols.  We are headed towards a totally connected world in which our every move is traceable.  Traceable unless we choose to fly under the radar.

%d bloggers like this: