March 5, 2019

If you read my posts at all you know I am solidly behind our space efforts by NASA or even private companies.  In my opinion, the United States of America made a HUGE mistake in withdrawing financed manned missions AND discontinuing efforts to colonize the moon.  We now are dependent upon Russia to take our astronauts to the ISS.   That may end soon with successful launches from SpaceX and Virgin Galactic.  The headway they are making is very interesting.

Israel has also made headline news just recently with their successful launch and landing on the moon’s surface.   A digital photograph of the lander is shown below.

The story of this effort is fascinating and started in 2010 with a Facebook post. “Who wants to go to the moon?” wrote Yariv Bash, a computer engineer. A couple of friends, Kfir Damari and Yonatan Winetraub responded, and the three met at a bar in Holon, a city south of Tel Aviv. At 30, Mr. Bash was the oldest. “As the alcohol levels in our blood increased, we became more determined,” Mr. Winetraub recalled.  They formed a nonprofit, SpaceIL, to undertake the task. More than eight years later, the product of their dreams, a small spacecraft called Beresheet, blasted off this past Thursday night atop a SpaceX Falcon 9 rocket at the Cape Canaveral Air Force Station in Florida.  Beresheet is a joint project of the nonprofit group SpaceIL and the company Israel Aerospace Industries.

Israel’s first lunar lander has notched another important milestone — its first in-space selfie. The newly released photo shows the robotic lander, known as Beresheet, looking back at Earth from a distance of 23,363.5 miles (37,600 kilometers).

“In the photo of Earth, taken during a slow spin of the spacecraft, Australia is clearly visible,” mission team members wrote in an image description today (March 5). “Also seen is the plaque installed on the spacecraft, with the Israeli flag and the inscriptions ‘Am Yisrael Chai’ and ‘Small Country, Big Dreams.'”

The entire Beresheet mission, including launch, costs about $100 million, team members have said.

Beresheet’s ride through space hasn’t been entirely smooth. Shortly after liftoff, team members noticed that the craft’s star trackers, which are critical to navigation, are susceptible to blinding by solar radiation. And Beresheet’s computer performed a reset unexpectedly just before the craft’s second planned engine burn.

Mission team members have overcome these issues. For example, they traced the computer reset to cosmic radiation and firmed up Beresheet’s defenses with a software update. The lander was then able to execute the engine burn, which put Beresheet back on track toward the moon.  This reset indicates complete control of the mission and the ability to make a mid-course correction if needed.  In other words, they know what they are doing.

I would be very surprised if Israel stopped with this success.  I am sure they have other missions they are considering.  They do have competition. Prior to Israel’s landing, there were only three other countries to “soft-land” a lunar lander:  USA, Russia and China.  The Chinese have already stated they want to colonize the moon and make that their base for further exploration.  We know the direction they are going.  I just hope we get serious about a colony on the moon and give up, for the present time, sending men and women to Mars.  Any Mars mission at this time would be nuts.


As always, I welcome your opinion.


Astrophysics for People in a Hurry was written by Neil deGrasse Tyson.  I think the best place to start is with a brief bio of Dr. Tyson.

NEIL de GRASSE TYSON was borne October 5, 1968 in New York City. When he was nine years old, his interest in astronomy was sparked by a trip to the Hayden Planetarium at the American Museum of Natural History in New York. Tyson followed that passion and received a bachelor’s degree in physics from Harvard University in Cambridge, Massachusetts, in 1980 and a master’s degree in astronomy from the University of Texas at Austin in 1983. He began writing a question-and-answer column for the University of Texas’s popular astronomy magazine StarDate, and material from that column later appeared in his books Merlin’s Tour of the Universe (1989) and Just Visiting This Planet (1998).

Tyson then earned a master’s (1989) and a doctorate in astrophysics (1991) from Columbia University, New York City. He was a postdoctoral research associate at Princeton University from 1991 to 1994, when he joined the Hayden Planetarium as a staff scientist. His research dealt with problems relating to galactic structure and evolution. He became acting director of the Hayden Planetarium in 1995 and director in 1996. From 1995 to 2005 he wrote monthly essays for Natural History magazine, some of which were collected in Death by Black Hole: And Other Cosmic Quandaries (2007), and in 2000 he wrote an autobiography, The Sky Is Not the Limit: Adventures of an Urban Astrophysicist. His later books include Astrophysics for People in a Hurry (2017).

You can see from his biography Dr. Tyson is a “heavy hitter” and knows his subject in and out.  His newest book “Astrophysics for People in a Hurry” treats his readers with respect relative to their time.  During the summer of 2017, it was on the New York Times best seller list at number one for four (4) consecutive months and has never been unlisted from that list since its publication. The book is small and contains only two hundred and nine (209) pages, but please do not let this short book fool you.  It is extremely well written and “loaded” with facts relevant to the subject matter. Very concise and to the point.   I would like now to give you some idea as to the content by coping several passages from the book.  Short passages that will indicate what you will be dealing with as a reader.

  • In the beginning, nearly fourteen billion years ago, all the space and all the matter and all the energy of the knows universe was contained in a volume less than one-trillionth the size of the period that ends this sentence.
  • As the universe aged through 10^-55 seconds, it continued to expand, diluting all concentrations of energy, and what remained of the unified forces split into the “electroweak” and the “strong nuclear” forces.
  • As the cosmos continued to expand and cool, growing larger that the size of our solar system, the temperature dropped rapidly below a trillion degrees Kelvin.
  • After cooling, one electron for every proton has been “frozen” into existence. As the cosmos continues to cool-dropping below a hundred million degrees-protons fuse with other protons as well as with neutrons, forming atomic nuclei and hatching a universe in which ninety percent of these nuclei are hydrogen and ten percent are helium, along with trace amounts of deuterium (heavy hydrogen), tritium (even heavier than hydrogen), and lithium.
  • For the first billion years, the universe continued to expand and cool as matter gravitated into the massive concentrations we call galaxies. Nearly a hundred billion of them formed, each containing hundreds of billions of stars that undergo thermonuclear fusion in their cores.

Dr. Tyson also discusses, Dark Matter, Dark Energy, Invisible Light, the Exoplanet Earth and many other fascinating subjects that can be absorbed in “quick time”.  It is a GREAT read and one I can definitely recommend to you.


January 28, 2017

The following information was taken from and NASA.

Until just recently I did not know there was a Hubble Constant.  The term had never popped up on my radar.  For this reason, I thought it might be noteworthy to discuss the meaning and the implications.


The Hubble Constant is the unit of measurement used to describe the expansion of the universe. The Hubble Constant (Ho) is one of the most important numbers in cosmology because it is needed to estimate the size and age of the universe. This long-sought number indicates the rate at which the universe is expanding, from the primordial “Big Bang.”

The Hubble Constant can be used to determine the intrinsic brightness and masses of stars in nearby galaxies, examine those same properties in more distant galaxies and galaxy clusters, deduce the amount of dark matter present in the universe, obtain the scale size of faraway galaxy clusters, and serve as a test for theoretical cosmological models. The Hubble Constant can be stated as a simple mathematical expression, Ho = v/d, where v is the galaxy’s radial outward velocity (in other words, motion along our line-of-sight), d is the galaxy’s distance from earth, and Ho is the current value of the Hubble Constant.  However, obtaining a true value for Ho is very complicated. Astronomers need two measurements. First, spectroscopic observations reveal the galaxy’s redshift, indicating its radial velocity. The second measurement, the most difficult value to determine, is the galaxy’s precise distance from earth. Reliable “distance indicators,” such as variable stars and supernovae, must be found in galaxies. The value of Ho itself must be cautiously derived from a sample of galaxies that are far enough away that motions due to local gravitational influences are negligibly small.

The units of the Hubble Constant are “kilometers per second per megaparsec.” In other words, for each megaparsec of distance, the velocity of a distant object appears to increase by some value. (A megaparsec is 3.26 million light-years.) For example, if the Hubble Constant was determined to be 50 km/s/Mpc, a galaxy at 10 Mpc, would have a redshift corresponding to a radial velocity of 500 km/s.

The cosmos has been getting bigger since the Big Bang kick-started the growth about 13.82 billion years ago.  The universe, in fact, is getting faster in its acceleration as it gets bigger.  As of March 2013, NASA estimates the rate of expansion is about 70.4 kilometers per second per megaparsec. A megaparsec is a million parsecs, or about 3.3 million light-years, so this is almost unimaginably fast. Using data solely from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP), the rate is slightly faster, at about 71 km/s per megaparsec.

The constant was first proposed by Edwin Hubble (whose name is also used for the Hubble Space Telescope). Hubble was an American astronomer who studied galaxies, particularly those that are far away from us. In 1929 — based on a realization from astronomer Harlow Shapley that galaxies appear to be moving away from the Milky Way — Hubble found that the farther these galaxies are from Earth, the faster they appear to be moving, according to NASA.

While scientists then understood the phenomenon to be galaxies moving away from each other, today astronomers know that what is actually being observed is the expansion of the universe. No matter where you are located in the cosmos, you would see the same phenomenon happening at the same speed.

Hubble’s initial calculations have been refined over the years, as more and more sensitive telescopes have been used to make the measurements. These include the Hubble Space Telescope (which examined a kind of variable star called Cepheid variables) and WMAP, which extrapolated based on measurements of the cosmic microwave background — a constant background temperature in the universe that is sometimes called the “afterglow” of the Big Bang.


The Big Bang theory is an effort to explain what happened at the very beginning of our universe. Discoveries in astronomy and physics have shown beyond a reasonable doubt that our universe did in fact have a beginning. Prior to that moment there was nothing; during and after that moment there was something: our universe. The big bang theory is an effort to explain what happened during and after that moment.

According to the standard theory, our universe sprang into existence as “singularity” around 13.7 billion years ago. What is a “singularity” and where does it come from? Well, to be honest, that answer is unknown.  Astronomers simply don’t know for sure. Singularities are zones which defy our current understanding of physics. They are thought to exist at the core of “black holes.” Black holes are areas of intense gravitational pressure. The pressure is thought to be so intense that finite matter is actually squished into infinite density (a mathematical concept which truly boggles the mind). These zones of infinite density are called “singularities.” Our universe is thought to have begun as an infinitesimally small, infinitely hot, infinitely dense, something – a singularity. Where did it come from? We don’t know. Why did it appear? We don’t know.

After its initial appearance, it apparently inflated (the “Big Bang”), expanded and cooled, going from very, very small and very, very hot, to the size and temperature of our current universe. It continues to expand and cool to this day and we are inside of it: incredible creatures living on a unique planet, circling a beautiful star clustered together with several hundred billion other stars in a galaxy soaring through the cosmos, all of which is inside of an expanding universe that began as an infinitesimal singularity which appeared out of nowhere for reasons unknown. This is the Big Bang theory.


The illustration below shows the three steps astronomers used to measure the universe’s expansion rate to an unprecedented accuracy, reducing the total uncertainty to 2.4 percent.

Astronomers made the measurements by streamlining and strengthening the construction of the cosmic distance ladder, which is used to measure accurate distances to galaxies near and far from Earth.

Beginning at left, astronomers use Hubble to measure the distances to a class of pulsating stars called Cepheid Variables, employing a basic tool of geometry called parallax. This is the same technique that surveyors use to measure distances on Earth. Once astronomers calibrate the Cepheids’ true brightness, they can use them as cosmic yardsticks to measure distances to galaxies much farther away than they can with the parallax technique. The rate at which Cepheids pulsate provides an additional fine-tuning to the true brightness, with slower pulses for brighter Cepheids. The astronomers compare the calibrated true brightness values with the stars’ apparent brightness, as seen from Earth, to determine accurate distances.

Once the Cepheids are calibrated, astronomers move beyond our Milky Way to nearby galaxies [shown at center]. They look for galaxies that contain Cepheid stars and another reliable yardstick, Type Ia supernovae, exploding stars that flare with the same amount of brightness. The astronomers use the Cepheids to measure the true brightness of the supernovae in each host galaxy. From these measurements, the astronomers determine the galaxies’ distances.

They then look for supernovae in galaxies located even farther away from Earth. Unlike Cepheids, Type Ia supernovae are brilliant enough to be seen from relatively longer distances. The astronomers compare the true and apparent brightness of distant supernovae to measure out to the distance where the expansion of the universe can be seen [shown at right]. They compare those distance measurements with how the light from the supernovae is stretched to longer wavelengths by the expansion of space. They use these two values to calculate how fast the universe expands with time, called the Hubble constant.


Now, that’s simple, isn’t it?  OK, not really.   It’s actually somewhat painstaking and as you can see extremely detailed.  To our credit, the constant can be measured.


This is a rather, off the wall, post but one I certainly hope you can enjoy.  Technology is a marvelous thing working to clarify and define where we come from and how we got there.


July 21, 2016

The following information was taken from the NASA web site and the Machine Design Magazine.


After an almost five-year journey to the solar system’s largest planet, NASA’s Juno spacecraft successfully entered Jupiter’s orbit during a thirty-five (35) minute engine burn. Confirmation the burn was successful was received on Earth at 8:53 p.m. PDT (11:53 p.m. EDT) Monday, July 4. A message from NASA is as follows:

“Independence Day always is something to celebrate, but today we can add to America’s birthday another reason to cheer — Juno is at Jupiter,” said NASA administrator Charlie Bolden. “And what is more American than a NASA mission going boldly where no spacecraft has gone before? With Juno, we will investigate the unknowns of Jupiter’s massive radiation belts to delve deep into not only the planet’s interior, but into how Jupiter was born and how our entire solar system evolved.”

Confirmation of a successful orbit insertion was received from Juno tracking data monitored at the navigation facility at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, as well as at the Lockheed Martin Juno operations center in Littleton, Colorado. The telemetry and tracking data were received by NASA’s Deep Space Network antennas in Goldstone, California, and Canberra, Australia.

“This is the one time I don’t mind being stuck in a windowless room on the night of the 4th of July,” said Scott Bolton, principal investigator of Juno from Southwest Research Institute in San Antonio. “The mission team did great. The spacecraft did great. We are looking great. It’s a great day.”

Preplanned events leading up to the orbital insertion engine burn included changing the spacecraft’s attitude to point the main engine in the desired direction and then increasing the spacecraft’s rotation rate from 2 to 5 revolutions per minute (RPM) to help stabilize it..

The burn of Juno’s 645-Newton Leros-1b main engine began on time at 8:18 p.m. PDT (11:18 p.m. EDT), decreasing the spacecraft’s velocity by 1,212 miles per hour (542 meters per second) and allowing Juno to be captured in orbit around Jupiter. Soon after the burn was completed, Juno turned so that the sun’s rays could once again reach the 18,698 individual solar cells that give Juno its energy.

“The spacecraft worked perfectly, which is always nice when you’re driving a vehicle with 1.7 billion miles on the odometer,” said Rick Nybakken, Juno project manager from JPL. “Jupiter orbit insertion was a big step and the most challenging remaining in our mission plan, but there are others that have to occur before we can give the science team the mission they are looking for.”

Can you imagine a 1.7 billion (yes that’s with a “B”) mile journey AND the ability to monitor the process?  This is truly an engineering feat that should make history.   (Too bad our politicians are busy getting themselves elected and reelected.)

Over the next few months, Juno’s mission and science teams will perform final testing on the spacecraft’s subsystems, final calibration of science instruments and some science collection.

“Our official science collection phase begins in October, but we’ve figured out a way to collect data a lot earlier than that,” said Bolton. “Which when you’re talking about the single biggest planetary body in the solar system is a really good thing. There is a lot to see and do here.”

Juno’s principal goal is to understand the origin and evolution of Jupiter. With its suite of nine science instruments, Juno will investigate the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras. The mission also will let us take a giant step forward in our understanding of how giant planets form and the role these titans played in putting together the rest of the solar system. As our primary example of a giant planet, Jupiter also can provide critical knowledge for understanding the planetary systems being discovered around other stars.

The Juno spacecraft launched on Aug. 5, 2011 from Cape Canaveral Air Force Station in Florida. JPL manages the Juno mission for NASA. Juno is part of NASA’s New Frontiers Program, managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate. Lockheed Martin Space Systems in Denver built the spacecraft. The California Institute of Technology in Pasadena manages JPL for NASA.


Before we list the systems, let’s take a look at the physical “machine”.

Juno Configuration

As you can see, the design is truly remarkable and includes the following modules:

  • SOLAR PANELS—Juno requires 18,000 solar cells to gather enough energy for it’s journey, 508 million miles from our sun.  In January, Juno broke the record as the first solar-powered spacecraft to fly further than 493 million miles from the sun.
  • RADIATION VAULT—During its polar orbit, Juno will repeatedly pass through the intense radiation belt that surrounds Jupiter’s equator, charged by ions and particles from Jupiter’s atmosphere and moons suspended in Juno’s colossal magnetic field. The magnetic belt, which measures 1,000 times the human toxicity level, has a radio frequency that can be detected from Earth and extends into earth’s orbit.
  • GRAVITY SCIENCE EXPERIMENT—Using advanced gravity science tools; Juno will create a detailed map of Jupiter’s gravitational field to infer Jupiter’s mass distribution and internal structure.
  • VECTOR MAGNETOMETER (MAG)—Juno’s next mission is to map Jupiter’s massive magnetic field, which extends approximately two (2) million miles toward the sun, shielding Jupiter from solar flares.  It also tails out for more than six hundred (600) million miles in solar orbit.  The dynamo is more than 20,000 times greater than that of the Earth.
  • MICROWAVE RADIOMETERS–Microwave radiomometers (MWR) will detect six (6) microwave and radio frequencies generated by the atmosphere’s thermal emissions.  This will aid in determining the depths of various cloud forms.
  • DETAILED MAPPING OF AURORA BOREALIS AND PLASMA CONTENT—As Juno passes Jupiter’s poles, cameral will capture high-resolution images of aurora borealis, and particle detectors will analyze the plasmas responsible for them.  Not only are Jupiter’s auroras much larger than those of Earth, they are also much more frequent because they are created by atmospheric plasma rather than solar flares.
  • JEDI MEASURES HIGH-ENERGY PARTICLES–Three Jupiter energetic particle detector instruments (JEDIs) will measure the angular distribution of high-energy particles as they interact with Jupiter’s upper atmospheres and inner magnetospheres to contribute to Jupiter’s northern and southern lights.
  • JADE MEASURE OF LOW-ENERGY PARTICLES—JADE, the Jovian Aurora Distributions Experiment, works in conjunction with DEDI to measure the angular distribution of lower-energy electrons and ions ranging from zero (0) to thirty (30) electron volts.
  • WAVES MEASURES PLASMA MOVEMENT—The radio/plasma wave experiment, called WAVES, will be used to measure radio frequencies  (50 Hz to 40 MHz) generated by the plasma in the magnetospheres.
  • UVS,JIRAM CAPTURE NORTHERN/SOUTHERN LIGHTS—By capturing wavelength of seventy (70) to two hundred and five (205) nm, an ultraviolet imager/spectrometer (UVS) will generate images of the auroras UV spectrum to view the auroras during the Jovian day.
  • HIGH-RESOLUTION CAMERA—JunoCam, a high-resolution color camera, will capture red, green and blue wavelengths photos of Jupiter’s atmosphere and aurora.  The NASA team expects the camera to last about seven orbits before being destroyed by radiation.


This technology is truly amazing to me.  Think of the planning, the engineering design, the testing, the computer programming needed to bring this program to fruition.  Amazing!



April 14, 2016

I usually don’t do movie reviews but this is an exception due to the technology displayed in “Eye in the Sky”.  This movie has been rated as a 4.5 to 5.0 by three movie reviewers and deserves the rating.  It is a marvelous movie and one I can certainly recommend to you.  Let me set the cast.

  • Hellen  Mirren as Colonel  Katherine Powel
  • Alan Rickman Lt. Gen. Frank Benson (This was Mr. Rickman’s last movie before his passing this year.
  • Aaron Paul as Lt. Steve Watts, United States Air Force
  • Barkhad Abdi as Jama Farah, MI6 operative
  • Phoebe Fox as Carrie Gershon—Weapons Officer, United States Air Force
  • Lian Glen—British Foreign Affairs Officer

The film, directed by Gavin Hood based on a screenplay by Guy Hibbert, and details military personnel facing the legal and ethical dilemmas presented by drone warfare against those using terrorist tactics. The overriding issue is the civilian population endangered by the military activity. The movie was filmed in South Africa in late 2014.

Colonel Katherine Powell (Helen Mirren) commands from Northwood Headquarters (Britain) a mission to capture high-level Al-Shabaab extremists meeting in a safehouse in Nairobi, Kenya. A Reaper drone controlled from Nevada by USAF pilot Steve Watts (Aaron Paul) provides aerial surveillance, while undercover Kenyan field agents, including Jama Farah (Barkhad Abdi), use short-range video bugs for ground intelligence. Kenyan ground troops are positioned nearby to execute the arrest, but are called off when Farah discovers the terrorists have explosives, and are preparing two suicide bombers for what is presumed to be an attack on a civilian target.  Time is of the essence and as the movie progresses there seems to be many more political roadblocks than might seem necessary.  If those individuals in the safehouse are allowed to leave, killing them will be out of the question.

Colonel Powell decides that the imminent bombing changes the mission objective from “capture” to “kill” and informs drone pilot Watts to prepare a missile attack on the building.  As protocol would dictate, she solicits the opinion of her legal counsel about doing so. To her frustration, her counsel advises her to seek approval from her superiors. Lieutenant General Frank Benson (Alan Rickman) is supervising the mission from London with members of the UK government as witnesses, and asks for their authorization. Citing conflicting legal and political views—such as contrasting the tactical value of the assassination with the negative publicity of killing civilians and the status of some of the targets as US or UK nationals—they fail to reach a decision and refer the question up to the Foreign Secretary (Iain Glen).  Impaired by a bout of food poisoning on a trade mission to Singapore, he does not offer a definite answer, first attempting to defer to the US Secretary of State (contacted on a cultural exchange in Beijing), then insisting only that due diligence be performed in seeking a way to minimize “collateral damage”.

Meanwhile, the situation at the house has become more difficult to assess.  Alia Mo’Allim (Aisha Takow), a pre-teen girl who lives in the adjacent home, is visibly in grave danger if the building—and the explosives inside—are struck by a missile. Watts and his USAF colleague Carrie Gershon (Phoebe Fox) can see Alia selling bread just outside the targeted building, and seek to delay firing until she moves. Farah attempts to buy all of her bread so she will leave, but in the process, his cover is blown and he is forced to flee. The suicide bombers are finishing their preparations when surveillance video of them is lost, raising the level of urgency.

Seeking a way to get the authorization she needs to execute the strike, Powell orders her risk-assessment officer to find strike parameters that will allow him to quote a lower risk of civilian deaths. He re-evaluates a strike point and places the probability of Alia’s death at forty-five (45) to sixty-five (65) percent; she coerces him to report only the lower figure up the chain of command. The strike is subsequently authorized, and Watts reluctantly fires a missile. The building is leveled, with casualties in and around it. Alia has moved far enough away to survive the strike, but is injured and unconscious. However, one of the terrorist leaders has also survived, requiring Watts to fire a second missile, which strikes the site just as Alia’s parents reach her. They suffer minor injuries and rush Alia to a hospital, where the medical personnel are unable to revive her and she is pronounced dead. This is a tragic ending to a great movie.  Collateral damage ending the life of an innocent little girl.

The script is fascinating but the scenes depicting the capabilities of drone activity is truly engaging.  The field operative is unable to get close enough to determine the identities of everyone in the safehouse and a definite “make” is necessary before firing the Hellfire missile. The story line is more complicated because one terrorist is British and one American.  Both must be identified before action can be taken.  The drone sent to capture video of those inside is a “bug”—a flying bug with a camera.  The drone is directed by a controller no bigger than a smartphone with directional buttons guiding its flight path.  The people are identified but the little girl selling bread is within the “kill zone”.  Delays occur until the proper clearances and permissions are granted.  The Reaper drone is flying at twenty thousand feet and circles the area waiting on permission to engage.  All the time, video is given of the girl selling bread.  Lt. Watts knows an airstrike incorrectly placed will kill the girl and others within a certain radius of the bomb blast.  He repeatedly asks for probabilities of destruction relative to collateral damage.

I suspect the drone activity in the movie is at least somewhat accurate and if this is the case the technology is stunning.  To control a drone over the horn of Africa from Nevada is truly amazing.  To do so in “real time” is even more impressive.  The personal toll on the pilot and the weapons officer is pronounced.  They will never forget the experience and I’m sure PTSD will be a factor in their future.  Killing innocent children is a huge burden but the individual wearing the bomb vest would have killed scores of innocents had he been able to carry out his attack.

I can definitely recommend this movie to you.  It truly demonstrated American capabilities as well as the strain in fighting terrorism in today’s world.


January 30, 2016


It is very difficult to believe that the Hubble Telescope is twenty-five (25) years in orbit. The launch date for Hubble was April 24, 1990 and remains in operation. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to take extremely high-resolution images with negligible background light.  It rotates approximately 345 miles above our Earth.   It has recorded some of the most detailed visible-light images ever, allowing a deep view into space and time. Many Hubble observations have led to breakthroughs in astrophysics, such as accurately determining the rate of expansion of the universe. A digital photograph of the Hubble Telescope is given as follows:


Every 97 minutes, Hubble completes a spin around Earth, moving at the speed of about five miles per second (8 km per second) — fast enough to travel across the United States in about 10 minutes. As it travels, Hubble’s mirror captures light and directs it into its several scientific instruments.

Hubble is a type of telescope known as a Cassegrain reflector. Light hits the telescope’s main mirror, or primary mirror. It bounces off the primary mirror and encounters a secondary mirror. The secondary mirror focuses the light through a hole in the center of the primary mirror that leads to the telescope’s science instruments.

People often mistakenly believe that a telescope’s power lies in its ability to magnify objects. Telescopes actually work by collecting more light than the human eye can capture on its own. The larger a telescope’s mirror, the more light it can collect, and the better its vision. Hubble’s primary mirror is 94.5 inches (2.4 m) in diameter. This mirror is small compared with those of current ground-based telescopes, which can be 400 inches (1,000 cm) and up, but Hubble’s location beyond the atmosphere gives it remarkable clarity.

As you might suspect, the marvelous Hubble Telescope is using technology that is considered outdated relative to what is available today.  Still working and still providing remarkable photographs and data, the scientists and engineers at NASA recognized a newer device would ultimately be needed to push the boundaries of astronomy. Hence the James Webb Telescope.  OK, just who is James Webb?


The man whose name NASA has chosen to bestow upon the successor to the Hubble Space Telescope is most commonly linked to the Apollo moon program, not to science.

Yet, many believe that James E. Webb, who ran the fledgling space agency from February 1961 to October 1968, did more for science than perhaps any other government official, and that it is only fitting that the Next Generation Space Telescope would be named after him.

Webb’s record of support for space science would support those views. Although President John Kennedy had committed the nation to landing a man on the moon before the end of the decade, Webb believed that the space program was more than a political race. He believed that NASA had to strike a balance between human space flight and science because such a combination would serve as a catalyst for strengthening the nation’s universities and aerospace industry.

By the time Webb retired just a few months before the first moon landing in July 1969, NASA had launched more than 75 space science missions to study the stars and galaxies, our own Sun and the as-yet-unknown environment of space above the Earth’s atmosphere. Missions such as the Orbiting Solar Observatory and the Explorer series of astronomical satellites built the foundation for the most successful period of astronomical discovery in history, which continues today.  It is absolutely fitting that the next generation telescope be named after Mr. Webb.


The graphic below shows an excellent comparison between Hubble and James Webb relative capabilities.

Hubble vs James Webb


JWST is an international collaboration between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate JWST after launch.

Several innovative technologies have been developed for JWST. These include a primary mirror made of 18 separate segments that unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. JWST’s biggest feature is a tennis court-sized five-layer sunshield that attenuates heat from the Sun more than a million times. The telescope’s four instruments – cameras and spectrometers – have detectors that are able to record extremely faint signals. One instrument (NIRSpec) has programmable micro-shutters, which enable observation up to 100 objects simultaneously. JWST also has a cryo-cooler for cooling the mid-infrared detectors of another instrument (MIRI) to a very cold 7 K so they can work.  The JPEG below will show the instrumentation assembled into the platform and give a very brief summary of purpose.


The telescope will be “parked” 932,000 miles above Earth into space; obviously, beyond our moon.  With the ability to collect much more light than Hubble, the Webb Telescope will be able to see distant objects as they existed much earlier in time, specifically 13.5 billion years earlier.  This number is only 200,000 years after the “big bang”.

Other JPEGs of the telescope are given as follows:

James Webb in Orbit

(ABOVE) The Webb Telescope in Orbit.

Given below:  The James Webb Telescope Team.


On 6 July 2011, the United States House of Representatives’ appropriations committee on Commerce, Justice, and Science moved to cancel the James Webb project by proposing an FY2012 budget that removed $1.9bn from NASA’s overall budget, of which roughly one quarter was for JWST.  This budget proposal was approved by subcommittee vote the following day; however, in November 2011, Congress reversed plans to cancel the JWST and instead capped additional funding to complete the project at $8 billion.

The committee charged that the project was “billions of dollars over budget and plagued by poor management”. The telescope was originally estimated to cost $1.6bn but the cost estimate grew throughout the early development reaching about $5bn by the time the mission was formally confirmed for construction start in 2008. In summer 2010, the mission passed its Critical Design Review with excellent grades on all technical matters, but schedule and cost slips at that time prompted US Senator Barbara Mikulski to call for an independent review of the project. The Independent Comprehensive Review Panel (ICRP) chaired by J. Casani (JPL) found that the earliest launch date was in late 2015 at an extra cost of $1.5bn (for a total of $6.5bn). They also pointed out that this would have required extra funding in FY2011 and FY2012 and that any later launch date would lead to a higher total cost. Because the runaway budget diverted funding from other research, the science journal Nature described the James Webb as “the telescope that ate astronomy”. However, termination of the project as proposed by the House appropriation committee would not have provided funding to other missions, as the JWST line would have been terminated with the funding leaving astrophysics (and the NASA budget) entirely. You can see from the following digital, Congress was certainly within their right to cancel the program.


It is not an inexpensive program.  The House of Representatives, as mentioned above, did not kill the program. Launch is still scheduled for 20 October, 2018. I personally believe this was the proper move for them to make.

As always, I welcome your comments.


I remain absolutely amazed at the engineering effort involving the space probe NASA calls “NEW HORIZONS”.  The technology, hardware, software and communication package allowing the flyby is truly phenomenal—truly.  One thing that strikes me is the predictability of planetary movements so the proper trajectory may be accomplished.   Even though we live in an expanding universe, the physics and mathematics describing planetary motion is solid.  Let us take a very quick look at several specifics.




  • LAUNCH:  January 19, 2006
  • Launch Vehicle:  Atlas V 551, first stage: Centaur Rocket, second stage: STAR 48B solid rocket third stage
  • Launch Location:  Cape Canaveral Air Force Station, Florida
  • Trajectory:  To Pluto via Jupiter Gravity Assist
  • The teams had to hone the New Horizons spacecraft’s 3 billion plus-mile flight trajectory to fit inside a rectangular flyby delivery zone measuring only 300 kilometers by 150 kilometers. This level of accuracy and control truly blows my mind.
  • New Horizon used both radio and optical navigation for the journey to Pluto.  Pluto is only about half the size of our Moon and circles our Sun roughly every 248 years. (I mentioned predictability earlier.  Now you see what I mean. )
  • The New Horizon craft is traveling 36,373 miles per hour and has traversed 4.67 billion miles in nine (9) years.
  • New Horizon will come as close as 7,800 miles from the surface of Pluto.
  • Using LORRI (Long Range Reconnaissance Imager) — the most crucial instrument for optical navigation on the spacecraft; the New Horizon team took short 100 to 150 millisecond exposures to minimize image smear. Such images helped give the teams an estimate of the direction from the spacecraft to Pluto.
  •  The photographs from the flyby are sensational and very detailed relative to what was expected.
  • The spacecraft flew by the Pluto–Charon system on July 14, 2015, and has now completed the science of its closest approach phase. New Horizons has signaled the event by a “phone home” with telemetry reporting that the spacecraft was healthy, its flight path was within the margins, and science data of the Pluto–Charon system had been recorded.


The hardware for the mission is given with the graphic below.  From this pictorial we see the following sub-systems:

  • SWAP
  • SDC
  • REX(HGA)

The explanation for each sub-system is given with the graphic.   As you can see:  an extremely complex piece of equipment representing many hours of engineering design and overall effort.




The goal of the mission is to understand the formation of the Pluto system, the Kuiper belt, and the transformation of the early Solar System.  This understanding will greatly aid our efforts in understanding how our own planet evolved over the centuries.  New Horizon will study the atmospheres, surfaces, interiors and environments of Pluto and its moons.  It will also study other objects in the Kuiper belt.  By way of comparison, New Horizons will gather 5,000 times as much data at Pluto as Mariner did at Mars.  Combine the data from New Horizons with the data from the Mariner mission and you have complementary pieces of a fascinating puzzle.

Some of the questions the mission will attempt to answer are: What is Pluto’s atmosphere made of and how does it behave?  What does its surface look like? Are there large geological structures? How do solar wind particles interact with Pluto’s atmosphere?

Specifically, the mission’s science objectives are to:

  • map the surface composition of Pluto and Charon
  • characterize the geology and morphology of Pluto and Charon
  • characterize the neutral atmosphere of Pluto and its escape rate
  • search for an atmosphere around Charon
  • map surface temperatures on Pluto and Charon
  • search for rings and additional satellites around Pluto
  • conduct similar investigations of one or more Kuiper belt objects

NOTE:  Charon is also called (134340) Pluto I and is the largest of the five known moons of Pluto.  It was discovered in 1978 at the United States Naval Observatory in Washington, D.C., using photographic plates taken at the United States Naval Observatory Flagstaff Station (NOFS). It is a very large moon in comparison to its parent body, Pluto. Its gravitational influence is such that the center of the Pluto–Charon system lies outside Pluto.


When it was first discovered, Pluto was the coolest planet in the solar system. Before it was even named, TIME that “the New Planet,” 50 times farther from the sun than Earth, “gets so little heat from the sun that most substances of Earth would be frozen solid or into thick jellies.”

The astronomer Clyde W. Tombaugh, then a 24-year-old research assistant at the Lowell Observatory in Flagstaff, Ariz., was the first to find photographic evidence of a ninth planet on this day, February 18, 85 years ago.  His discovery launched a worldwide scramble to name the frozen, farthest-away planet. Since the astronomer Percival Lowell had predicted its presence fifteen (15) years earlier, per TIME, and even calculated its approximate position based on the irregularity of Neptune’s orbit, the team at Lowell Observatory considered his widow’s suggestion of “Percival,” but found it not quite planetary enough. The director of the Harvard Observatory suggested “Cronos,” the sickle-wielding son of Uranus in Greek myth.  But the team opted instead for “Pluto,” the Roman god of the Underworld — the suggestion of an 11-year-old British schoolgirl who told the BBC she was enthralled with Greek and Roman mythology. Her grandfather had read to her from the newspaper about the planet’s discovery, and when she proposed the name, he was so taken with it that he brought it to the attention of a friend who happened to be an astronomy professor at Oxford University. The Lowell team went for Pluto partly because it began with Percival Lowell’s initials.

Pluto the Disney dog, it should be noted, had nothing to do with the girl’s choice. Although the cartoon character also made its first appearance in 1930, it did so shortly after the planet was named, as the BBC noted. While Pluto was downgraded to “dwarf planet” status in 2006, it remains a popular subject for astronomers. They began discovering similar small, icy bodies during the 1990s in the same region of the solar system, which has become known as the Kuiper Belt. Just because Pluto’s not alone doesn’t make it any less fascinating, according to Alan Stern, director of a NASA mission, New Horizons that will explore and photograph Pluto in an unprecedented spacecraft flyby on July 14 of this year.

“This epic journey is very much the Everest of planetary exploration,” Stern wrote in TIME last month. “Pluto was the first of many small planets discovered out there, and it is still both the brightest and the largest one known.”

NASA released its first images of Pluto from the New Horizons mission earlier this month, although the probe was still 126 million miles away from its subject; the release was timed to coincide with Tombaugh’s birthday. Stern wrote, when the pictures were released, “These images of Pluto, clearly brighter and closer than those New Horizons took last July from twice as far away, represent our first steps at turning the pinpoint of light Clyde saw in the telescopes at Lowell Observatory eighty-five (85) years ago, into a planet before the eyes of the world this summer.”



%d bloggers like this: