Space Exploration Technologies Corp., doing business as SpaceX, is a private American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California. SpaceX has flown twenty-five (25) resupply missions to the International Space Station (ISS) under a partnership with NASA. As you all know, NASA no longer undertakes missions of this sort but relies upon private companies such as Space X for delivery of supplies and equipment to the ISS as well as launching satellite “dishes” for communications.

BACKGROUND: 

Entrepreneur Elon Musk, founded PayPal and Tesla Motors is the visionary who started the company Space Exploration Technologies.   In early 2002 Musk was seeking staff for the new company and approached rocket engineer Tom Mueller, now SpaceX’s CTO of Propulsion.  SpaceX was first headquartered in a seventy-five thousand (75,000) square foot warehouse in El Segundo, California. Musk decided SpaceX’s first rocket would be named Falcon 1, a nod to Star Wars’ Millennium Falcon. Musk planned Falcon 1’s first launch to occurring in November 2003, fifteen (15) months after the company started. When you think about the timing, you must admit this is phenomenal and extraordinary.   Now, the fact that is was an unmanned mission certainly cut the time due to no need for safety measures to protect the crew.  No redundant systems needed other than protecting the launch and cargo itself.

In January 2005 SpaceX bought a ten percent (10%) stake in Surrey Satellite Technology and by March 2006, Musk had invested US $100 million in the company.

On August 4, 2008 SpaceX accepted a further twenty ($20) million investment from Founders Fund.   In early 2012, approximately two-thirds of the company was owned by its founder Must with seventy  (70) million shares of stock estimated to be worth $875 million on private markets.  The value of SpaceX was estimated to be at $1.3 billion as of February 2012.   After the COTS 2+ flight in May 2012, the company private equity valuation nearly doubled to $2.4 billion.

SATELLITE LAUNCH:

The latest version of SpaceX’s workhorse Falcon 9 rocket lifted off for the second time on July 22, lighting up the skies over Florida’s Space Coast in a dazzling predawn launch.  The “Block 5” variant of the two-stage Falcon 9 blasted off from Cape Canaveral Air Force Station at 1:50 a.m. EDT (0550 GMT), successfully delivering to orbit a satellite for the Canadian communications company Telesat.     Less than nine (9) minutes after launch, the rocket’s first stage came back down to Earth, a with a successful landing aboard the SpaceX drone ship “Of Course I Still Love You” a few hundred miles off the Florida coast.  The Falcon 9 may be seen with the JPEG below.

The Block 5 is the newest, most powerful and most reusable version of the Falcon 9.  Musk said the Block 5 first stages are designed to fly at least ten (10) times with just inspections between landing and liftoff, and one hundred (100) times or more with some refurbishment involved.

Such extensive reuse is key to Musk’s quest to slash the cost of spaceflight, making Mars colonization and other bold exploration efforts economically feasible. To date, SpaceX has successfully landed more than two dozen Falcon 9 first stages and re-flown landed boosters on more than a dozen occasions.

The only previous Block 5 flight occurred this past May 2018 and also involved a new rocket configuration.  The satellite lofted is called Telstar 19V, is headed for geostationary orbit, about 22,250 miles (35,800 kilometers) above Earth. Telstar 19V, which was built by California-based company SSL, will provide broadband service to customers throughout the Americas and Atlantic Ocean region, according to a Telesat fact sheet.

The booster’s first stage, sporting redesigned landing legs, improved heat shield insulation, upgraded avionics and more powerful engines with crack-resistant turbine hardware, flipped around moments after falling away from the Falcon 9’s second stage and flew itself back to an on-target landing on an offshore drone-ship.

It was the 25th successful booster recovery overall for SpaceX and the fifth so far this year, the latest demonstration of SpaceX’s maturing ability to bring orbit-class rockets back to Earth to fly again in the company’s drive to dramatically lower launch costs.

CONCLUSION:

I think the fact that Musk has taken on this project is quite extortionary.  Rocket launches, in times past, have represented an amazing expenditure of capital with the first and second stages being lost forever.  The payload, generally the third stage, go on to accomplish the ultimate mission.  Stages one and two become space debris orbiting Earth and posing a great menace to other launches.  Being able to reuse any portion of stages one and two is a great cost-effective measure and quite frankly no one really though it could be accomplished.

Advertisements

GOTTA GET IT OFF

January 6, 2018


OKAY, how many of you have said already this year?  “MAN, I have to lose some weight.”  I have a dear friend who put on a little weight over a couple of years and he commented: “Twenty or twenty-five pounds every year and pretty soon it adds up.”  It does add up.  Let’s look at several numbers from the CDC and other sources.

  • The CDC organization estimates that three-quarters (3/4of the American population will likely be overweight or obese by 2020. The latest figures, as of 2014, show that more than one-third (36.5%) of U.S. adults age twenty (20) and older and seventeen percent (17%) of children and adolescents aged two through nineteen (2–19) years were obese.
  • American ObesityRates are on the Rise, Gallup Poll Finds. Americans have become even fatter than before, with nearly twenty-eight (28%) percent saying they are clinically obese, a new survey finds. … At 180 pounds this person has a BMI of thirty (30) and is considered obese.

Now, you might say—we are in good company:  According to the World Health Organization, the following countries have the highest rates of obesity.

  • Republic of Nauru. Formerly known as Pleasant Island, this tiny island country in the South Pacific only has a population of 9,300. …
  • American Samoa. …
  • Tokelau
  • Tonga
  • French Polynesia. …
  • Republic of Kiribati. …
  • Saudi Arabia. …
  • Panama.

There is absolutely no doubt that more and more Americans are over weight even surpassing the magic BMI number of 30.  We all know what reduction in weight can do for us on an individual basis, but have you ever considered what reduction in weight can do for “other items”—namely hardware?

  • Using light-weight components, (composite materials) and high-efficiency engines enabled by advanced materials for internal-combustion engines in one-quarter of U.S. fleet trucks and automobiles could possibly save more than five (5) billion gallons of fuel annually by 2030. This is according to the US Energy Department Vehicle Technologies Office.
  • This is possible because, according to the Oak Ridge National Laboratory, The Department of Energy’s Carbon Fiber Technology Facility has a capacity to produce up to twenty-five (25) tons of carbon fiber per year.
  • Replacing heavy steel with high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by ten to sixty percent (10-60 %). Longer term, materials such as magnesium and carbon fiber-reinforced composites could reduce the weight of some components by fifty to seventy-five percent (50-75%).
  • It costs $10,000 per pound to put one pound of payload into Earth orbit. NASA’s goal is to reduce the cost of getting to space down to hundreds of dollars per pound within twenty-five (25) years and tens of dollars per pound within forty (40) years.
  • Space-X Falcon Heavy rocket will be the first ever rocket to break the $1,000 per pound per orbit barrier—less than a tenth as much as the Shuttle. ( SpaceX press release, July 13, 2017.)
  • The Solar Impulse 2 flew 40,000 Km without fuel. The 3,257-pound solar plane used sandwiched carbon fiber and honey-combed alveolate foam for the fuselage, cockpit and wing spars.

So you see, reduction in weight can have lasting affects for just about every person and some pieces of hardware.   Let’s you and I get it off.

THEY GOT IT ALL WRONG

November 15, 2017


We all have heard that necessity is the mother of invention.  There have been wonderful advances in technology since the Industrial Revolution but some inventions haven’t really captured the imagination of many people, including several of the smartest people on the planet.

Consider, for example, this group: Thomas Edison, Lord Kelvin, Steve Ballmer, Robert Metcalfe, and Albert Augustus Pope. Despite backgrounds of amazing achievement and even brilliance, all share the dubious distinction of making some of the worst technological predictions in history and I mean the very worst.

Had they been right, history would be radically different and today, there would be no airplanes, moon landings, home computers, iPhones, or Internet. Fortunately, they were wrong.  And that should tell us something: Even those who shape the future can’t always get a handle on it.

Let’s take a look at several forecasts that were most publically, painfully, incorrect. From Edison to Kelvin to Ballmer, click through for 10 of the worst technological predictions in history.

“Heavier-than-air flying machines are impossible.” William Thomson (often referred to as Lord Kelvin), mathematical physicist and engineer, President, Royal Society, in 1895.

A prolific scientific scholar whose name is commonly associated with the history of math and science, Lord Kelvin was nevertheless skeptical about flight. In retrospect, it is often said that Kelvin was quoted out of context, but his aversion to flying machines was well known. At one point, he is said to have publically declared that he “had not the smallest molecule of faith in aerial navigation.” OK, go tell that to Wilber and Orville.

“Fooling around with alternating current is just a waste of time. No one will use it, ever. Thomas Edison, 1889.

Thomas Edison’s brilliance was unassailable. A prolific inventor, he earned 1,093 patents in areas ranging from electric power to sound recording to motion pictures and light bulbs. But he believed that alternating current (AC) was unworkable and its high voltages were dangerous.As a result, he battled those who supported the technology. His so-called “war of currents” came to an end, however, when AC grabbed a larger market share, and he was forced out of the control of his own company.

 

“Computers in the future may weigh no more than 1.5 tons.” Popular Mechanics Magazine, 1949.

The oft-repeated quotation, which has virtually taken on a life of its own over the years, is actually condensed. The original quote was: “Where a calculator like the ENIAC today is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps weigh only 1.5 tons.” Stated either way, though, the quotation delivers a clear message: Computers are mammoth machines, and always will be. Prior to the emergence of the transistor as a computing tool, no one, including Popular Mechanics, foresaw the incredible miniaturization that was about to begin.

 

“Television won’t be able to hold on to any market it captures after the first six months. People will soon get tired of staring at a plywood box every night.” Darryl Zanuck, 20th Century Fox, 1946.

Hollywood film producer Darryl Zanuck earned three Academy Awards for Best Picture, but proved he had little understanding of the tastes of Americans when it came to technology. Television provided an alternative to the big screen and a superior means of influencing public opinion, despite Zanuck’s dire predictions. Moreover, the technology didn’t wither after six months; it blossomed. By the 1950s, many homes had TVs. In 2013, 79% of the world’s households had them.

 

“I predict the Internet will go spectacularly supernova and in 1996 catastrophically collapse.” Robert Metcalfe, founder of 3Com, in 1995.

An MIT-educated electrical engineer who co-invented Ethernet and founded 3Com, Robert Metcalfe is a holder of the National Medal of Technology, as well as an IEEE Medal of Honor. Still, he apparently was one of many who failed to foresee the unbelievable potential of the Internet. Today, 47% of the 7.3 billion people on the planet use the Internet. Metcalfe is currently a professor of innovation and Murchison Fellow of Free Enterprise at the University of Texas at Austin.

“There’s no chance that the iPhone is going to get any significant market share.” Steve Ballmer, former CEO, Microsoft Corp., in 2007.

Some magna cum laude Harvard math graduate with an estimated $33 billion in personal wealth, Steve Ballmer had an amazing tenure at Microsoft. Under his leadership, Microsoft’s annual revenue surged from $25 billion to $70 billion, and its net income jumped 215%. Still, his insights failed him when it came to the iPhone. Apple sold 6.7 million iPhones in its first five quarters, and by end of fiscal year 2010, its sales had grown to 73.5 million.

 

 

“After the rocket quits our air and starts on its longer journey, its flight would be neither accelerated nor maintained by the explosion of the charges it then might have left.” The New York Times,1920.

The New York Times was sensationally wrong when it assessed the future of rocketry in 1920, but few people of the era were in a position to dispute their declaration. Forty-one years later, astronaut Alan Shepard was the first American to enter space and 49 years later, Neil Armstrong set foot on the moon, laying waste to the idea that rocketry wouldn’t work. When Apollo 11 was on its way to the moon in 1969, the Times finally acknowledged the famous quotation and amended its view on the subject.

“With over 15 types of foreign cars already on sale here, the Japanese auto industry isn’t likely to carve out a big share of the market for itself.” Business Week, August 2, 1968.

Business Week seemed to be on safe ground in 1968, when it predicted that Japanese market share in the auto industry would be miniscule. But the magazine’s editors underestimated the American consumer’s growing distaste for the domestic concept of planned obsolescence. By the 1970s, Americans were flocking to Japanese dealerships, in large part because Japanese manufacturers made inexpensive, reliable cars. That trend has continued over the past 40 years. In 2016, Japanese automakers built more cars in the US than Detroit did.

“You cannot get people to sit over an explosion.” Albert Augustus Pope, founder, Pope Manufacturing, in the early 1900s.

Albert Augustus Pope thought he saw the future when he launched production of electric cars in Hartford, CT, in 1897. Listening to the quiet performance of the electrics, he made his now-famous declaration about the future of the internal combustion engine. Despite his preference for electrics, however, Pope also built gasoline-burning cars, laying the groundwork for future generations of IC engines. In 2010, there were more than one billion vehicles in the world, the majority of which used internal combustion propulsion.

 

 

 

“I have traveled the length and breadth of this country and talked to the best people, and I can assure you that data processing is a fad that won’t last out the year.” Editor, Prentice Hall Books,1957.

The concept of data processing was a head-scratcher in 1957, especially for the unnamed Prentice Hall editor who uttered the oft-quoted prediction of its demise. The prediction has since been used in countless technical presentations, usually as an example of our inability to see the future. Amazingly, the editor’s forecast has recently begun to look even worse, as Internet of Things users search for ways to process the mountains of data coming from a new breed of connected devices. By 2020, experts predict there will be 30 to 50 billion such connected devices sending their data to computers for processing.

CONCLUSIONS:

Last but not least, Charles Holland Duell in 1898 was appointed as the United States Commissioner of Patents, and held that post until 1901.  In that role, he is famous for purportedly saying “Everything that can be invented has been invented.”  Well Charlie, maybe not.


Portions of the following post were taken from the September 2017 Machine Design Magazine.

We all like to keep up with salary levels within our chosen profession.  It’s a great indicator of where we stand relative to our peers and the industry we participate in.  The state of the engineering profession has always been relatively stable. Engineers are as essential to the job market as doctors are to medicine. Even in the face of automation and the fear many have of losing their jobs to robots, engineers are still in high demand.  I personally do not think most engineers will be out-placed by robotic systems.  That fear definitely resides with on-line manufacturing positions with duties that are repetitive in nature.  As long as engineers can think, they will have employment.

The Machine Design Annual Salary & Career Report collected information and opinions from more than two thousand (2,000) Machine Design readers. The employee outlook is very good with thirty-three percent (33%) indicating they are staying with their current employer and thirty-six percent (36%) of employers focusing on job retention. This is up fifteen percent (15%) from 2016.  From those who responded to the survey, the average reported salary for engineers across the country was $99,922, and almost sixty percent (57.9%) reported a salary increase while only ten percent (9.7%) reported a salary decrease. The top three earning industries with the largest work forces were 1.) industrial controls systems and equipment, 2.) research & development, and 3.) medical products. Among these industries, the average salary was $104,193. The West Coast looks like the best place for engineers to earn a living with the average salary in the states of California, Washington, and Oregon was $116,684. Of course, the cost of living in these three states is definitely higher than other regions of the country.

PROFILE OF THE ENGINEER IN THE USA TODAY:

As is the ongoing trend in engineering, the profession is dominated by male engineers, with seventy-one percent (71%) being over fifty (50) years of age. However, the MD report shows an up-swing of young engineers entering the profession.  One effort that has been underway for some years now is encouraging more women to enter the profession.  With seventy-one percent (71%) of the engineering workforce being over fifty, there is a definite need to attract participants.    There was an increase in engineers within between twenty-five (25) and thirty-five (35).  This was up from 5.6% to 9.2%.  The percentage of individuals entering the profession increased as well, with engineers with less than fourteen (14) years of experience increasing five percent (5%) from last year.  Even with all the challenges of engineering, ninety-two percent (92%) would still recommend the engineering profession to their children, grandchildren and others. One engineer responds, “In fact, wherever I’ll go, I always will have an engineer’s point of view. Trying to understand how things work, and how to improve them.”

 

When asked about foreign labor forces, fifty-four percent (54%) believe H1-B visas hurt engineering employment opportunities and sixty-one percent (61%) support measures to reform the system. In terms of outsourcing, fifty-two percent (52%) reported their companies outsource work—the main reason being lack of in-house talent. However, seventy-three percent (73%) of the outsourced work is toward other U.S. locations. When discussing the future, the job force, fifty-five percent (55%) of engineers believe there is a job shortage, specifically in the skilled labor area. An overwhelming eighty-seven percent (87%) believe that we lack a skilled labor force. According to the MD readers, the strongest place for job growth is in automation at forty-five percent (45%) and the strongest place to look for skilled laborers is in vocational schools at thirty-two percent (32%). The future of engineering is dependent on the new engineers not only in school today, but also in younger people just starting their young science, technology, engineering, and mathematic (STEM) interests. With the average engineer being fifty (50) years or old, the future of engineering will rely heavily on new engineers willing to carry the torch—eighty-seven percent (87%) of our engineers believe there needs to be more focus on STEM at an earlier age to make sure the future of engineering is secure.

With being the case, let us now look at the numbers.

The engineering profession is a “graying” profession as mentioned earlier.  The next digital picture will indicate that, for the most part, those in engineering have been in for the “long haul”.  They are “lifers”.  This fact speaks volumes when trying to influence young men and women to consider the field of engineering.  If you look at “years in the profession”, “work location” and years at present employer” we see the following:

The slide below is a surprise to me and I think the first time the question has been asked by Machine Design.  How much of your engineering training is theory vs. practice? You can see the greatest response is almost fourteen percent (13.6%) with a fifty/fifty balance between theory and practice.  In my opinion, this is as it should be.

“The theory can be learned in a school, but the practical applications need to be learned on the job. The academic world is out of touch with the current reality of practical applications since they do not work in

that area.” “My university required three internships prior to graduating. This allowed them to focus significantly on theoretical, fundamental knowledge and have the internships bolster the practical.”

ENGINEERING CERTIFICATIONS:

The demands made on engineers by their respective companies can sometimes be time-consuming.  The respondents indicated the following certifications their companies felt necessary.

 

 

SALARIES:

The lowest salary is found with contract design and manufacturing.  Even this salary, would be much desired by just about any individual.

As we mentioned earlier, the West Coast provides the highest salary with several states in the New England area coming is a fairly close second.

 

SALARY LEVELS VS. EXPERIENCE:

This one should be no surprise.  The greater number of years in the profession—the greater the salary level.  Forty (40) plus years provides an average salary of approximately $100,000.  Management, as you might expect, makes the highest salary with an average being $126,052.88.

OUTSOURCING:

 

As mentioned earlier, outsourcing is a huge concern to the engineering community. The chart below indicates where the jobs go.

JOB SATISFACTION:

 

Most engineers will tell you they stay in the profession because they love the work. The euphoria created by a “really neat” design stays with an engineer much longer than an elevated pay check.  Engineers love solving problems.  Only two percent (2%) told MD they are not satisfied at all with their profession or current employer.  This is significant.

Any reason or reasons for leaving the engineering profession are shown by the following graphic.

ENGINEERING AND SOCIETY: 

As mentioned earlier, engineers are very worried about the H1-B visa program and trade policies issued by President Trump and the Legislative Branch of our country.  The Trans-Pacific Partnership has been “nixed” by President Trump but trade policies such as NAFTA and trade between the EU are still of great concern to engineers.  Trade with China, patent infringement, and cyber security remain big issues with the STEM profession and certainly engineers.

 

CONCLUSIONS:

I think it’s very safe to say that, for the most part, engineers are very satisfied with the profession and the salary levels offered by the profession.  Job satisfaction is great making the dawn of a new day something NOT to be dreaded.


Portions of the following post were taken from an article by Rob Spiegel publishing through Design News Daily.

Two former Apple design engineers – Anna Katrina Shedletsky and Samuel Weiss have leveraged machine learning to help brand owners improve their manufacturing lines. The company, Instrumental , uses artificial intelligence (AI) to identify and fix problems with the goal of helping clients ship on time. The AI system consists of camera-equipped inspection stations that allow brand owners to remotely manage product lines at their contact manufacturing facilities with the purpose of maximizing up-time, quality and speed. Their digital photo is shown as follows:

Shedletsky and Weiss took what they learned from years of working with Apple contract manufacturers and put it into AI software.

“The experience with Apple opened our eyes to what was possible. We wanted to build artificial intelligence for manufacturing. The technology had been proven in other industries and could be applied to the manufacturing industry,   it’s part of the evolution of what is happening in manufacturing. The product we offer today solves a very specific need, but it also works toward overall intelligence in manufacturing.”

Shedletsky spent six (6) years working at Apple prior to founding Instrumental with fellow Apple alum, Weiss, who serves Instrumental’s CTO (Chief Technical Officer).  The two took their experience in solving manufacturing problems and created the AI fix. “After spending hundreds of days at manufacturers responsible for millions of Apple products, we gained a deep understanding of the inefficiencies in the new-product development process,” said Shedletsky. “There’s no going back, robotics and automation have already changed manufacturing. Intelligence like the kind we are building will change it again. We can radically improve how companies make products.”

There are number examples of big and small companies with problems that prevent them from shipping products on time. Delays are expensive and can cause the loss of a sale. One day of delay at a start-up could cost $10,000 in sales. For a large company, the cost could be millions. “There are hundreds of issues that need to be found and solved. They are difficult and they have to be solved one at a time,” said Shedletsky. “You can get on a plane, go to a factory and look at failure analysis so you can see why you have problems. Or, you can reduce the amount of time needed to identify and fix the problems by analyzing them remotely, using a combo of hardware and software.”

Instrumental combines hardware and software that takes images of each unit at key states of assembly on the line. The system then makes those images remotely searchable and comparable in order for the brand owner to learn and react to assembly line data. Engineers can then take action on issues. “The station goes onto the assembly line in China,” said Shedletsky. “We get the data into the cloud to discover issues the contract manufacturer doesn’t know they have. With the data, you can do failure analysis and reduced the time it takes to find an issue and correct it.”

WHAT IS AI:

Artificial intelligence (AI) is intelligence exhibited by machines.  In computer science, the field of AI research defines itself as the study of “intelligent agents“: any device that perceives its environment and takes actions that maximize its chance of success at some goal.   Colloquially, the term “artificial intelligence” is applied when a machine mimics “cognitive” functions that humans associate with other human minds, such as “learning” and “problem solving”.

As machines become increasingly capable, mental facilities once thought to require intelligence are removed from the definition. For instance, optical character recognition is no longer perceived as an example of “artificial intelligence”, having become a routine technology.  Capabilities currently classified as AI include successfully understanding human speech,  competing at a high level in strategic game systems (such as chess and Go), autonomous cars, intelligent routing in content delivery networks, military simulations, and interpreting complex data.

FUTURE:

Some would have you believe that AI IS the future and we will succumb to the “Rise of the Machines”.  I’m not so melodramatic.  I feel AI has progressed and will progress to the point where great time saving and reduction in labor may be realized.   Anna Katrina Shedletsky and Samuel Weiss realize the potential and feel there will be no going back from this disruptive technology.   Moving AI to the factory floor will produce great benefits to manufacturing and other commercial enterprises.   There is also a significant possibility that job creation will occur as a result.  All is not doom and gloom.

COLLABORATIVE ROBOTICS

June 26, 2017


I want to start this discussion with defining collaboration.  According to Merriam-Webster:

  • to work jointly with others or together especially in an intellectual endeavor.An international team of scientists collaborated on the study.
  • to cooperate with or willingly assist an enemy of one’s country and especially an occupying force suspected of collaborating with the enemy
  • to cooperate with an agency or instrumentality with which one is not immediately connected.

We are going to adopt the first definition to work jointly with others.  Well, what if the “others” are robotic systems?

Collaborative robots, or cobots as they have come to be known, are robot robotic systems designed to operate collaboratively or in conjunction with humans.  The term “Collaborative Robot is a verb, not a noun. The collaboration is dependent on what the robot is doing, not the robot itself.”  With that in mind, collaborative robotic systems and applications generally combine some or all of the following characteristics:

  • They are designed to be safe around people. This is accomplished by using sensors to prevent touching or by limiting the force if the system touches a human or a combination of both.
  • They are often relatively light weight and can be moved from task to task as needed. This means they can be portable or mobile and can be mounted on movable tables.
  • They do not require skill to program. Most cobots are simple enough that anyone who can use a smartphone or tablet can teach or program them. Most robotic systems of this type are programmed by using a “teach pendent”. The most-simple can allow up to ninety (90) programs to be installed.
  • Just as a power saw is intended to help, not replace, the carpenter, the cobot is generally intended to assist, not replace, the production worker. (This is where the collaboration gets its name. It assists the human is accomplishing a task.)  The production worker generally works side-by-side with the robot.
  • Collaborative robots are generally simpler than more traditional robots, which makes them cheaper to buy, operate and maintain.

There are two basic approaches to making cobots safe. One approach, taken by Universal, Rethink and others, is to make the robot inherently safe. If it makes contact with a human co-worker, it immediately stops so the worker feels no more than a gentle nudge. Rounded surfaces help make that nudge even more gentle. This approach limits the maximum load that the robot can handle as well as the speed. A robot moving a fifty (50) pound part at high speed will definitely hurt no matter how quickly it can stop upon making contact.

A sensor-based approach allows collaborative use in faster and heavier applications. Traditionally, physical barriers such as cages or light curtains have been used to stop the robot when a person enters the perimeter. Modern sensors can be more discriminating, sensing not only the presence of a person but their location as well. This allows the robot to slow down, work around the person or stop as the situation demands to maintain safety. When the person moves away, the robot can automatically resume normal operation.

No discussion of robot safety can ignore the end-of-arm tooling (EOAT).  If the robot and operator are handing parts back and forth, the tooling needs to be designed so that, if the person gets their fingers caught, they can’t be hurt.

The next digital photographs will give you some idea as to how humans and robotic systems can work together and the tasks they can perform.

The following statistics are furnished by “Digital Engineering” February 2017.

  • By 2020, more than three (3) million workers on a global basis will be supervised by a “robo-boss”.
  • Forty-five (45) percent of all work activities could be automated using already demonstrated technology and fifty-nine (59) percent of all manufacturing activities could be automated, given technical considerations.
  • At the present time, fifty-nine (59) percent of US manufacturers are using some form of robotic technology.
  • Artificial Intelligence (AI), will replace sixteen (16) percent of American jobs by 2025 and will create nine (9) percent of American jobs.
  • By 2018, six (6) billion connected devices will be used to assist commerce and manufacturing.

CONCLUSIONS: OK, why am I posting this message?  Robotic systems and robots themselves WILL become more and more familiar to us as the years go by.  The usage is already in a tremendous number of factories and on manufacturing floors.  Right now, most of the robotic work cells used in manufacturing are NOT collaborative.  The systems are SCARA (The SCARA acronym stands for Selective Compliance Assembly Robot Arm or Selective Compliance Articulated Robot Arm.) type and perform a Pick-and-place function or a very specific task such as laying down a bead of adhesive on a plastic or metal part.  Employee training will be necessary if robotic systems are used and if those systems are collaborative in nature.  In other words—get ready for it.  Train for this to happen so that when it does you are prepared.


Information for this post is taken from the following companies:

  • Wholers Associates
  • Gartner
  • Oerlikon
  • SmartTech Publishing

3-D ADDITIVE MANUFACTURING:

I think before we get up and running let us define “additive manufacturing”.

Additive Manufacturing or AM is an appropriate name to describe the technologies that build 3D objects by adding layer-upon-layer of material, whether the material is plastic, metal, concrete human tissue. Believe it or not, additive manufacturing is now, on a limited basis, able to construct objects from human tissue to repair body parts that have been damaged and/or absent.

Common to AM technologies is the use of a computer, 3D modeling software (Computer Aided Design or CAD), machine equipment and layering material.  Once a CAD sketch is produced, the AM equipment reads in data from the CAD file and lays downs or adds successive layers of liquid, powder, sheet material or other, in a layer-upon-layer fashion to fabricate a 3D object.

The term AM encompasses many technologies including subsets like 3D Printing, Rapid Prototyping (RP), Direct Digital Manufacturing (DDM), layered manufacturing and additive fabrication.

AM application is limitless. Early use of AM in the form of Rapid Prototyping focused on preproduction visualization models. More recently, AM is being used to fabricate end-use products in aircraft, dental restorations, medical implants, automobiles, and even fashion products.

RAPID PROTOTYPING & MANUFACTURING (RP&M) TECHNOLOGIES:

There are several viable options available today that take advantage of rapid prototyping technologies.   All of the methods shown below are considered to be rapid prototyping and manufacturing technologies.

  • (SLA) Stereolithography
  • (SLS) Selective Laser Sintering
  • (FDM) Fused Deposition Modeling
  • (3DP) Three-Dimensional Printing
  • (Pjet) Poly-Jet
  • Laminated Object Manufacturing

PRODUCT POSSIBILITIES:

Frankly, if it the configuration can be programmed, it can be printed.  The possibilities are absolutely endless.

Assortment of components: flange mount and external gear.

Bone fragment depicting a fractured bone.  This printed product will aid the efforts of a surgeon to make the necessary repair.

More and more, 3D printing is used to model teeth and jaw lines prior to extensive dental work.  It gives the dental surgeon a better look at a patients mouth prior to surgery.

You can see the intricate detail of the Eiffel Tower and the show sole in the JPEGs above.  3D printing can provide an enormous amount of detail to the end user.

THE MARKET:

3D printing is a disruptive technology that is definitely on the rise.  Let’s take a look at future possibilities and current practices.

GROWTH:

Wohlers Associates has been tracking the market for machines that produce metal parts for fourteen (14) years.  The Wohlers Report 2014 marks only the second time for the company to publish detailed information on metal based AM machine unit sales by year. The following chart shows that 348 of 3D machines were sold in 2013, compared to 198 in 2012—growth of an impressive 75.8%.

Additive manufacturing industry grew by 17.4% in worldwide revenues in 2016, reaching $6.063 billion.

MATERIALS USED:

Nearly one-half of the 3D printing/additive manufacturing service providers surveyed in 2016 offered metal printing.

GLOBAL MARKETS:

NUMBER OF VENDORS OFFERING EQUIPMENT:

The number of companies producing and selling additive manufacturing equipment

  • 2014—49
  • 2015—62
  • 2016—97

USERS:

World-wide shipments of 3D printers were projected to reach 455,772 units in 2016. 6.7 million units are expected to be shipped by 2020

More than 278,000 desktop 3D printers (under $5,000) were sold worldwide last year, according to Wohlers Associates. The report has a chart to illustrate and it looks like the proverbial hockey stick that you hear venture capitalists talk about: Growth that moves rapidly from horizontal to vertical (from 2010 to 2015 for desktop).

According to Wohlers Report 2016, the additive manufacturing (AM) industry grew 25.9% (CAGR – Corporate Annual Growth Rate) to $5.165 billion in 2015. Frequently called 3D printing by those outside of manufacturing circles, the industry growth consists of all AM products and services worldwide. The CAGR for the previous three years was 33.8%. Over the past 27 years, the CAGR for the industry is an impressive 26.2%. Clearly, this is not a market segment that is declining as you might otherwise read.

THE MARKET:

  • About 20 to 25% of the $26.5 billion market forecast for 2021 is expected to be the result of metal additive manufacturing.
  • The market for polymers and plastics for 3D printing will reach $3.2 billion by 2022
  • The primary market for metal additive manufacturing, including systems and power materials, will grow to over $6.6 billion by 2026.

CONCLUSIONS:

We see more and more products and components manufactured by 3D Printing processes.  Additive manufacturing just now enjoying acceptance from larger and more established companies whose products are in effect “mission critical”.  As material choices continue to grow, a greater number of applications will emerge.  For the foreseeable future, additive manufacturing is one of the technologies to be associated with.

%d bloggers like this: