Okay, there will be a test after you read this post.  Here we go.  Do you know these people?

  • Beyoncé
  • Jennifer Lopez
  • Mariah Cary
  • Lady Gaga
  • Ariana Grande
  • Katy Perry
  • Miley Cyrus
  • Karen Uhlenbeck

Don’t feel bad.  I didn’t know either.  This is Karen Uhlenbeck—the mathematician we do not know.  For some unknown reason we all (even me) know the “pop” stars by name; who their significant other or others are, their children, their latest hit single, who they recently “dumped”, where they vacationed, etc. etc.  We know this. I would propose the lady whose picture shown below has contributed more to “human kind” that all the individuals listed above.  Then again, that’s just me.

For the first time, one of the top prizes in mathematics has been given to a woman.  I find this hard to believe because we all know that “girls” can’t do math.  Your mamas told you that and you remembered it.  (I suppose Dr. Uhlenbeck mom was doing her nails and forgot to mention that to her.)

This past Tuesday, the Norwegian Academy of Science and Letters announced it has awarded this year’s Abel Prize — an award modeled on the Nobel Prizes — to Karen Uhlenbeck, an emeritus professor at the University of Texas at Austin. The award cites “the fundamental impact of her work on analysis, geometry and mathematical physics.”   Uhlenbeck won for her foundational work in geometric analysis, which combines the technical power of analysis—a branch of math that extends and generalizes calculus—with the more conceptual areas of geometry and topology. She is the first woman to receive the prize since the award of six (6) million Norwegian kroner (approximately $700,000) was first given in 2003.

One of Dr. Uhlenbeck’s advances in essence described the complex shapes of soap films not in a bubble bath but in abstract, high-dimensional curved spaces. In later work, she helped put a rigorous mathematical underpinning to techniques widely used by physicists in quantum field theory to describe fundamental interactions between particles and forces. (How many think Beyoncé could do that?)

In the process, she helped pioneer a field known as geometric analysis, and she developed techniques now commonly used by many mathematicians. As a matter of fact, she invented the field.

“She did things nobody thought about doing,” said Sun-Yung Alice Chang, a mathematician at Princeton University who served on the five-member prize committee, “and after she did, she laid the foundations for that branch of mathematics.”

An example of objects studied in geometric analysis is a minimal surface. Analogous to a geodesic, a curve that minimizes path length, a minimal surface minimizes area; think of a soap film, a minimal surface that minimizes energy. Analysis focuses on the differential equations governing variations of surface area, whereas geometry and topology focus on the minimal surface representing a solution to the equations. Geometric analysis weaves together both approaches, resulting in new insights.

The field did not exist when Uhlenbeck began graduate school in the mid-1960s, but tantalizing results linking analysis and topology had begun to emerge. In the early 1980s, Uhlenbeck and her collaborators did ground-breaking work in minimal surfaces. They showed how to deal with singular points, that is, points where the minimal surface is no longer smooth or where the solution to the equations is not defined. They proved that there are only finitely many singular points and showed how to study them by expanding them into “bubbles.” As a technique, bubbling made a deep impact and is now a standard tool.

Born in 1942 to an engineer and an artist, Uhlenbeck is a mountain-loving hiker who learned to surf at the age of forty (40). As a child she was a voracious reader and “was interested in everything,” she said in an interview last year with Celebratio.org. “I was always tense, wanting to know what was going on and asking questions.”

She initially majored in physics as an undergraduate at the University of Michigan. But her impatience with lab work and a growing love for math led her to switch majors. She nevertheless retained a lifelong passion for physics, and centered much of her research on problems from that field.  In physics, a gauge theory is a kind of field theory, formulated in the language of the geometry of fiber bundles; the simplest example is electromagnetism. One of the most important gauge theories from the 20th century is Yang-Mills theory, which underlies the standard model of elementary particle physics. Uhlenbeck and other mathematicians began to realize that the Yang-Mills equations have deep connections to problems in geometry and topology. By the early 1980s, she laid the analytic foundations for mathematical investigation of the Yang-Mills equations.

Dr. Uhlenbeck, who lives in Princeton, N.J., learned that she won the prize on Sunday morning.

“When I came out of church, I noticed that I had a text message from Alice Chang that said, Would I please accept a call from Norway?” Dr. Uhlenbeck said. “When I got home, I called Norway back and they told me.”

Who said women can’t do math?

BENDABLE BATTERIES

February 1, 2019


I always marvel at the pace of technology and how that technology fills a definite need for products only dreamt of previously.   We all have heard that “necessity is the mother of invention” well, I believe that to a tee.  We need it, we can’t find it, no one makes it, let’s invent it.  This is the way adults solve problems.  Every week technology improves our lives giving us labor-saving devices that “tomorrow” will become commonplace.  All electro-mechanical devices run on amperage provided by voltage impressed.   Many of these devices use battery power for portability.   Lithium-ion batteries seem to be the batteries of choice right now due to their ability to hold a charge and their ability to fast-charge.

Pioneer work with the lithium battery began in 1912 under G.N. Lewis but it was not until the early 1970s when the first non-rechargeable lithium batteries became commercially available. lithium is the lightest of all metals, has the greatest electrochemical potential and provides the largest energy density for weight.

The energy density of lithium-ion is typically twice that of the standard nickel-cadmium. This is a huge advantage recognized by engineers and scientists the world over.  There is potential for higher energy densities. The load characteristics are reasonably good and behave similarly to nickel-cadmium in terms of discharge. The high cell voltage of 3.6 volts allows battery pack designs with only one cell. Most of today’s mobile phones run on a single cell. A nickel-based pack would require three 1.2-volt cells connected in series.

Lithium-ion is a low maintenance battery, an advantage that most other chemistries cannot claim. There is no memory and no scheduled cycling is required to prolong the battery’s life. In addition, the self-discharge is less than half compared to nickel-cadmium, making lithium-ion well suited for modern fuel gauge applications. lithium-ion cells cause little harm when disposed.

If we look at advantages and disadvantages, we see the following:

Advantages

  • High energy density – potential for yet higher capacities.
  • Does not need prolonged priming when new. One regular charge is all that’s needed.
  • Relatively low self-discharge – self-discharge is less than half that of nickel-based batteries.
  • Low Maintenance – no periodic discharge is needed; there is no memory.
  • Specialty cells can provide very high current to applications such as power tools.

Limitations

  • Requires protection circuit to maintain voltage and current within safe limits.
  • Subject to aging, even if not in use – storage in a cool place at 40% charge reduces the aging effect.
  • Transportation restrictions – shipment of larger quantities may be subject to regulatory control. This restriction does not apply to personal carry-on batteries.
  • Expensive to manufacture – about 40 percent higher in cost than nickel-cadmium.
  • Not fully mature – metals and chemicals are changing on a continuing basis.

One amazing property of Li-Ion batteries is their ability to be formed.  Let’s take a look.

Researchers have just published documentation relative to a new technology that will definitely fill a need.

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY:

Researchers at the Ulsan National Institute of Science and Technology in Korea have developed an imprintable and bendable lithium-ion battery they claim is the world’s first, and could hasten the introduction of flexible smart phones that leverage flexible display technology, such as Samsung’s Youm flexible OLED.

Samsung first demonstrated this display technology at CES 2013 as the next step in the evolution of mobile-device displays. The battery could also potentially be used in other flexible devices that debuted at the show, such as a wristwatch and a tablet.

Ulsan researchers had help on the technology from Professor John A. Rogers of the University of Illinois, researchers Young-Gi Lee and Gwangman Kim of Korea’s Electronics and Telecommunications Research Institute, and researcher Eunhae Gil of Kangwon National University. Rogers was also part of the team that developed a breakthrough in transient electronics, or electronics that dissolve inside the body.

The Korea JoongAng Daily newspaper first reported the story, citing the South Korea Ministry of Education, Science and Technology, which co-funded the research with the National Research Foundation of Korea.

The key to the flexible battery technology lies in nanomaterials that can be applied to any surface to create fluid-like polymer electrolytes that are solid, not liquid, according to Ulsan researchers. This is in contrast to typical device lithium-ion batteries, which use liquefied electrolytes that are put in square-shaped cases. Researchers say this also makes the flexible battery more stable and less prone to overheating.

“Conventional lithium-ion batteries that use liquefied electrolytes had problems with safety as the film that separates the electrolytes may melt under heat, in which case the positive and negative may come in contact, causing an explosion,” Lee told the Korean newspaper. “Because the new battery uses flexible but solid materials, and not liquids, it can be expected to show a much higher level of stability than conventional rechargeable batteries.”

This potential explosiveness of the materials in lithium-ion batteries — which in the past received attention because of exploding mobile devices — has been in the news again recently in the case of the Boeing 787 Dreamliner, which has had several instances of liquid leaking lithium-ion batteries. The problems have grounded Boeing’s next-generation jumbo jet until they are investigated and resolved.

This is a very short posting but one I felt would be of great interest to my readers.  New technology; i.e. cutting-edge stuff, etc. is fun to write about and possibly useful to learn.  Hope you enjoy this one.

Please send me your comments:  bobjengr@comcast.net.

COMPUTER SIMULATION

January 20, 2019


More and more engineers, systems analysist, biochemists, city planners, medical practitioners, individuals in entertainment fields are moving towards computer simulation.  Let’s take a quick look at simulation then we will discover several examples of how very powerful this technology can be.

WHAT IS COMPUTER SIMULATION?

Simulation modelling is an excellent tool for analyzing and optimizing dynamic processes. Specifically, when mathematical optimization of complex systems becomes infeasible, and when conducting experiments within real systems is too expensive, time consuming, or dangerous, simulation becomes a powerful tool. The aim of simulation is to support objective decision making by means of dynamic analysis, to enable managers to safely plan their operations, and to save costs.

A computer simulation or a computer model is a computer program that attempts to simulate an abstract model of a particular system. … Computer simulations build on and are useful adjuncts to purely mathematical models in science, technology and entertainment.

Computer simulations have become a useful part of mathematical modelling of many natural systems in physics, chemistry and biology, human systems in economics, psychology, and social science and in the process of engineering new technology, to gain insight into the operation of those systems. They are also widely used in the entertainment fields.

Traditionally, the formal modeling of systems has been possible using mathematical models, which attempts to find analytical solutions to problems enabling the prediction of behavior of the system from a set of parameters and initial conditions.  The word prediction is a very important word in the overall process. One very critical part of the predictive process is designating the parameters properly.  Not only the upper and lower specifications but parameters that define intermediate processes.

The reliability and the trust people put in computer simulations depends on the validity of the simulation model.  The degree of trust is directly related to the software itself and the reputation of the company producing the software. There will considerably more in this course regarding vendors providing software to companies wishing to simulate processes and solve complex problems.

Computer simulations find use in the study of dynamic behavior in an environment that may be difficult or dangerous to implement in real life. Say, a nuclear blast may be represented with a mathematical model that takes into consideration various elements such as velocity, heat and radioactive emissions. Additionally, one may implement changes to the equation by changing certain other variables, like the amount of fissionable material used in the blast.  Another application involves predictive efforts relative to weather systems.  Mathematics involving these determinations are significantly complex and usually involve a branch of math called “chaos theory”.

Simulations largely help in determining behaviors when individual components of a system are altered. Simulations can also be used in engineering to determine potential effects, such as that of river systems for the construction of dams.  Some companies call these behaviors “what-if” scenarios because they allow the engineer or scientist to apply differing parameters to discern cause-effect interaction.

One great advantage a computer simulation has over a mathematical model is allowing a visual representation of events and time line. You can actually see the action and chain of events with simulation and investigate the parameters for acceptance.  You can examine the limits of acceptability using simulation.   All components and assemblies have upper and lower specification limits a and must perform within those limits.

Computer simulation is the discipline of designing a model of an actual or theoretical physical system, executing the model on a digital computer, and analyzing the execution output. Simulation embodies the principle of “learning by doing” — to learn about the system we must first build a model of some sort and then operate the model. The use of simulation is an activity that is as natural as a child who role plays. Children understand the world around them by simulating (with toys and figurines) most of their interactions with other people, animals and objects. As adults, we lose some of this childlike behavior but recapture it later on through computer simulation. To understand reality and all of its complexity, we must build artificial objects and dynamically act out roles with them. Computer simulation is the electronic equivalent of this type of role playing and it serves to drive synthetic environments and virtual worlds. Within the overall task of simulation, there are three primary sub-fields: model design, model execution and model analysis.

REAL-WORLD SIMULATION:

The following examples are taken from computer screen representing real-world situations and/or problems that need solutions.  As mentioned earlier, “what-ifs” may be realized by animating the computer model providing cause-effect and responses to desired inputs. Let’s take a look.

A great host of mechanical and structural problems may be solved by using computer simulation. The example above shows how the diameter of two matching holes may be affected by applying heat to the bracket

 

The Newtonian and non-Newtonian flow of fluids, i.e. liquids and gases, has always been a subject of concern within piping systems.  Flow related to pressure and temperature may be approximated by simulation.

 

The Newtonian and non-Newtonian flow of fluids, i.e. liquids and gases, has always been a subject of concern within piping systems.  Flow related to pressure and temperature may be approximated by simulation.

Electromagnetics is an extremely complex field. The digital above strives to show how a magnetic field reacts to applied voltage.

Chemical engineers are very concerned with reaction time when chemicals are mixed.  One example might be the ignition time when an oxidizer comes in contact with fuel.

Acoustics or how sound propagates through a physical device or structure.

The transfer of heat from a colder surface to a warmer surface has always come into question. Simulation programs are extremely valuable in visualizing this transfer.

 

Equation-based modeling can be simulated showing how a structure, in this case a metal plate, can be affected when forces are applied.

In addition to computer simulation, we have AR or augmented reality and VR virtual reality.  Those subjects are fascinating but will require another post for another day.  Hope you enjoy this one.

 

 

WEARABLE TECHNOLOGY

January 12, 2019


Wearable technology’s evolution is not about the gadget on the wrist or the arm but what is done with the data these devices collect, say most computational biologist. I think before we go on, let’s define wearable technology as:

“Wearable technology (also called wearable gadgets) is a category of technology devices that can be worn by a consumer and often include tracking information related to health and fitness. Other wearable tech gadgets include devices that have small motion sensors to take photos and sync with your mobile devices.”

Several examples of wearable technology may be seen by the following digital photographs.

You can all recognize the “watches” shown above. I have one on right now.  For Christmas this year, my wife gave me a Fitbit Charge 3.  I can monitor: 1.) Number of steps per day, 2.) Pulse rate, 3.) Calories burned during the day, 4.) Time of day, 5.) Number of stairs climbed per day, 6.) Miles walked or run per day, and 7.) Several items I can program in from the app on my digital phone.  It is truly a marvelous device.

Other wearables provide very different information and accomplish data of much greater import.

The device above is manufactured by a company called Lumus.  This company focusses on products that provide new dimensions for the human visual experience. It offers cutting-edge eyewear displays that can be used in various applications including gaming, movie watching, text reading, web browsing, and interaction with the interface of wearable computers. Lumus does not aim to produce self-branded products. Instead, the company wants to work with various original equipment manufacturers (OEMs) to enable the wider use of its technologies.  This is truly ground-breaking technology being used today on a limited basis.

Wearable technology is aiding individuals of decreasing eyesight to see as most people see.  The methodology is explained with the following digital.

Glucose levels may be monitored by the device shown above. No longer is it necessary to prick your finger to draw a small droplet of blood to determine glucose levels.  The device below can do that on a continuous basis and without a cumbersome test device.

There are many over the world suffering from “A-fib”.  Periodic monitoring becomes a necessity and one of the best methods of accomplishing that is shown by the devices below. A watch monitors pulse rate and sends that information via blue tooth to an app downloaded on your cell phone.

Four Benefits of Wearable Health Technology are as follows:

  • Real Time Data collection. Wearables can already collect an array of data like activity levels, sleep and heart rate, among others. …
  • Continuous Monitoring. …
  • Predict and alerting. …
  • Empowering patients.

Major advances in sensor and micro-electromechanical systems (MEMS) technologies are allowing much more accurate measurements and facilitating believable data that can be used to track movements and health conditions on any one given day.  In many cases, the data captured can be downloaded into a computer and transmitted to a medical practitioner for documentation.

Sensor miniaturization is a key driver for space-constrained wearable design.  Motion sensors are now available in tiny packages measuring 2 x 2 millimeters.  As mentioned, specific medical sensors can be used to track 1.) Heart rate variability, 2.) Oxygen levels, 3.) Cardiac health, 4.) Blood pressure, 5.) Hemoglobin, 6.) Glucose levels and 7.) Body temperature.  These medical devices represent a growing market due to their higher accuracy and greater performance.  These facts make them less prone to price pressures that designers commonly face with designing consumer wearables.

One great advantage for these devices now is the ability to hold a charge for a much longer period of time.  My Fitbit has a battery life of seven (7) days.  That’s really unheard of relative to times past.

CONCLUSION:  Wearable designs are building a whole new industry one gadget at a time.  MEMS sensors represent an intrinsic part of this design movement. Wearable designs have come a long way from counting steps in fitness trackers, and they are already applying machine-learning algorithms to classify and analyze data.


Space Exploration Technologies Corp., doing business as SpaceX, is a private American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California. SpaceX has flown twenty-five (25) resupply missions to the International Space Station (ISS) under a partnership with NASA. As you all know, NASA no longer undertakes missions of this sort but relies upon private companies such as Space X for delivery of supplies and equipment to the ISS as well as launching satellite “dishes” for communications.

BACKGROUND: 

Entrepreneur Elon Musk, founded PayPal and Tesla Motors is the visionary who started the company Space Exploration Technologies.   In early 2002 Musk was seeking staff for the new company and approached rocket engineer Tom Mueller, now SpaceX’s CTO of Propulsion.  SpaceX was first headquartered in a seventy-five thousand (75,000) square foot warehouse in El Segundo, California. Musk decided SpaceX’s first rocket would be named Falcon 1, a nod to Star Wars’ Millennium Falcon. Musk planned Falcon 1’s first launch to occurring in November 2003, fifteen (15) months after the company started. When you think about the timing, you must admit this is phenomenal and extraordinary.   Now, the fact that is was an unmanned mission certainly cut the time due to no need for safety measures to protect the crew.  No redundant systems needed other than protecting the launch and cargo itself.

In January 2005 SpaceX bought a ten percent (10%) stake in Surrey Satellite Technology and by March 2006, Musk had invested US $100 million in the company.

On August 4, 2008 SpaceX accepted a further twenty ($20) million investment from Founders Fund.   In early 2012, approximately two-thirds of the company was owned by its founder Must with seventy  (70) million shares of stock estimated to be worth $875 million on private markets.  The value of SpaceX was estimated to be at $1.3 billion as of February 2012.   After the COTS 2+ flight in May 2012, the company private equity valuation nearly doubled to $2.4 billion.

SATELLITE LAUNCH:

The latest version of SpaceX’s workhorse Falcon 9 rocket lifted off for the second time on July 22, lighting up the skies over Florida’s Space Coast in a dazzling predawn launch.  The “Block 5” variant of the two-stage Falcon 9 blasted off from Cape Canaveral Air Force Station at 1:50 a.m. EDT (0550 GMT), successfully delivering to orbit a satellite for the Canadian communications company Telesat.     Less than nine (9) minutes after launch, the rocket’s first stage came back down to Earth, a with a successful landing aboard the SpaceX drone ship “Of Course I Still Love You” a few hundred miles off the Florida coast.  The Falcon 9 may be seen with the JPEG below.

The Block 5 is the newest, most powerful and most reusable version of the Falcon 9.  Musk said the Block 5 first stages are designed to fly at least ten (10) times with just inspections between landing and liftoff, and one hundred (100) times or more with some refurbishment involved.

Such extensive reuse is key to Musk’s quest to slash the cost of spaceflight, making Mars colonization and other bold exploration efforts economically feasible. To date, SpaceX has successfully landed more than two dozen Falcon 9 first stages and re-flown landed boosters on more than a dozen occasions.

The only previous Block 5 flight occurred this past May 2018 and also involved a new rocket configuration.  The satellite lofted is called Telstar 19V, is headed for geostationary orbit, about 22,250 miles (35,800 kilometers) above Earth. Telstar 19V, which was built by California-based company SSL, will provide broadband service to customers throughout the Americas and Atlantic Ocean region, according to a Telesat fact sheet.

The booster’s first stage, sporting redesigned landing legs, improved heat shield insulation, upgraded avionics and more powerful engines with crack-resistant turbine hardware, flipped around moments after falling away from the Falcon 9’s second stage and flew itself back to an on-target landing on an offshore drone-ship.

It was the 25th successful booster recovery overall for SpaceX and the fifth so far this year, the latest demonstration of SpaceX’s maturing ability to bring orbit-class rockets back to Earth to fly again in the company’s drive to dramatically lower launch costs.

CONCLUSION:

I think the fact that Musk has taken on this project is quite extortionary.  Rocket launches, in times past, have represented an amazing expenditure of capital with the first and second stages being lost forever.  The payload, generally the third stage, go on to accomplish the ultimate mission.  Stages one and two become space debris orbiting Earth and posing a great menace to other launches.  Being able to reuse any portion of stages one and two is a great cost-effective measure and quite frankly no one really though it could be accomplished.

GOTTA GET IT OFF

January 6, 2018


OKAY, how many of you have said already this year?  “MAN, I have to lose some weight.”  I have a dear friend who put on a little weight over a couple of years and he commented: “Twenty or twenty-five pounds every year and pretty soon it adds up.”  It does add up.  Let’s look at several numbers from the CDC and other sources.

  • The CDC organization estimates that three-quarters (3/4of the American population will likely be overweight or obese by 2020. The latest figures, as of 2014, show that more than one-third (36.5%) of U.S. adults age twenty (20) and older and seventeen percent (17%) of children and adolescents aged two through nineteen (2–19) years were obese.
  • American ObesityRates are on the Rise, Gallup Poll Finds. Americans have become even fatter than before, with nearly twenty-eight (28%) percent saying they are clinically obese, a new survey finds. … At 180 pounds this person has a BMI of thirty (30) and is considered obese.

Now, you might say—we are in good company:  According to the World Health Organization, the following countries have the highest rates of obesity.

  • Republic of Nauru. Formerly known as Pleasant Island, this tiny island country in the South Pacific only has a population of 9,300. …
  • American Samoa. …
  • Tokelau
  • Tonga
  • French Polynesia. …
  • Republic of Kiribati. …
  • Saudi Arabia. …
  • Panama.

There is absolutely no doubt that more and more Americans are over weight even surpassing the magic BMI number of 30.  We all know what reduction in weight can do for us on an individual basis, but have you ever considered what reduction in weight can do for “other items”—namely hardware?

  • Using light-weight components, (composite materials) and high-efficiency engines enabled by advanced materials for internal-combustion engines in one-quarter of U.S. fleet trucks and automobiles could possibly save more than five (5) billion gallons of fuel annually by 2030. This is according to the US Energy Department Vehicle Technologies Office.
  • This is possible because, according to the Oak Ridge National Laboratory, The Department of Energy’s Carbon Fiber Technology Facility has a capacity to produce up to twenty-five (25) tons of carbon fiber per year.
  • Replacing heavy steel with high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by ten to sixty percent (10-60 %). Longer term, materials such as magnesium and carbon fiber-reinforced composites could reduce the weight of some components by fifty to seventy-five percent (50-75%).
  • It costs $10,000 per pound to put one pound of payload into Earth orbit. NASA’s goal is to reduce the cost of getting to space down to hundreds of dollars per pound within twenty-five (25) years and tens of dollars per pound within forty (40) years.
  • Space-X Falcon Heavy rocket will be the first ever rocket to break the $1,000 per pound per orbit barrier—less than a tenth as much as the Shuttle. ( SpaceX press release, July 13, 2017.)
  • The Solar Impulse 2 flew 40,000 Km without fuel. The 3,257-pound solar plane used sandwiched carbon fiber and honey-combed alveolate foam for the fuselage, cockpit and wing spars.

So you see, reduction in weight can have lasting affects for just about every person and some pieces of hardware.   Let’s you and I get it off.

THEY GOT IT ALL WRONG

November 15, 2017


We all have heard that necessity is the mother of invention.  There have been wonderful advances in technology since the Industrial Revolution but some inventions haven’t really captured the imagination of many people, including several of the smartest people on the planet.

Consider, for example, this group: Thomas Edison, Lord Kelvin, Steve Ballmer, Robert Metcalfe, and Albert Augustus Pope. Despite backgrounds of amazing achievement and even brilliance, all share the dubious distinction of making some of the worst technological predictions in history and I mean the very worst.

Had they been right, history would be radically different and today, there would be no airplanes, moon landings, home computers, iPhones, or Internet. Fortunately, they were wrong.  And that should tell us something: Even those who shape the future can’t always get a handle on it.

Let’s take a look at several forecasts that were most publically, painfully, incorrect. From Edison to Kelvin to Ballmer, click through for 10 of the worst technological predictions in history.

“Heavier-than-air flying machines are impossible.” William Thomson (often referred to as Lord Kelvin), mathematical physicist and engineer, President, Royal Society, in 1895.

A prolific scientific scholar whose name is commonly associated with the history of math and science, Lord Kelvin was nevertheless skeptical about flight. In retrospect, it is often said that Kelvin was quoted out of context, but his aversion to flying machines was well known. At one point, he is said to have publically declared that he “had not the smallest molecule of faith in aerial navigation.” OK, go tell that to Wilber and Orville.

“Fooling around with alternating current is just a waste of time. No one will use it, ever. Thomas Edison, 1889.

Thomas Edison’s brilliance was unassailable. A prolific inventor, he earned 1,093 patents in areas ranging from electric power to sound recording to motion pictures and light bulbs. But he believed that alternating current (AC) was unworkable and its high voltages were dangerous.As a result, he battled those who supported the technology. His so-called “war of currents” came to an end, however, when AC grabbed a larger market share, and he was forced out of the control of his own company.

 

“Computers in the future may weigh no more than 1.5 tons.” Popular Mechanics Magazine, 1949.

The oft-repeated quotation, which has virtually taken on a life of its own over the years, is actually condensed. The original quote was: “Where a calculator like the ENIAC today is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps weigh only 1.5 tons.” Stated either way, though, the quotation delivers a clear message: Computers are mammoth machines, and always will be. Prior to the emergence of the transistor as a computing tool, no one, including Popular Mechanics, foresaw the incredible miniaturization that was about to begin.

 

“Television won’t be able to hold on to any market it captures after the first six months. People will soon get tired of staring at a plywood box every night.” Darryl Zanuck, 20th Century Fox, 1946.

Hollywood film producer Darryl Zanuck earned three Academy Awards for Best Picture, but proved he had little understanding of the tastes of Americans when it came to technology. Television provided an alternative to the big screen and a superior means of influencing public opinion, despite Zanuck’s dire predictions. Moreover, the technology didn’t wither after six months; it blossomed. By the 1950s, many homes had TVs. In 2013, 79% of the world’s households had them.

 

“I predict the Internet will go spectacularly supernova and in 1996 catastrophically collapse.” Robert Metcalfe, founder of 3Com, in 1995.

An MIT-educated electrical engineer who co-invented Ethernet and founded 3Com, Robert Metcalfe is a holder of the National Medal of Technology, as well as an IEEE Medal of Honor. Still, he apparently was one of many who failed to foresee the unbelievable potential of the Internet. Today, 47% of the 7.3 billion people on the planet use the Internet. Metcalfe is currently a professor of innovation and Murchison Fellow of Free Enterprise at the University of Texas at Austin.

“There’s no chance that the iPhone is going to get any significant market share.” Steve Ballmer, former CEO, Microsoft Corp., in 2007.

Some magna cum laude Harvard math graduate with an estimated $33 billion in personal wealth, Steve Ballmer had an amazing tenure at Microsoft. Under his leadership, Microsoft’s annual revenue surged from $25 billion to $70 billion, and its net income jumped 215%. Still, his insights failed him when it came to the iPhone. Apple sold 6.7 million iPhones in its first five quarters, and by end of fiscal year 2010, its sales had grown to 73.5 million.

 

 

“After the rocket quits our air and starts on its longer journey, its flight would be neither accelerated nor maintained by the explosion of the charges it then might have left.” The New York Times,1920.

The New York Times was sensationally wrong when it assessed the future of rocketry in 1920, but few people of the era were in a position to dispute their declaration. Forty-one years later, astronaut Alan Shepard was the first American to enter space and 49 years later, Neil Armstrong set foot on the moon, laying waste to the idea that rocketry wouldn’t work. When Apollo 11 was on its way to the moon in 1969, the Times finally acknowledged the famous quotation and amended its view on the subject.

“With over 15 types of foreign cars already on sale here, the Japanese auto industry isn’t likely to carve out a big share of the market for itself.” Business Week, August 2, 1968.

Business Week seemed to be on safe ground in 1968, when it predicted that Japanese market share in the auto industry would be miniscule. But the magazine’s editors underestimated the American consumer’s growing distaste for the domestic concept of planned obsolescence. By the 1970s, Americans were flocking to Japanese dealerships, in large part because Japanese manufacturers made inexpensive, reliable cars. That trend has continued over the past 40 years. In 2016, Japanese automakers built more cars in the US than Detroit did.

“You cannot get people to sit over an explosion.” Albert Augustus Pope, founder, Pope Manufacturing, in the early 1900s.

Albert Augustus Pope thought he saw the future when he launched production of electric cars in Hartford, CT, in 1897. Listening to the quiet performance of the electrics, he made his now-famous declaration about the future of the internal combustion engine. Despite his preference for electrics, however, Pope also built gasoline-burning cars, laying the groundwork for future generations of IC engines. In 2010, there were more than one billion vehicles in the world, the majority of which used internal combustion propulsion.

 

 

 

“I have traveled the length and breadth of this country and talked to the best people, and I can assure you that data processing is a fad that won’t last out the year.” Editor, Prentice Hall Books,1957.

The concept of data processing was a head-scratcher in 1957, especially for the unnamed Prentice Hall editor who uttered the oft-quoted prediction of its demise. The prediction has since been used in countless technical presentations, usually as an example of our inability to see the future. Amazingly, the editor’s forecast has recently begun to look even worse, as Internet of Things users search for ways to process the mountains of data coming from a new breed of connected devices. By 2020, experts predict there will be 30 to 50 billion such connected devices sending their data to computers for processing.

CONCLUSIONS:

Last but not least, Charles Holland Duell in 1898 was appointed as the United States Commissioner of Patents, and held that post until 1901.  In that role, he is famous for purportedly saying “Everything that can be invented has been invented.”  Well Charlie, maybe not.

%d bloggers like this: