Archimedes declared “Eureka I’ve found it”.  Colonel John “Hannibal” Smith of the “A-Team” said, “I love it when a plan comes together”. Boo-yah is a cry of success used by the Army. Well, down here in the South we call the act of discovery a Jubilation T. Cornpone moment.  Okay, have you ever made the statement: “I thought of that some months ago” only to lament the fact that you did not act appropriately and give your idea wings?  We all have. Let’s take a look at several “serendipity” moments that resulted in great discoveries being brought to commercialization.

  • Legend has it that Archimedes was about to bathe when he discovered that an object’s buoyancy force equals the weight of the fluid it displaces. Thrilled, he ran naked through Syracuse shouting “Eureka”.
  • According to biographers, Paul McCartney composed this melody in a dream at the Wimpole Street of then-girlfriend Jane Asher.  Upon waking, he rushed to a piano and played the tune to avoid forgetting it.  The tune was Yesterday.
  • Riding a streetcar in Bern, Switzerland, Einstein was struck by the sight of the city’s medieval clock tower—and was inspired to devise his elegant special theory of relativity: time can beat at different rates throughout the universe, depending on how fast you move.
  • We can all thank Josephine Knight Dickson for those ubiquitous adhesive bandages later known as Band-Aids.  She often cut and burned herself while cooking.  So, in 1920 these events prompted her husband, Earle, a Johnson cotton buyer, and Thomas Anderson to develop a prototype so Josephine could dress her wounds unaided.
  • At the tender age of fourteen (14) Philo Farnsworth was plowing a potato field when he suddenly realized how television could work.  The back-and-forth motion of the till inspired him to imagine how an electron beam could scan images line by line—the basis for almost all TVs until LCD and plasma screens.
  • 3M scientist Spencer Silver just could not interest the company in his low-tack, pressure-sensitive adhesive.  Then colleague Arthur Fry found an application—at choir practice. Coating the sticky stuff on paper, Fry reasoned, he could create stay-put paper in his hymnal as a bookmark.
  • GoPro visionary Nick Woodman invented his wrist-strap-mounted, 35-millimeter camera while trying to capture his passion surfing on film. He turned it into a business that, at its height, was worth eleven (11) billion dollars.
  • The quickie oven (microwave) was born while engineer Percy Spencer was working on magnetrons for military radar sets.  When a candy bar in his pocket melted near various radar components, Spencer realized microwaves could penetrate the exterior of a food and cook it from inside out-unlike old-school ovens that cook from the outside in.
  • In 1905, eleven (11) year old Frank Epperson of Oakland, California mixed sugary soda power with water and left it out on a cold winter’s night.  The concoction froze-and proved delicious when he licked it off the wooden stirrer. Epperson, who died in 1983, dubbed his accidental treat the Epsicle and later patented it.  He sold the rights in 1925.
  • One day in 1941, George de Mestral took his dog for a walk in the Swiss woods.  When returning, he noticed burrs stuck to his pants–which refused to be removed. Under a microscope, de Mestral saw that the burrs had tiny hooks that attached themselves to thread loops in his pants.  Sensing a business opportunity, he connected with a Lyon fabric manufacturing firm and named the product with portmanteau of “velvet” and “crochet”—French for hook.
  • At the height of WWII, a mechanical engineer named Richard James was trying to devise springs that could keep sensitive ship equipment steady at sea.  After accidentally knocking spring samples from a shelf, he watched in astonishment as the springs gracefully “walked” down instead of falling. Teaming with his wife, Betty, James developed a plan for the wonderful novelty toy Slinky.

All of these “inventions” were waiting to happen but just depended upon creative minds to bring them into fruition.  This is the manner in which creativity works.  Suddenly with great flashes of brilliance.

Advertisements

With the federal government pulling out of manned space flight, it gave private companies ample opportunity to fill in the gaps.  Of course, these companies MUST have adequate funding, trained personnel and proper facilities to launch their version(s) of equipment, support and otherwise that will take man and equipment to the outer reaches of space.  The list of companies was quite surprising to me.  Let’s take a look.

These are just the launch vehicles.  There is also a huge list of manufacturers making man-rovers and orbiters, research craft and tech demonstrators, propulsion manufacturers, satellite launchers, space manufacturing, space mining, space stations, space settlements, spacecraft component manufacturers and developers, and spaceliner companies.   I will not publish that list but these companies are available for discovery by putting in the heading for each category.  To think we are not involved in space is obviously a misnomer.

 

CONCEPT CARS FOR THE FUTURE

February 9, 2019


On Thursday, Rep. Alexandria Ocasio-Cortez (D-N.Y.) and Sen. Ed Markey (D-Mass.) unveiled a landmark resolution cementing the pillars of an unprecedented program to zero out planet-warming emissions and restore the middle-class prosperity of postwar America that the original New Deal helped spur.

Just three months after calls for a Green New Deal electrified a long-stagnant debate on climate policy, the Democratic lawmakers released the six-page document outlining plans to cut global emissions forty (40) to sixty (60) percent below 2010 levels by 2030 and neutralize human-caused greenhouse gases entirely by 2050.

The joint resolution stakes out a “ten-year national mobilization” plan to build “smart” grids and rapidly increase the share of American power generated from solar and wind from ten (10) percent today to as close to one hundred (100) percent as possible over the next decade. The plan reframes tired talk of repairing the nation’s crumbling bridges, highways and ports as a crisis in a new era of billion-dollar storms. It gets local, demanding upgrades to “all existing U.S. buildings” to “achieve maximum” efficiency with energy and water use.

These are tremendously ambitious goals and quite frankly somewhat misguided.  The time line is NOT realistic.  We are, at the present time, not anywhere close to achieving those goals.  No programs in action to achieve those goals and one thing the “gentle” congresswoman misunderstands—the American love for fast cars, slow cars, electric cars, hybrid cars, etc. You surely must get my drift. Our entire economy has been built on fossil fuels.  That will continue using carbonaceous fuels until viable and cost-efficient alternatives are realized and commercially available.

The automotive industry thinks that time is down the road and they are operating with that belief. Let’s take a very quick look at what the automotive industry thinks is in store for our future “rides”.  The digital pictures below will give you some idea as to the concepts the industry is working on for future sales.

The E-Legend is an all-electric modern reinterpretation Peugeot’s 1969 -504 coupe. The automotive industry is making across-the-board moves to electric vehicles, and French manufacturer Peugeot isn’t about to be left behind. Ahead of the 2018 Paris Motor Show, Peugeot has released its E-Legend concept EV with a design that harks back to the classic 504 coupes of the 60s and 70s. In a world where aerodynamics leaves automotive design with a feeling of sameness across the industry, the E-Legend breaks from convention with a classically proportioned exterior and sharp features. The interior is nearly a modern masterpiece, with seats that could be at home in a modern office and a rectangular steering wheel. Peugeot claims 456 horsepower and 590 lb-ft of torque from the electric powertrain and a range of 373 miles, putting it right in line with current EV offerings. With its good looks and solid specs, the E-Legend is begging to see production.

Mercedes has unveiled the Vision EQ Silver Arrows Concept, and it is a stunner. The concept is a feast for the senses, a product of Mercedes’ masterful use of its own heritage and reinventing it with a futuristic electric-jolted twist. As it is, the EQ Silver Arrow is a showcase concept — and what a concept, it is — that we’ll never see in production form. The good news is that the concept isn’t just a muscle-flexing design exercise, too. Parts of the concept will appear in Mercedes’ new electric brand offshoot, EQ. As to what those parts are? We’ll just have to wait and find out.

Porsche has announced that it will put the Cross Turismo into production as a variant of the upcoming Taycan EV, creating 300 new jobs at Porsche’s Zuffenhausen headquarters. The reports of the wagon’s death have been greatly exaggerated, and the Porsche Mission E Cross Turismo concept is the latest proof that the body style is alive and well. Following the path blazed by the raised ride height and plastic-clad wheel arches of its corporate cousin, the Audi A4 All-road, the Mission E Cross Turismo is an all-electric, off-road-ready wagon that’s nonetheless claimed to be capable of blasting to 60 mph in less than 3.5 seconds and to 124 mph in less than 12 seconds.That’s right, Porsche is hinting that boxer engines won’t be the only characteristic its vehicles share with Subarus, and the Mission E Cross Turismo reveals the brand is, at the very least, considering an Outback-like variant of its upcoming Mission E sedan. Presumably, such a model will accompany a lower-riding, cladding-free, and non-knobby-tired Sport Turismo wagon version of the Mission E, as well.

“In our striving for efficiency, have we lost empathy for the traveler?” These words, from Volvo’s launch video for its new 360c fully autonomous concept car, hit home with me. I fly a lot, so I’m fully familiar with efficient but unsympathetic forms of travel, and Volvo’s idea is to help people like me through the design of its future cars. The Volvo 360c is, like most concepts of our time, all-electric, fully autonomous, and covered by a big sweeping glass dome. What distinguishes it, though, is Volvo’s vision of how it fits into the broader scheme of city infrastructure, short-haul flights, working commutes, and environmental concerns.

The PB18 e-tron concept embodies a fundamentally driver-centric sports car — there are no piloted driving systems to add weight, and its relatively lightweight construction helps propel it to speeds above 186 mph. It features a large-format cockpit which is a freely programmable unit and can be switched between layouts for optimal racetrack- and road-driving. The driver’s seat and cockpit are integrated into an inner monocoque shell that can be slid laterally to accommodate for one- or two-person seating.

The all-electric I.D. Vizzion will have a production version with a steering wheel and Level 4 autonomy on board, but the concept being shown off on the Geneva floor was the one with full autonomy and no human controls. To look at the expansive opening created by the Vizzion’s vast doors and the carpeted interior and contoured seating inside, you’d be reminded of Aston Martin’s similarly grand Lagonda concept car. But where the Aston Martin is sumptuous and enticing, VW’s carpet is made out of an unpleasant synthetic material, and the entire interior feels cheaper than it looks.

There’s not much in the way of features on the inside of the I.D. Vizzion: like most concepts, it’s minimal and stripped down, with only a shelf at the front of the car for tossing your sunglasses onto. There are wireless charging pods for phones, which are increasingly becoming a standard feature even in current production models.

CONCLUSION:

As you can see, the automobile industry is planning on a long and continued future although all-electric and autonomous vehicles are definitely in the future.  Please let me have your comments. See if you and I agree at all.

1918

October 6, 2018


I want us to climb in Mr. Peabody’s Way Back Machine and travel back in time to the year 1918.  One hundred years ago.  What were things like back then; clothes, cars, entertainment, politics, technology, etc.    It’s amazing to me how many advances have been made in just one hundred years.  Let’s take a quick look.

  • The average life expectancy for men was forty-seven (47) years.
  • Fuel for automobiles was sold in drug stores.
  • Only fourteen (14) percent of the homes had a bathtub.
  • Only eight (8) percent of the homes had a telephone.
  • The maximum speed limit in most cities was ten (10) MPH.
  • The average wage in the US was $0.22 per hour.
  • The average worker made between two hundred ($200) and four hundred ($400) dollars per year.
  • More that ninety-five (95%) percent of births took place in homes.
  • A dentist made $2500 per year.
  • A veterinarian made between $1500 and $4000 per year.
  • Ninety percent (90%) of ALL doctors had no college education. Instead, they attended so-called local medical schools. Many of which were condemned in the press and the government as substandard.
  • Sugar was four cents ($0.04) per pound.
  • Eggs were fourteen cents ($0.14) per dozen.
  • Coffee was fifteen cents ($0.15) per pound.
  • Most women washed their hair only one per month and used Borax or egg yolks for shampoo.
  • The population of Las Vegas was thirty (30).
  • Two out of ten adults could not read or write and only six percent (6%) of all Americans had graduated from high school.
  • There were two hundred and thirty (230) murders reported in the entire United States.

If a picture is worth a thousand words—let’s have pictures.  All of following pictures are from Getty Images and were taken in the year 1918.  Let’s take a look.

HUGE differences—right?  One thing I am certainly grateful for is advances in medical technology.  Our life expectancy for a male is now seventy-eight (78) and not forty-seven (47).  Huge advances.

TEN MOST RELIABLE CARS

April 4, 2018


Conservative design principles may be the key to building a more reliable automobile, say engineers from Consumer Reports who studied vehicle reliability for their 2018 auto issue.  Nine of the ten vehicles receiving “much better than average” overall scores in every available year of the survey were either from Toyota or Lexus.  The only exception was the Acura TSX mid-sized sedan, which received a perfect score in every model year from 2010 to 2014. This probably does not surprise anyone.

Let’s take a look at what Consumer Reports considers the ten most reliable models.

CONCLUSION:

Consumer Reports’ ratings of vehicle reliability are based on survey responses from more than half a million vehicle owners. The surveys ask questions about 17 different potential trouble spots, ranging from engines and transmissions to fuel systems, electrical, suspension, brakes, body hardware, and in-car electronics, among others.

In the ratings, the Camry received “much better than average” ratings (the magazine’s highest score) for in-car electronics in four of the last eight model years on the Consumer Reports survey. It also received perfect scores in all eight years for three engine categories and two transmission categories.

Toyota’s conservative approach does have a downside, however, Fisher added. The company’s vehicles are often dinged by automotive writers for being “dowdy,” or just plain lacking in excitement, he said. “Other manufacturers are willing to take risks for the sake of a performance increase, or for fuel economy boost, or for excitement and drive-ability,” he said. “And those manufacturers continue to get accolades from their peers. However, I would argue that none of those accolades consider reliability.”

OKAY—what are you after? Bells and whistles or a reliable vehicle to get you to and from work?

 

AUTOMOTIVE FUTURE

January 25, 2018


Portions of this post are taken from Design News Daily Magazine, January publication.

The Detroit Auto Show has a weirdly duplicitous vibe these days. The biggest companies that attend make sure to talk about things that make them sound future-focused, almost benevolent. They talk openly about autonomy, electrification, and even embracing other forms of transportation. But they do this while doling out product announcements that are very much about meeting the current demands of consumers who, enjoying low gas prices, want trucks and crossover SUVs. With that said, it really is interesting to take a look at several “concept” cars.  Cars we just may be driving the future is not the near future.  Let’s take a look right now.

Guangzhou Automobile Co. (better known as GAC Motor) stole the show in Detroit, at least if we take their amazing claims at face value. The Chinese automaker rolled out the Enverge electric concept car, which is said to have a 373-mile all-electric range based on a 71-kWh battery. Incredibly, it is also reported to have a wireless recharge time of just 10 minutes for a 240-mile range. Enverge’s power numbers are equally impressive: 235 HP and 302 lb-ft of torque, with a 0-62 mph time of just 4.4 seconds. GAC, the sixth biggest automaker in China, told the Detroit audience that it would start selling cars in the US by Q4 2019. The question is whether its extraordinary performance numbers will hold up to EPA scrutiny.  If GAC can live up to and meet their specifications they may have the real deal here.  Very impressive.

As autonomous vehicle technology advances, automakers are already starting to examine the softer side of that market – that is, how will humans interact the machines? And what are some of the new applications for the technology? That’s where Ford’s pizza delivery car came in. The giant automaker started delivering Domino’s pizzas in Ann Arbor, MI, late last year with an autonomous car. In truth, the car had a driver at the wheel, sitting behind a window screen. But the actual delivery was automated: Customers were alerted by a text; a rear window rolled down; an automated voice told them what to do, and they grabbed the pie. Ford engineers were surprised to find that that the humans weren’t intimated by the technology. “In the testing we did, people interacted nicely with the car,” Ford autonomous car research engineer Wayne Williams told Design News. “They talked to it as if it were a robot. They waved when it drove away. Kids loved it. They’d come running up to it.” The message to Ford was clear – autonomous cars are about more than just personal transportation. Delivery services are a real possibility, too.

Most of today’s autonomous cars use unsightly, spinning Lidar buckets atop their roofs. At the auto show, Toyota talked about an alternative Lidar technology that’s sleek and elegant. You have to admit that for now, the autonomous cars look UGLY—really ugly.  Maybe Toyota has the answer.

In a grand rollout, Lexus introduced a concept car called the LF-1 Limitless. The LF-1 is what we’ve all come to expect from modern concept cars – a test bed for numerous power trains and autonomous vehicle technologies. It can be propelled by a fuel cell, hybrid, plug-in hybrid, all-electric or gasoline power train. And its automated driving system includes a “miniaturized supercomputer with links to navigation data, radar sensors, and cameras for a 360-degree view of your surroundings with predictive capabilities.” The sensing technologies are all part of a system known as “Chauffeur mode.” Lexus explained that the LF-1 is setting the stage for bigger things: By 2025, every new Lexus around the world will be available as a dedicated electrified model or will have an electrified option.

The Xmotion, which is said to combine Japanese aesthetics with SUV styling, includes seven digital screens. Three main displays join left- and right-side screens across the instrument panel. There’s also a “digital room mirror” in the ceiling and center console display. Moreover, the displays can be controlled by gestures and even eye motions, enabling drivers to focus on the task of driving. A Human Machine Interface also allows drivers to easily switch from Nissan’s ProPilot automated driving system to a manual mode.

Cadillac showed off its Super Cruise technology, which is said to be the only semi-autonomous driving system that actually monitors the driver’s attention level. If the driver is attentive, Super Cruise can do amazing things – tooling along for hours on a divided highway with no intersections, for example, while handling all the steering, acceleration and braking. GM describes it as an SAE Level 2 autonomous system. It’s important because it shows autonomous vehicle technology has left the lab and is making its debut on production vehicles. Super Cruise launched late in 2017 on the Cadillac CT6 (shown here).

In a continuing effort to understand the relationship between self-driving cars and humans, Ford Motor Co. and Virginia Tech displayed an autonomous test vehicle that communicates its intent to other drivers, bicyclists, and pedestrians. Such communication is important, Ford engineers say, because “designing a way to replace the head nod or hand wave is fundamental to ensuring safe and efficient operation of self-driving vehicles.”

Infiniti rolled out the Q Inspiration luxury sedan concept, which combines its variable compression ratio engine with Nissan’s ProPilot semi-autonomous vehicle technology. Infiniti claims the engine combines “turbo charged gasoline power with the torque and efficiency of a hybrid or diesel.” Known as the VC-Turbo, the four-cylinder engine continually transforms itself, adjusting its compression ratio to optimize power and fuel efficiency. At the same time, the sedan features ProPilot Assist, which provides assisted steering, braking and acceleration during driving. You can see from the digital below, the photographers were there covering the Infinity.

The eye-catching Concept-i vehicle provided a more extreme view of the distant future, when vehicles will be equipped with artificial intelligence (AI). Meant to anticipate people’s needs and improve their quality of life, Concept-i is all about communicating with the driver and occupants. An AI agent named Yui uses light, sound, and even touch, instead of traditional screens, to communicate information. Colored lights in the footwells, for example, indicate whether the vehicle is an autonomous or manual drive; projectors in the rear deck project outside views onto the seat pillar to warn drivers about potential blind spots, and a next-generation heads-up display keeps the driver’s eyes and attention on the road. Moreover, the vehicle creates a feeling of warmth inside by emanating sweeping lines of light around it. Toyota engineers created the Concept-i features based on their belief that “mobility technology should be warm, welcoming, and above all, fun.”

CONCLUSIONS:  To be quite honest, I was not really blown away with this year’s offerings.  I LOVE the Infinity and the Toyota concept car shown above.  The American models did not capture my attention. Just a thought.


According to the “Electronic Design Magazine”, ‘Electronic waste is the fastest-growing form of waste. Electromechanical waste results from the Digital Revolution.  The Digital Revolution refers to the advancement of technology from analog electronic and mechanical devices to the digital technology available today. The era started to during the 1980s and is ongoing. The Digital Revolution also marks the beginning of the Information Era.

The Digital Revolution is sometimes also called the Third Industrial Revolution. The development and advancement of digital technologies started with one fundamental idea: The Internet. Here is a brief timeline of how the Digital Revolution progressed:

  • 1947-1979 – The transistor, which was introduced in 1947, paved the way for the development of advanced digital computers. The government, military and other organizations made use of computer systems during the 1950s and 1960s. This research eventually led to the creation of the World Wide Web.
  • 1980s – The computer became a familiar machine and by the end of the decade, being able to use one became a necessity for many jobs. The first cellphone was also introduced during this decade.
  • 1990s – By 1992, the World Wide Web had been introduced, and by 1996 the Internet became a normal part of most business operations. By the late 1990s, the Internet became a part of everyday life for almost half of the American population.
  • 2000s – By this decade, the Digital Revolution had begun to spread all over the developing world; mobile phones were commonly seen, the number of Internet users continued to grow, and the television started to transition from using analog to digital signals.
  • 2010 and beyond – By this decade, Internet makes up more than 25 percent of the world’s population. Mobile communication has also become very important, as nearly 70 percent of the world’s population owns a mobile phone. The connection between Internet websites and mobile gadgets has become a standard in communication. It is predicted that by 2015, the innovation of tablet computers will far surpass personal computers with the use of the Internet and the promise of cloud computing services. This will allow users to consume media and use business applications on their mobile devices, applications that would otherwise be too much for such devices to handle.

In the United States, E-waste represents approximately two percent (2%) of America’s trash in landfills, but seventy percent (70%) of the overall toxic waste.  American recycles about 679,000 tons of E-waste annually, and that figure does not include a large portion of electronics such as TV, DVD and VCR players, and related TV electronics. According to the EPA, E-waste is still the fastest growing municipal waste stream.  Not only is electromechanical waste a major environmental problem it contains valuable resources that could generate revenue and be used again.  Cell phones and other electronic items contain high amounts of precious metals, such as gold, and silver.  Americans dump phones containing more than sixty million ($60,000,000) dollars in gold and silver each year.

The United States and China generated the most e-waste last year – thirty-two (32%) percent of the world’s total. However, on a per capita basis, several countries famed for their environmental awareness and recycling records lead the way. Norway is on top of the world’s electronic waste mountain, generating 62.4 pounds per inhabitant.

Technology has made a significant difference in the ability to deal and handle E-waste products.  One country, Japan, is making a major effort to deal with the problem. Japan has approximately one hundred (100) major electronic waste facilities, as well as numerous smaller, local collection and operating facilities.  From those one hundred major plants, more than thirty (30) utilize the Kubota Vertical Shredder to reduce the overall size of the assemblies. Recycling technology company swissRTec has announced that one of its key products, the Kubota Vertical Shredder, is now available in the United States to take care of E-waste.

WHY IS E-WASTE RECYCLING IMPORTANT:

If we look at why recycling E-waste is important, we see the following:

  • Rich Source of Raw Materials Internationally, only ten to fifteen (10-15) percent of the gold in e-waste is successfully recovered while the rest is lost. Ironically, electronic waste contains deposits of precious metal estimated to be between forty and fifty (40 and 50) times richer than ores mined from the earth, according to the United Nations.
  • Solid Waste Management Because the explosion of growth in the electronics industry, combined with short product life cycle has led to a rapid escalation in the generation of solid waste.
  • Toxic Materials Because old electronic devices contain toxic substances such as lead, mercury, cadmium and chromium, proper processing is essential to ensure that these materials are not released into the environment. They may also contain other heavy metals and potentially toxic chemical flame retardants.
  • International Movement of Hazardous Waste The uncontrolled movement of e-waste to countries where cheap labor and primitive approaches to recycling have resulted in health risks to local residents exposed to the release of toxins continues to an issue of concern.

We are fortunate in Chattanooga to have an E-cycling “stations”.  ForeRunner does just that.  Here is a cut from their web site:

“… with more than 15 years in the computer \ e waste recycling field, Forerunner Computer Recycling has given Chattanooga companies a responsible option to dispose end of life cycle and surplus computer equipment. All Chattanooga based companies face the task of safely disposing of older equipment and their e waste. The EPA estimates that as many as 500 million computers \e- waste will soon become obsolete.

As Chattanooga businesses upgrade existing PCs, more computers and other e waste are finding their way into the waste stream. According to the EPA, over two million tons of electronics waste is discarded each year and goes to U.S. landfills.

Now you have a partner in the computer \ e waste recycling business who understands your need to safely dispose of your computer and electronic equipment in an environmentally responsible manner.

By promoting reuse – computer recycling and electronic recycling – Forerunner Computer Recycling extends the life of computer equipment and reduce e waste. Recycle your computers, recycle your electronics.”

CONCLUSIONS:

I definitely encourage you to look up the recycling E-waste facility in your city or county.  You will be doing our environment a great service in doing so.

%d bloggers like this: