RETURN OF X-PLANES

April 22, 2017


In the April 2017 issue of “Machine Design” a fascinating article entitled “NASA’S Green Thumb for Green Aviation” was presented. This article was written by Carlos M. Gonzales and encouraged me to explore, at least through NASA’s web site, the status of their “X-Plane” program.  Aviation is definitely a growth industry. Millions upon millions of individuals travel each year for business, recreation, and tourism.  There is no doubt that aviation is the “Greyhound Bus” for the twenty-first century.

The aviation system is the high-speed transportation backbone of the United States and global economies. Global aviation is forecast to grow from today’s three point five (3.5) billion passenger trips per year to seven (7) billion passenger trips by the mid- 2030s, and to eleven (11) billion passenger trips by mid-century. Such growth brings with it the direct economic potential of trillions of dollars in the fields of manufacturing, operations and maintenance, and the high-quality jobs they support.

At the same time, international competition for leadership of this critical industry is growing, as more nations invest in developing their own aviation technology and industrial capabilities. Such massive growth also creates substantial operational and environmental challenges. For example, by mid-century the aviation industry will need to build and fly enough new aircraft to accommodate more than three times as many passenger trips while at the same time reducing total emissions by half from that new hardware. Moreover, large reductions in emissions and aircraft noise levels will be needed, if not mandated. To meet those demands, revolutionary levels of aircraft performance improvements – well beyond today’s technology – must be achieved. In terms of air traffic control and the National Airspace System, maintaining safe and efficient operations is a continuing and growing challenge as the system expands, and especially as new business and operational models – such as unmanned aerial systems – are introduced. Enabling aircraft (with pilots aboard or not) to fly optimized trajectories through high density airspace with real-time, systemwide safety assurance are among the most critical operational improvements that must be achieved.

In looking at global growth, we see the following:

These numbers would be very frightening without the aviation industry deciding to be pro-active relative to the sheer numbers of passenger miles anticipated over the next two decades.  That’s where NASA comes in.

NEW AVIATION HORIZONS:

In FY 2017, NASA plans to begin a major ten-year research effort to accelerate aviation energy efficiency, transform propulsion systems, and enable major improvements in air traffic mobility. The centerpiece of NASA’s ten-year acceleration for advanced technologies testing is called New Aviation Horizons, or NAH. It is an ambitious plan to build a series of five mostly large-scale experimental aircraft – X-planes – that will flight test new technologies, systems and novel aircraft and engine configurations. X-planes are a key piece of the “three-legged stool” that characterizes aviation research.

  • One leg represents computational capabilities – the high-speed super computers that can model the physics of air flowing over an object – be it a wing, a rudder or a full airplane.
  • A second leg represents experimental methods. This is where scientists put what is most often a scale model of an object or part of an object – be it a wing, a rudder or an airplane – in a wind tunnel to take measurements of air flowing over the object. These measurements help improve the computer model, and the computer model helps inform improvements to the airplane design, which can then be tested again in the wind tunnel.
  • The third leg of the stool is to actually fly the design. Whether it’s flying an X-plane or a full-scale prototype of a new aircraft, the data recorded in actual flight can be used to validate and improve the computational and experimental methods used to develop the design in the first place. This third leg makes it possible to lower the risk enough to completely trust what the numbers are saying.

With NAH, NASA will:

  • Demonstrate revolutionary advancements in aircraft and engine configurations that break the mold of traditional tube and wing designs.
  • Support accelerated delivery to the U.S. aviation community of advanced verified design and analysis tools that support new flight-validated concepts, systems and technologies.
  • Provide to appropriate organizations and agencies research results that inform their work to update domestic and international aviation standards and regulations.
  • Enable U.S. industry to put into service flight-proven transformative technology that will solve tomorrow’s global aviation challenges.
  • Inspire a new generation of aeronautical innovators and equip them to engineer future aviation systems. Of the five X-planes, NASA has determined that three subsonic aircraft will be enough to span the range of possible configurations necessary to demonstrate in flight the major enabling fuel, emissions and noise reducing technologies.

The graphic below indicates possible designs for aircraft of the future.  All of these craft are now on the drawing board with computational prototyping underway.

INDUSTRY:

U.S. industry plays an integral role in the NAH initiative, leading the design, development and building of all X-planes under contract to NASA. Industry will be a research partner in the ground test and analysis, as well as the flight tests of the X-planes. Industry also partners in the advancement of the physics-based design and analysis capabilities. Through the lead and partnering roles, U.S. industry will be fully capable of confidently taking the next steps in commercializing the transformational configurations and technologies. The Lockheed Martin Aeronautics Company has already been awarded a preliminary design contract for the Quiet Supersonic Technology demonstrator. As indicated in a white paper published by the Aerospace Industries Association and the American Institute of Aeronautics and Astronautics, “The U.S. government must support robust, long-term Federal civil aeronautics research and technology initiatives funded at a level that will ensure U.S. leadership in aeronautics. Congress should support NASA’s ten-year Strategic Implementation Plan at least at the levels recommended in the fiscal year 2017 NASA Budget request to sustain a strong economy, maintain a skilled workforce, support national security, and drive a world-class educational system.”

UNIVERSITIES:

NASA has already launched the University Leadership Initiative, which provides U.S.-based universities the opportunity to take full independent leadership in defining and solving key technical challenges aligned with the NASA Aeronautics strategy. Solicitations and proposals are managed through the NASA Research Announcement process; the first round of awards will be made in Fall 2016. These awards could lead to new experiments that would fly onboard one or more X-planes. In addition, NASA is formulating new mechanisms for direct university and student participation in the X-plane design, development and flight test process. The objective is to ensure U.S. universities remain the leading global institutions for aviation research and education, and to ensure the next generation workforce has the vision and skills needed to lead aviation system transformation.

POSSIBLE CONFIGURATIONS:

As mentioned above, NASA, industry and universities have already begun looking at possible configurations.  The most promising on-going programs are given below.

As you can see, the designs are absolutely striking and “doable” relative to existing technology.  The key goals are to:

  • Produce environmentally sound or “GREEN” designs lessening air pollution.
  • Create better fuel usage and conservation.
  • Extend flight range
  • Structure designs so minimal airport alternations will be necessary
  • Improve passenger experience

Tall orders but keep in mind NASA got us to the moon and back.  Why do we feel they will not be able to meet the goals indicated?  As always, I welcome your comments.

EYE IN THE SKY

April 14, 2016


I usually don’t do movie reviews but this is an exception due to the technology displayed in “Eye in the Sky”.  This movie has been rated as a 4.5 to 5.0 by three movie reviewers and deserves the rating.  It is a marvelous movie and one I can certainly recommend to you.  Let me set the cast.

  • Hellen  Mirren as Colonel  Katherine Powel
  • Alan Rickman Lt. Gen. Frank Benson (This was Mr. Rickman’s last movie before his passing this year.
  • Aaron Paul as Lt. Steve Watts, United States Air Force
  • Barkhad Abdi as Jama Farah, MI6 operative
  • Phoebe Fox as Carrie Gershon—Weapons Officer, United States Air Force
  • Lian Glen—British Foreign Affairs Officer

The film, directed by Gavin Hood based on a screenplay by Guy Hibbert, and details military personnel facing the legal and ethical dilemmas presented by drone warfare against those using terrorist tactics. The overriding issue is the civilian population endangered by the military activity. The movie was filmed in South Africa in late 2014.

Colonel Katherine Powell (Helen Mirren) commands from Northwood Headquarters (Britain) a mission to capture high-level Al-Shabaab extremists meeting in a safehouse in Nairobi, Kenya. A Reaper drone controlled from Nevada by USAF pilot Steve Watts (Aaron Paul) provides aerial surveillance, while undercover Kenyan field agents, including Jama Farah (Barkhad Abdi), use short-range video bugs for ground intelligence. Kenyan ground troops are positioned nearby to execute the arrest, but are called off when Farah discovers the terrorists have explosives, and are preparing two suicide bombers for what is presumed to be an attack on a civilian target.  Time is of the essence and as the movie progresses there seems to be many more political roadblocks than might seem necessary.  If those individuals in the safehouse are allowed to leave, killing them will be out of the question.

Colonel Powell decides that the imminent bombing changes the mission objective from “capture” to “kill” and informs drone pilot Watts to prepare a missile attack on the building.  As protocol would dictate, she solicits the opinion of her legal counsel about doing so. To her frustration, her counsel advises her to seek approval from her superiors. Lieutenant General Frank Benson (Alan Rickman) is supervising the mission from London with members of the UK government as witnesses, and asks for their authorization. Citing conflicting legal and political views—such as contrasting the tactical value of the assassination with the negative publicity of killing civilians and the status of some of the targets as US or UK nationals—they fail to reach a decision and refer the question up to the Foreign Secretary (Iain Glen).  Impaired by a bout of food poisoning on a trade mission to Singapore, he does not offer a definite answer, first attempting to defer to the US Secretary of State (contacted on a cultural exchange in Beijing), then insisting only that due diligence be performed in seeking a way to minimize “collateral damage”.

Meanwhile, the situation at the house has become more difficult to assess.  Alia Mo’Allim (Aisha Takow), a pre-teen girl who lives in the adjacent home, is visibly in grave danger if the building—and the explosives inside—are struck by a missile. Watts and his USAF colleague Carrie Gershon (Phoebe Fox) can see Alia selling bread just outside the targeted building, and seek to delay firing until she moves. Farah attempts to buy all of her bread so she will leave, but in the process, his cover is blown and he is forced to flee. The suicide bombers are finishing their preparations when surveillance video of them is lost, raising the level of urgency.

Seeking a way to get the authorization she needs to execute the strike, Powell orders her risk-assessment officer to find strike parameters that will allow him to quote a lower risk of civilian deaths. He re-evaluates a strike point and places the probability of Alia’s death at forty-five (45) to sixty-five (65) percent; she coerces him to report only the lower figure up the chain of command. The strike is subsequently authorized, and Watts reluctantly fires a missile. The building is leveled, with casualties in and around it. Alia has moved far enough away to survive the strike, but is injured and unconscious. However, one of the terrorist leaders has also survived, requiring Watts to fire a second missile, which strikes the site just as Alia’s parents reach her. They suffer minor injuries and rush Alia to a hospital, where the medical personnel are unable to revive her and she is pronounced dead. This is a tragic ending to a great movie.  Collateral damage ending the life of an innocent little girl.

The script is fascinating but the scenes depicting the capabilities of drone activity is truly engaging.  The field operative is unable to get close enough to determine the identities of everyone in the safehouse and a definite “make” is necessary before firing the Hellfire missile. The story line is more complicated because one terrorist is British and one American.  Both must be identified before action can be taken.  The drone sent to capture video of those inside is a “bug”—a flying bug with a camera.  The drone is directed by a controller no bigger than a smartphone with directional buttons guiding its flight path.  The people are identified but the little girl selling bread is within the “kill zone”.  Delays occur until the proper clearances and permissions are granted.  The Reaper drone is flying at twenty thousand feet and circles the area waiting on permission to engage.  All the time, video is given of the girl selling bread.  Lt. Watts knows an airstrike incorrectly placed will kill the girl and others within a certain radius of the bomb blast.  He repeatedly asks for probabilities of destruction relative to collateral damage.

I suspect the drone activity in the movie is at least somewhat accurate and if this is the case the technology is stunning.  To control a drone over the horn of Africa from Nevada is truly amazing.  To do so in “real time” is even more impressive.  The personal toll on the pilot and the weapons officer is pronounced.  They will never forget the experience and I’m sure PTSD will be a factor in their future.  Killing innocent children is a huge burden but the individual wearing the bomb vest would have killed scores of innocents had he been able to carry out his attack.

I can definitely recommend this movie to you.  It truly demonstrated American capabilities as well as the strain in fighting terrorism in today’s world.


The following post uses as reference material from the “Aviation Week” on-line publication.

LOS ANGELES – Boeing closed out C-17 deliveries and seven decades of aircraft production in Long Beach, California, with the departure of the last airlifter for the Qatar Emiri air force to the company’s San Antonio facility on Nov 29.

The final aircraft is one of four C-17s that will be delivered to Qatar in 2016, and together with one aircraft that remains unsold and in storage in Texas, takes the overall production tally to 279. Not including the prototype, structural test airframes and the five undelivered aircraft, Boeing has so far officially delivered 271 C-17s, including 223 to the U.S. Air Force and 48 to international operators.

The Qatar C-17 is one of 10 “white tails” for which Boeing committed to building without having a firm customer in 2013. Of the remaining aircraft, sales finalized this year include a single C-17 for Canada, which accepted its fifth in March, and the United Arab Emirates, which took two more aircraft for a total fleet of eight. Two additional aircraft from the final batch were also acquired by Australia, which formally accepted its eighth and last C-17 at Long Beach on Sept. 4. Other international operators include the U.K., Kuwait, India and the 12-nation Strategic Airlift Capability consortium of NATO.

While Boeing continues to provide support, maintenance and upgrades to the airlifter fleet under the C-17 Globemaster III Integrated Sustainment Program (GISP) Performance-Based Logistics program, the future of the production site at Long Beach remains undecided. Even though large sections of both the Boeing F/A-18 and Lockheed Martin F-35 are produced in California, the C-17 is the last series-built, fixed-wing aircraft to be completely assembled and delivered in the state. So the last delivery ends more than 70 years of full aircraft production at Long Beach and more than a century of complete fixed-wing aircraft serial manufacturing in California.

Let’s take a look at several interesting statistics of the C-17.  The following digital will indicate the basic configuration.

C-17 Digital

C-17 and Mountain

As you can see, this is one beautiful aircraft.

The cargo bay is monstrous, which is one reason for its popularity over the years.  Personnel or cargo or both are equally at home in this aircraft with generous accommodations.  In the digital below, you can see material and personnel share the cavernous internal structure, and I might add, with room to spare.

Cargo Bay

The cockpit is equally impressive with digital “everything”.  The days of analogue instrumentation are in the past.  The cabin crew is a three-person experience.

Cockpit

Now, we look at the basic design.

DESIGN:

The C-17 is 174 feet (53 m) long and has a wingspan of about 170 feet (52 m). It can airlift cargo fairly close to a battle area. The size and weight of U.S. mechanized firepower and equipment has grown in recent decades from increased air mobility requirements, particularly for large or heavy non-palletized outsize cargo.

The C-17 is powered by four Pratt & Whitney F117-PW-100 turbofan engines, which are based on the commercial Pratt and Whitney PW2040 used on the Boeing 757. Each engine is rated at 40,400 foot-pounds of force or 180 kN of thrust. The engine’s thrust reversers direct engine exhaust air upwards and forward, reducing the chances of foreign object damage by ingestion of runway debris, and providing enough reverse thrust to back the aircraft up on the ground while taxiing. The thrust reversers can also be used in flight at idle-reverse for added drag in maximum-rate descents. In vortex surfing tests performed by C-17s, up to 10% fuel savings were reported. Debris being swept into the engines on less-than-acceptable runways is a real concern to the flight crew.  This problem has been solved.

For cargo operations the C-17 requires a crew of three: pilot, copilot, and loadmaster. The cargo compartment is 88 feet (26.82 m) long by 18 feet (5.49 m) wide by 12 feet 4 inches (3.76 m) high. The cargo floor has rollers for palletized cargo but it can be flipped to provide a flat floor suitable for vehicles and other rolling stock. Cargo is loaded through a large aft ramp that accommodates rolling stock, such as a 69-ton (63-metric ton) M1 Abrams main battle tank, other armored vehicles, trucks, and trailers, along with palletized cargo.

Maximum payload of the C-17 is 170,900 lb (77,500 kg), and its Maximum takeoff weight is 585,000 lb (265,350 kg). With a payload of 160,000 lb (72,600 kg) and an initial cruise altitude of 28,000 ft (8,500 m), the C-17 has an unrefueled range of about 2,400 nautical miles (4,400 km) on the first 71 aircraft, and 2,800 nautical miles (5,200 km) on all subsequent extended-range models that include a sealed center wing bay as a fuel tank. Boeing informally calls these aircraft the C-17 ER.  The C-17’s cruise speed is about 450 knots (833 km/h) (Mach 0.74). It is designed to airdrop 102 paratroopers and their equipment. The U.S. Army’s canceled Ground Combat Vehicle was to be transported by the C-17.

The C-17 is designed to operate from runways as short as 3,500 ft (1,064 m) and as narrow as 90 ft (27 m). In addition, the C-17 can operate from unpaved, unimproved runways (although with greater chance of damage to the aircraft). The thrust reversers can be used to back the aircraft and reverse direction on narrow taxiways using a three- (or more) point turn. The plane is designed for 20 man-hours of maintenance per flight hour, and a 74% mission availability rate.

NATO CAPABILITY:

The United States recognized the need to provide the C-17 to NATO forces as early as 2006.  An increasing threat potential to Western Europe resulted in the purchase of the C-17 aircraft.

At the 2006 Farnborough Airshow, a number of NATO member nations signed a letter of intent to jointly purchase and operate several C-17s within the NATO Strategic Airlift Capability.  Strategic Airlift Capability members are Bulgaria, Estonia, Hungary, Lithuania, the Netherlands, Norway, Poland, Romania, Slovenia, the United States, as well as two Partnership for Peace countries Finland and Sweden as of 2010.   The purchase was for two C-17s, and a third was contributed by the U.S. On 14 July 2009, Boeing delivered the first C-17 under NATO’s Strategic Airlift Capability (SAC) program. The second and third C-17s were delivered in September and October 2009.

The SAC C-17s are based at Pápa Air Base, Hungary. The Heavy Airlift Wing is hosted by Hungary, which acts as the flag nation.  The aircraft are manned in similar fashion as the NATO E-3 AWACS aircraft.  The C-17 flight crew is multi-national, but each mission is assigned to an individual member nation based on the SAC’s annual flight hour share agreement. The NATO Airlift Management Programe Office (NAMPO) provides management and support for the Heavy Airlift Wing. NAMPO is a part of the NATO Support Agency (NSPA).   In September 2014, Boeing revealed that the three C-17s supporting NATO SAC missions had achieved a readiness rate of nearly 94 percent over the last five years and supported over 1,000 missions.

SUMMARY:

The C-17 has seen duty in the following countries:

  • India
  • Qatar
  • UAE
  • New Zealand
  • Australia
  • Canada
  • Kuwait
  • United Kingdom

Once again, the “stats” are as follows:

GENERAL CHARACTERISTICS SUMMARY:

  • Crew: 3: 2 pilots, 1 loadmaster (five additional personnel required for aeromedical evacuation)
  • Capacity:
    • 102 paratroopers or
    • 134 troops with palletized and sidewall seats or
    • 54 troops with sidewall seats (allows 13 cargo pallets) only or
    • 36 litter and 54 ambulatory patients and medical attendants or
    • Cargo, such as an M1 Abrams tank, three Strykers, or six M1117 Armored Security Vehicles
  • Payload: 170,900 lb (77,519 kg) of cargo distributed at max over 18 463L master pallets or a mix of palletized cargo and vehicles
  • Length: 174 ft (53 m)
  • Wingspan: 169.8 ft (51.75 m)
  • Height: 55.1 ft (16.8 m)
  • Wing area: 3,800 ft² (353 m²)
  • Empty weight: 282,500 lb (128,100 kg)
  • Max. takeoff weight: 585,000 lb (265,350 kg)
  • Powerplant: 4 × Pratt & Whitney F117-PW-100 turbofans, 40,440 lbf (180 kN) each
  • Fuel capacity: 35,546 U.S. gal (134,556 L)

Performance

  • Cruise speed: Mach 0.74 (450 knots, 515 mph, 830 km/h)
  • Range: 2,420 nmi  (2,785 mi, 4,482 km) ; 5,610 nmi (10,390 km) with paratroopers
  • Service ceiling: 45,000 ft (13,716 m)
  • Max. wing loading: 150 lb/ft² (750 kg/m²)
  • Minimum thrust/weight: 0.277
  • Takeoff run at MTOW: 7,600 ft (2,316 m)
  • Landing distance: 3,500 ft (1,060 m)

One of the most successful designs in military history.  As always, I welcome your comments.

“CONNIE”

November 21, 2015


One of the most gifted engineers in our nation’s history was Mr. Bill Lear.  Lear was born in Hannibal, Missouri on 26 June 1902 and over a forty-six (46) year time period produced one hundred and twenty (120) patents.  He founded the LearJet Corporation.  The Lear jet is without doubt one of the most beautiful aircraft ever conceived.  From one memorable life came one memorable quote, as follows:

“If an airplane looks like it will fly—it will fly”.

He was talking about profile, lines, curvature while imagining the “slip-stream” created by the leading edges and the flight surfaces.  One other airplane that fits that description is the Lockheed Constellation or “Connie” as the design came to be known.  A remarkably beautiful aircraft.

My very first flight was in 1969. My father, sister and I departed Lovell Field in Chattanooga, Tennessee heading to Atlanta.  We flew to Atlanta in a DC-3, twin engine propeller-driven aircraft.  (I’m sure after death I will have to change planes in Atlanta before arriving in heaven.  Some things never change.)  Moving from arrival gate to departure gate during the very early years of commercial aviation took a minimal amount of time.   The Atlanta Hartsfield-Jackson International Airport was not the city within a city that exists today.  Upon arriving at our departure gate, I saw for the very first time a marvelous aircraft meeting all of the descriptive points Mr. Lear had in mind. Let’s take a look.

LOCKHEED CONSTELLATION:

Lockheel Constellation

The Lockheed Constellation (“Connie”) was a propeller-driven, four-engine airliner built by the Lockheed Corporation between 1943 and 1958 at the Burbank, California Lockheed facilities. The Constellation’s fuselage is shaped like an airfoil to add lift.   It curves upward at the rear to raise the triple tail out of the prop wash and slightly downward at the front so the nose-gear strut did not have to be impossibly long. Lockheed decided that the airplane’s admittedly large propellers needed even more ground clearance than did Douglas or Boeing on their competing transports, which resulted in the Connie’s long, spindly gear legs.

It was known as “the world’s best tri-motor” because it had so many engine failures it often flew on three.  There were large numbers of engine fires during the Constellation’s early development, but many airline pilots flew it for years without ever feathering an engine.

The Constellation was one of the first pressurized airliners with the Boeing 307 Stratoliner being the very first.  Cabin pressurization was absolutely required to improve the service ceiling of commercial aircraft and make flying above the “weather” a very welcome reality.  During WWII it was discovered that flying about 10,000 feet required oxygen to preclude issues with dizziness.  It was no different for commercial flying.

Lockheed built 856 aircraft using numerous model configurations—all with the same triple-tail design and dolphin-shaped fuselage. Most were powered by four 18-cylinder Wright R-3350s. The Constellation was used as a civil airliner and as a military and civil air transport, seeing service in the Berlin Airlift . It was also the presidential aircraft for Dwight D. Eisenhower.   At the present time President Eisenhower’s Air Force One is resting in a field at Marana Regional Airport.   Dubbed Columbine II in honor of the state flower of first lady Mamie Eisenhower’s native Colorado, the plane was state-of-the-art in its time.  It’s a real shame this early version of Air Force One is not on display.

The Constellation’s wing design was close to that of the P-38 Lightning, differing obviously in size.  The triple tail kept the aircraft’s height low enough to fit in existing hangars, while features included hydraulically boosted controls and a de-icing system used on wing and tail leading edges.  The aircraft had a maximum speed of over 375 mph (600 km/h), faster than that of a Japanese Zero fighter, a cruise speed of 340 mph (550 km/h), and a service ceiling of 24,000 ft (7,300 m).  At the time the service ceiling was a significant breakthrough in aviation technology.

According to Anthony Sampson in Empires of the Sky, Lockheed’s Skunk Factory and Kelly Johnson may have undertaken the intricate design, but Howard Hughes’ intercession in the design process drove the concept, shape, capabilities, appearance, and ethos.   These rumors were discredited by Kelly Johnson. Howard Hughes and Jack Frye confirmed that the rumors were not true in a letter in November 1941.

After World War II the Constellation came into its own as a very fast civil airliner. Aircraft already in production for the USAAF as C-69 transports were finished as civil airliners, with TWA receiving the first on 1 October 1945. TWA’s first transatlantic proving flight departed Washington, DC, on December 3, 1945, arriving in Paris on December 4 via Gander, Nova Scotia and Shannon, Ireland.

Trans World Airlines transatlantic service started on February 6, 1946 with a New York-Paris flight in a Constellation. On June 17, 1947 Pan American World Airways opened the first ever scheduled round-the-world service with their L-749 Clipper America. The famous flight “Pan Am 1” operated until 1982.

As the first pressurized airliner in widespread use, the Constellation helped to usher in affordable and comfortable air travel. Operators of Constellations included the following airlines:

CABIN:

For its time, the cabin represented the ultimate in luxury with comfort and room to spare.

Cabin

Cabin (2)

Maybe someone can comment on a statement I have heard more than once.  In the early days of commercial aviation, all of the cabin crew had to be registered nurses.  Do you know if that is a fact?

COCKPIT:

Notice from the digital below, all of the flight systems were analogue. No digital in those days.  Also notice, the aircraft was meant to be managed by a three-man flight crew; i.e. pilot-in-command, co-pilot and flight engineer or navigator.  The right side of the cockpit was designed for a navigator.

Cockpit

Two fairly large fans, one left and one right, kept the flight crew reasonably comfortable.

Times have certainly changed from my first flight in 1969.  No more analogue or two-man flight crew and now air travel is the “new” Greyhound.  It’s affordable, at least to some degree.

As always, I welcome your comments.

WINGS OVER NORTH GEORGIA

November 14, 2015


I don’t really know when my love for aviation began but I am sure it was very early in life.  As a kid, I built tens of plastic airplane models.  My biggest challenge was the “Spruce Goose”; eight engines, four per wing.  I discovered that painting and decal “fixing” was my biggest and most time-consuming chore.   I’ve sniffed enough Testors glue to classify as a junkie.   I would then carefully display the models in my room either hanging from the ceiling, always in attack mode for the fighters, or positioned squarely on a shelf available for all to see.

Later on, I graduated to “U” controlled balsa wood models.   I realize this takes most of you way back so I’ve included a JPEG of a “U” controlled plane.  As you can see, the planes are tethered by two wires, each controlling the vertical climb/dive motion of the aircraft.  The control is a hand-held plastic or wooden “U” device shown by the second JPEG.

U-Controlled Airplane

U- Flight

As you can see, the wires are attached to the upper and lower “U”.  The “pilot” will rock the controller to facilitate climb and descent motion.

We loved to dog fight these balsa wood planes.  You do that by tying streamers to both wings, then have at it.  Both pilots stand back to back, crank the engines and have at it.  The first one to cut the streamer of the other is obviously the winner.

Then came remote-controlled model airplanes.  This was the third phase in the development of flying models.  By that time, I was attending my university so I missed out on this fun-filled activity.  Too little time and too little money.  After graduation, I was commissioned into the United States Air Force.  You get the picture.  I’m a real fan.

Several weeks ago, I attended the “Wings Over North Georgia” air show in Rome, Georgia.  It was a miserable, rainy, cold, muddy day but we enjoyed every minute of it.  The next slides will illustrate the day and the airplanes we saw.  The “feature” event was an F-22 Raptor.  This is one beautiful machine.  Let’s take a look at several “heavier-than-air-aircraft” on display that day.

OSPREY

Ospery

I told you it was wet.  I had never seen an Osprey before and after seeing the cockpit, it’s the real deal. Let’s take a look.

The Bell Boeing V-22 Osprey is an American multi-mission, tilt-rotor military aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

The V-22 originated from the United States Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. The team of Bell Helicopter and Boeing Helicopters was awarded a development contract in 1983 for the tilt-rotor aircraft. The Bell Boeing team jointly produced the aircraft.  The V-22 first flew in 1989, and began flight testing and design alterations; the complexity and difficulties of being the first tilt-rotor intended for military service in the world led to many years of development.

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007; it supplemented and then replaced their Boeing Vertol CH-46 Sea Knights. The Osprey’s other operator, the U.S. Air Force, fielded their version of the tilt-rotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed in transportation and medivac operations over Iraq, Afghanistan, Libya and Kuwait.  A better look with the aircraft going from VTOL to level flight is given as follows:

OSPREY IN FLIGHT

C-17

One other aircraft on display was the C-17 Globemaster transport.  The Boeing C-17 Globemaster III is a large military transport aircraft. It was developed for the United States Air Force (USAF) from the 1980s to the early 1990s by McDonnell Douglas. The C-17 carries forward the name of two previous piston-engine military cargo aircraft, the Douglas C-74 Globemaster and the Douglas C-124 Globemaster II. The C-17 commonly performs strategic airlift missions, transporting troops and cargo throughout the world; additional roles include tactical airlift, medical evacuation and airdrop duties.

Boeing, which merged with McDonnell Douglas in the 1990s, continued to manufacture C-17s for export customers following the end of deliveries to the U.S. Air Force. Aside from the United States, the C-17 is in service with the United KingdomAustraliaCanadaQatarUnited Arab EmiratesNATO Heavy Airlift WingIndia, and Kuwait. The final C-17 was completed in May 2015. Let’s take a look.

C-17. Todd and Bob(3)

OK, so I’m not the HULK, but this thing is huge.  I’m the one in the yellow rain jacket and you can see how “petite” my buddy Todd and I are in comparison to this monster.   The following JPEG is courtesy of the USAF and will show the internal size of the C-17.

C-17 Internal

I told you it was big.

F-22 Raptor

I don’t have any JPEGs of the Raptor I took personally.  There was a four-hour delay due to weather and the Raptor made a low-level run to demonstrate maneuvering capabilities.  The JPEGs below were obtained (again) from the USAF.  I can tell you from witnessing the flight, it has impressive sharp-turn capabilities and deserves to be called state-of-the-art.

The Lockheed Martin F-22 Raptor is a single-seat, twin-engine, all-weather stealth tactical fighter aircraft developed for the United States Air Force (USAF). The result of the USAF’s Advanced Tactical Fighter program, the aircraft was designed primarily as an air superiority fighter, but has additional capabilities including ground attackelectronic warfare, and signals intelligence roles.  Lockheed Martin is the prime contractor and was responsible for the majority of the airframe, weapon systems, and final assembly of the F-22, while program partner Boeing provided the wings, aft fuselage, avionics integration, and training systems.

The aircraft was variously designated F-22 and F/A-22 prior to formally entering service in December 2005 as the F-22A. Despite a protracted development as well as operational issues, the USAF considers the F-22 a critical component of its tactical air power, and states that the aircraft is unmatched by any known or projected fighter.  The Raptor’s combination of stealth, aerodynamic performance, and situational awareness gives the aircraft unprecedented air combat capabilities

The high cost of the aircraft, a lack of clear air-to-air missions due to delays in Russian and Chinese fighter programs, a ban on exports, and development of the more versatile and lower cost F-35 led to the end of F-22 production.   A final procurement tally of 187 operational production aircraft was established in 2009 and the last F-22 was delivered to the USAF in 2012.

F-22 Raptor

The Raptor cockpit is a digital marvel.  Please note the “heads-up” display.

F-22 Raptor Cockpit

There were other aircraft on display including several that would qualify as “oldies-but-goodies”.  The most impressive was the B-25 bomber.  It was in pristine condition and flew to the air show from its “home” in Arizona.  Unfortunately, it left the show before I had time to make a picture.  We frequently had to duck for cover during several periods of driving rain.  Good day—but wet day.

Hope you enjoy this one.  As always, I welcome your comments.

EMBRAER

March 27, 2015


You know Dasher and Dancer and Prancer and Vixson, Gulfstream and Piper and Beechcraft and Cessna; but do you recall the least-known aircraft of all?  OK, so I’m not a poet or songwriter.  Have you ever heard of an aircraft manufacturer called EMBRAER?  Do you recognize their logotype?

LOGO

Well, I’ll bet you have flown on one of their aircraft.

HISTORY:

Embraer S.A. is a Brazilian aerospace conglomerate that produces commercial, military, executive and agricultural aircraft.  The company also provides corporate and private aeronautical services. It is headquartered in ão José dos Campos in the State of São Paulo.

On August 19, 1969, Embraer; (Empresa Brasileira de Aeronáutica S.A.) was created. With the support of the Brazilian government, the Company turned science and technology into engineering and industrial capacity. The Brazilian government was seeking a domestic aircraft manufacture thus making several investment attempts during the 1940s and ’50s to fulfill this need.    Its first president, Ozires Silva, was appointed by the Brazilian government to run the company.   EMBRAER initially produced one turboprop passenger aircraft, the Embraer EMB 110 Bandeirante, a project organized and executed by Ozires Silva. The first EMB 110 Bandeirante to be produced in series made its maiden flight on August 9, 1972. On the 19th of that same month, a public ceremony was held at the Embraer headquarters, attended by officials, employees and journalists from not only Brazil but several countries in South America. That aircraft is shown by the digital below.

40 Years Ago

By the end of the ‘70s, the development of new products, such as the EMB 312 Tucano and the EMB 120 Brasilia, followed by the AMX program in cooperation with Aeritalia (currently Alenia) and Aermacchi companies, allowed Embraer to reach a new technological and industrial level.  At exactly 8:44 AM, on April 8, 1982, the twin-engines EMB 121 Xingu PP-ZXA and PP-ZXB took off from São José dos Campos, piloted by Brasílico Freire Netto, Carlos Arlindo Rondom, Paulo César Schuler Remido and Luiz Carlos Miguez Urbano, en route to France. They were the first two aircraft of a total of forty-one (41) ordered by the French government for use in training military pilots from the Air Force (Armé de L’Air) and Naval Aviation (Aeronavale) department. The aircraft were delivered to the French authorities on April 16, at Le Bourget Airport.  That aircraft may be seen as follows:

Comissioned by the French

The EMB 120 Brasilia aircraft became an important milestone in the history of Embraer. Developed as a response to the evolving demands of the regional air transport industry, its design took advantage of the most advanced technologies available at the time. It was the fastest, lightest and most economical airplane in its category.  Most of the EMB 120s were sold in the United States and other destinations in the Western Hemisphere. Some European airlines such as Régional in France, Atlant-Soyuz Airlines in Russia, DAT in Belgium, and DLT in Germany also purchased EMB-120s. Serial production ended in 2001. As of 2007, it is still available for one-off orders, as it shares much of the production equipment with the ERJ-145 family, which is still being produced. The Angolan Air Force, for example, received a new EMB 120 in 2007.  If you’ve done much flying at all you probably have flown on the EMB 120. SkyWest Airlines operates the largest fleet of EMB 120s under the United Express and Delta Connection brand. Great Lakes Airlines operates six EMB 120s in its fleet, and Ameriflight flies eight as freighters.  This configuration has been a real short-haul workhorse. Another, and possibly better look, is as follows:

Air Moldova

COMMERCIAL LONG-HAUL:

Another workhorse is the EMBRAER 195.  That aircraft may be seen below.  It costs approximately $40 Million, which is just as expensive as the average narrow-body passenger jet and seats 108 passengers in a typical layout, 8 more than the average narrow-body passenger plane. The maximum seating capacity is 122 passengers in an all-economy class configuration.   The 195 uses roughly $11.64 worth of fuel per nautical mile flown (assuming $6 per gallon of jet fuel).  On a per-seat basis, this translates to being 7.3% more cost-efficient than the average aircraft.

A maximum range of 2,200 nautical miles (equal to 2,530 miles) makes this aircraft most appropriate for long domestic flights, or very short international flights.   With a service ceiling (max cruise altitude) of 41,000 feet, it is just slightly higher than the norm for this type of aircraft and can certainly get above most weather patterns along the flight route.

EMBRAER 195.doc

BUSINESS JET:

The Embraer EMB-505 Phenom 300 is a light jet aircraft developed by Embraer which can carry eight (8) or nine (9) occupants.  It has a flying range of 1,971 nmi (3,650 km) and carries a price estimate between US $ 5 million and US $ 8 million in 2012.

At 45,000 feet (14,000 m), the Phenom 300 is pressurized to a cabin altitude of 6,600 feet (2,000 m). The jet features single-point refueling and an externally serviced private rear lavatory, refreshment center and baggage area. It received FAA Type Certification on 14 December 2009 as the Embraer EMB-505.

On 29 December 2009 Embraer delivered the first Phenom 300 to Executive Flight Services at the company’s headquarters at São José dos Campos, Brazil.  In just four years, the Phenom 300 climbed to the top position on the list of most delivered business jets, with 60 units delivered in 2013. The Phenom 300 is the fastest seller in NetJets‘ inventory, counting thirty-six (36).  A beautiful aircraft with the ten (10)  most recent deliveries totaling $90 million. 

BUSINESS

MILITARY ISSUE:

Embraer has started work on modernizing a second production of Northrop F-5E fighters and F-model trainers for the Brazilian air force.

Three aircraft from a total of 11 are already being worked on at the company’s facilities in Gavião Peixoto, Brazil, with deliveries expected to start later this year. Embraer says it completed the delivery of a first batch of 46 modified F-5EM/FMs in 2012.  That aircraft is shown below.

Fighter

Both the modernized F-5M and AMX are being upgraded to a common avionics configuration. “What we are doing in Brazil is basically a commonality between the Super Tucano, F-5 and the AMX so that the pilots would not have many problems for transition,” Embraer says. “You also reduce costs and assist in training.”

The AMX and F-5 fleets are also receiving Elbit Systems-built radars, in addition to upgraded electronic warfare equipment, in-flight refueling systems and other improvements.

Meanwhile, the Brazilian navy is also upgrading its small fleet of 12 Douglas A-4 Skyhawk carrier-based light strike aircraft. At least one of the Skyhawks is currently being modernized at Gavião Peixoto, but Embraer could not immediately offer any details.

Alongside the modernization work for the Brazilian military, the factory at Gavião Peixoto is at work building a number of Super Tucanos for export customers in Angola and Indonesia.

Brazil is has previously increased spending on defense to prepare hosting the FIFA World Cup in 2014 and Olympic Games 2016 respectively.

There is also a growing realization in the country that it will have to work diligently in the future to protect its vast natural resources. This could unfortunately require military preparedness.

Another example of Embraer’s military ability may be seen from the following aircraft:

Heavy Duty Cargo Aircraft

The Embraer KC-390 is a medium-size, twin-engine jet-powered military transport aircraft now under development.  It is able to perform aerial refueling and to transport cargo and troops and will be the heaviest aircraft the company has in its inventory.  It will be able to transport up to 21 metric tons (23 short tons) of cargo, including wheeled armored fighting vehicles.

AGRICULTURAL:

The Ipanema is the market leader, with 50 years of continuous production and over 1,300 units sold, representing about 75% of the nation’s fleet in this segment.   The Ipanema agricultural aircraft is a leading agricultural market in Brazil, with about 60% share.  There has been 40 years of continuous production and constant research to improve the aircraft.  That concentration of effort always focused on the needs of the customers and the national agricultural market.  This brand demonstrates the reliability, solidity and tradition of Ipanema.  One other fact, the Ipanema is the first aircraft certified to fly powered solely by ethanol.  In addition to the economic advantages and obtained improvement in engine performance, ethanol is a renewable source of energy, which helps protect the environment.

Agricultural

CONCLUSION:

As you can see, the United States aircraft manufacturers do have competition and excellent competition at that.    This foreign entry keeps us on our toes.

BOEING 777

March 22, 2015


The following post used the following references as resources: 1.) Aviation Week and 2.) the Boeing Company web site for the 777 aircraft configurations and history of the Boeing Company.

I don’t think there is much doubt that The Boeing Company is and has been the foremost company in the world when it comes to building commercial aircraft. The history of aviation, specifically commercial aviation, would NOT be complete without Boeing being in the picture. There have been five (5) companies that figured prominently in aviation history relative to the United States. Let’s take a look.

THE COMPANIES:

During the last one hundred (100) years, humans have gone from walking on Earth to walking on the moon. They went from riding horses to flying jet airplanes. With each decade, aviation technology crossed another frontier, and, with each crossing, the world changed.

During the 20th century, five companies charted the course of aerospace history in the United States. They were the Boeing Airplane Co., Douglas Aircraft Co., McDonnell Aircraft Corp., North American Aviation and Hughes Aircraft. By the dawning of the new millennium, they had joined forces to share a legacy of victory and discovery, cooperation and competition, high adventure and hard struggle.

Their stories began with five men who shared the vision that gave tangible wings to the eternal dream of flight. William Edward Boeing, born in 1881 in Detroit, Mich., began building floatplanes near Seattle, Wash. Donald Wills Douglas, born in 1892 in New York, began building bombers and passenger transports in Santa Monica, Calif. James Smith McDonnell, born in 1899 in Denver, Colo., began building jet fighters in St. Louis, Mo. James Howard “Dutch” Kindelberger, born in 1895 in Wheeling, W.Va., began building trainers in Los Angeles, Calif. Howard Hughes Jr. was born in Houston, Texas, in 1905. The Hughes Space and Communications Co. built the world’s first geosynchronous communications satellite in 1963.

These companies began their journey across the frontiers of aerospace at different times and under different circumstances. Their paths merged and their contributions are the common heritage of The Boeing Company today.

In 1903, two events launched the history of modern aviation. The Wright brothers made their first flight at Kitty Hawk, N.C., and twenty-two (22) year-old William Boeing left Yale engineering college for the West Coast.

After making his fortune trading forest lands around Grays Harbor, Wash., Boeing moved to Seattle, Wash., in 1908 and, two years later, went to Los Angeles, Calif., for the first American air meet. Boeing tried to get a ride in one of the airplanes, but not one of the dozen aviators participating in the event would oblige. Boeing came back to Seattle disappointed, but determined to learn more about this new science of aviation.

For the next five years, Boeing’s air travel was mostly theoretical, explored during conversations at Seattle’s University Club with George Conrad Westervelt, a Navy engineer who had taken several aeronautics courses from the Massachusetts Institute of Technology.

The two checked out biplane construction and were passengers on an early Curtiss Airplane and Motor Co.-designed biplane that required the pilot and passenger to sit on the wing. Westervelt later wrote that he “could never find any definite answer as to why it held together.” Both were convinced they could build a biplane better than any on the market.

In the autumn of 1915, Boeing returned to California to take flying lessons from another aviation pioneer, Glenn Martin. Before leaving, he asked Westervelt to start designing a new, more practical airplane. Construction of the twin-float seaplane began in Boeing’s boathouse, and they named it the B & W, after their initials. THIS WAS THE BEGINNING.  Boeing has since developed a position in global markets unparallel relative to competition.

This post is specifically involved with the 777 product and changes in the process of being made to upgrade that product to retain markets and fend off competition such as the Airbus. Let’s take a look.

SPECIFICATION FOR THE 777:

In looking at the external physical characteristics, we see the following:

BOEING GENERAL EXTERNAL ARRANGEMENTS

As you can see, this is one BIG aircraft with a wingspan of approximately 200 feet and a length of 242 feet for the “300” version.  The external dimensions are for passenger and freight configurations.  Both enjoy significantly big external dimensions.

Looking at the internal layout for passengers, we see the following:

TYPICAL INTERIOR SEATING ARRANGEMENTS

TECHNICAL CHARACTERISTICS:

If will drill down to the nitty-gritty, we find the following:

TECHNICAL CHARACTERISTICS(1)

TECHNICAL CHARACTERISTICS(2)

As mentioned, the 777 also provides much needed services for freight haulers the world over.  In looking at payload vs. range, we see the following global “footprint” and long range capabilities from Dubai.  I have chosen but similar “footprints” may be had from Hong Kong, London, Los Angles, etc etc.

FREIGHTER PAYLOAD AND RANGE

Even with these very impressive numbers, Boeing felt an upgrade was necessary to remain competitive to other aircraft manufacturers.

UPGRADES:

Ever careful with its stewardship of the cash-generating 777 program, Boeing is planning a series of upgrades to ensure the aircraft remains competitive in the long-range market well after the 777X derivative enters service.

The plan, initially revealed this past January, was presented in detail by the company for the first time on March 9 at the International Society of Transport Air Trading meeting in Arizona. Aimed at providing the equivalent of two percent (2%) fuel-burn savings in baseline performance, the rolling upgrade effort will also include a series of optional product improvements to increase capacity by up to fourteen (14) seats that will push the total potential fuel-burn savings on a per-seat basis to as much as five percent (5%) over the current 777-300ER by late 2016.

At least 0.5% of the overall specific fuel-burn savings will be gained from an improvement package to the aircraft’s GE90-115B engine, the first elements of which General Electric will test later this year.  The bulk of the savings will come from broad changes to reduce aerodynamic drag and structural weight. Additional optional improvements to the cabin will also provide operators with more seating capacity and upgraded features that would offer various levels of extra savings on a per-seat basis, depending on specific configurations and layouts.  The digital below will highlight the improvements announced.

UPGRADES FOR 777

“We are making improvements to the fuel-burn performance and the payload/range and, at same time, adding features and functionality to allow the airlines to continue to keep the aircraft fresh in their fleets,” says 777 Chief Project Engineer and Vice President Larry Schneider. The upgrades, many of which will be retro-fittable, come as Boeing continues to pursue new sales of the current-generation twin to help maintain the 8.3-per-month production rate until the transition to the 777X at the end of the decade. Robert Stallard, an analyst at RBS Europe, notes that Boeing has a firm backlog of 273 777-300s and 777Fs, which equates to around 2.7 years of current production. “We calculate that Boeing needs to get 272 new orders for the 777 to bridge the current gap and then transition production phase on the 777X,” he says.

The upgrades will also boost existing fleets, Boeing says. “Our 777s are operated by the world’s premier airlines and now we are seeing the Chinese carriers moving from 747 fleets to big twins,” says Schneider. “There are huge 777 fleets in Europe and the Middle East, as well as the U.S., so enabling [operators] to be able to keep those up to date and competitive in the market—even though some of them are 15 years old—is a big element of this.”

Initial parts of the upgrade are already being introduced and, in the tradition of the continuous improvements made to the family since it entered service, will be rolled into the aircraft between now and the third quarter of 2016. “There is not a single block point in 2016 where one aircraft will have everything on it. It is going to be a continuous spin-out of those capabilities,” Schneider says. Fuel-burn improvements to both the 777-200LR and -300ER were introduced early in the service life of both derivatives, and the family has also received several upgrades to the interior, avionics and maintenance features over the last decade.

The overall structural weight of the 777-300ER will be reduced by 1,200 lb. “When the -300ER started service in 2004 it was 1,800 lb. heavier, so we have seen a nice healthy improvement in weight,” he adds. The reductions have been derived from production-line improvements being introduced as part of the move to the automated drilling and riveting process for the fuselage, which Boeing expects will cut assembly flow time by almost half. The manufacturer is adopting the fuselage automated upright build (FAUB) process as part of moves to streamline production ahead of the start of assembly of the first 777-9X in 2017.

One significant assembly change is a redesign of the fuselage crown, which follows the simplified approach taken with the 787. “All the systems go through the crown, which historically is designed around a fore and aft lattice system that is quite heavy. This was designed with capability for growth, but that was not needed from a systems standpoint. So we are going to a system of tie rods and composite integration panels, like the 787. The combination has taken out hundreds of pounds and is a significant improvement for workers on the line who install it as an integrated assembly,” Schneider says. Other reductions will come from a shift to a lower weight, less dense form of cabin insulation and adoption of a lower density hydraulic fluid.

Boeing has also decided to remove the tail skid from the 777-300ER as a weight and drag reduction improvement after developing new flight control software to protect the tail during abused takeoffs and landings. “We redesigned the flight control system to enable pilots to fly like normal and give them full elevator authority, so they can control the tail down to the ground without touching it. The system precludes the aircraft from contacting the tail,” Schneider says. Although Boeing originally developed the baseline electronic tail skid feature to prevent this from occurring on the -300ER, the “old system allowed contact, and to be able to handle those loads we had a lot of structure in the airplane to transfer them through the tailskid up through the aft body into the fuselage,” he adds. “So there are hundreds of pounds in the structure, and to be able to take all that out with the enhanced tail strike-protection system is a nice improvement.”

Boeing is also reducing the drag of the 777 by making a series of aerodynamic changes to the wing based on design work conducted for the 787 and, perhaps surprisingly, the long-canceled McDonnell Douglas MD-12. The most visible change, which sharp-eyed observers will also be able to spot from below the aircraft, is a 787-inspired inboard flap fairing redesign.

“We are using some of the technology we developed on the 787 to use the fairing to influence the pressure distribution on the lower wing. In the old days, aerodynamicists were thrilled if you could put a fairing on an airplane for just the penalty of the skin friction drag. On the 787, we spent a lot of time working on the contribution of the flap fairing shape and camber to control the pressures on the lower wing surface.”

Although Schneider admits that the process was a little easier with the 787’s all-new wing, Boeing “went back and took a look at the 777 and we found a nice healthy improvement,” he says. The resulting fairing will be longer and wider, and although the larger wetted area will increase skin friction, the overall benefits associated with the optimized lift distribution over the whole wing will more than compensate. It’s a little counterintuitive,” says Schneider, adding that wind-tunnel test results of the new shape showed close correlation with benefits predicted by computational fluid dynamics (CFD) analysis using the latest boundary layer capabilities and Navier-Stokes codes.

Having altered the pressure distribution along the underside of the wing, Boeing is matching the change on the upper surface by reaching back to technology developed for the MD-12 in the 1990s. The aircraft’s outboard raked wingtip, a feature added to increase span with the development of the longer-range variants, will be modified with a divergent trailing edge. “Today it has very low camber, and by using some Douglas Aircraft technology from the MD-12 we get a poor man’s version of a supercritical airfoil,” says Schneider. The tweak will increase lift at the outboard wing, making span loading more elliptical and reducing induced drag.

Boeing has been conducting loads analysis on the 777 wing to “make sure we understand where all those loads will go,” he says. A related loads analysis to evaluate whether the revisions could also be incorporated into a potential retrofit kit will be completed this month. “When we figure out at which line number those two changes will come together (as they must be introduced simultaneously by necessity), we will do a single flight to ensure we don’t have any buffet issues from the change in lift distribution. That’s our certification plan,” Schneider says.

A third change to the wing will focus on reducing the base drag of the leading-edge slat by introducing a version with a sharper trailing edge. “The trailing-edge step has a bit of drag associated with it, so we will be making it sharper and smoothing the profile,” he explains. The revised part will be made thinner and introduced around mid-2016. Further drag reductions will be made by extending the seals around the inboard end of the elevator to reduce leakage and by making the passenger windows thicker to ensure they are fully flush with the fuselage surface. The latter change will be introduced in early 2016.

In another change adopted from the 787, Boeing also plans to alter the 777 elevator trim bias. The software-controlled change will move the elevator trailing edge position in cruise by up to 2 deg., inducing increased inverse camber. This will increase the download, reducing the overall trim drag and improving long-range cruise efficiency.

The package of changes means that range will be increased by 100nm or, alternatively, an additional 5,000 lb. of payload can be carried. Some of this extra capacity could be utilized by changes in the cabin that will free up space for another fourteen (14) seats. These will include a revised seat track arrangement in the aft of the cabin to enable additional seats where the fuselage tapers. Some of the extra seating, which will increase overall seat count by three percent (3%), could feature the option of arm rests integrated into the cabin wall. Schneider says the added seats, on top of the baseline  two percent (2%) fuel-burn improvement, will improve total operating efficiency by five percent (5%) on a block fuel per-seat basis.

Other cabin change options will include repackaged Jamco-developed lavatory units that provide the same internal space as today’s units but are eight (8) inch narrower externally. The redesign includes the option of a foldable wall between two modules, providing access for a disabled passenger and an assistant. Boeing is also developing noise-damping modifications to reduce cabin sound by up to 2.5 db, full cabin-length LED lighting and a 787-style entryway around Door 2. Boeing is also preparing to offer a factory-fitted option for electrically controlled window shades, similar to the 777 system developed as an aftermarket modification by British Airways.

CONCLUSIONS:

As you can see, the 777 is preparing to continue service for decades ahead by virtue of the modifications and improvements shown above.

As always, I welcome your comments.

%d bloggers like this: