TRUCKING

September 19, 2017


I have several clients I try to keep happy each week.  One is in Cleveland, Tennessee. That’s about a forty-five (45) minute drive for me, one way, so I get to see a great deal of Interstate traffic.  This is my thirteenth year with this company as a client so I have made that trip multiple times.  There is NO time of the day that I do not see an armada of fifty-three (53) foot rigs hauling their load from point “A” to point “B”.  The numbers are quite frankly staggering.  According to the American Trucking Association (ATA) for the year 2016:

  • The big rigs moved 10.42 billion tons of freight or seventy percent (70%) of all domestic freight tonnage.
  • The nation’s commercial trucks paid $41.3 billion in state and federal highway user fees and taxes. The average five-axel-trailer pays more than $5,600.00 in taxes annually.
  • There were 33.8 million trucks registered for business purposes, including 3.68 million Class 8 trucks. (NOTE: The Class 8 truck gross vehicle weight rating (GVWR) is a vehicle with a GVWR exceeding 33000 pounds (14969 kg). These include tractor trailer tractors as well as single-unit dump trucks of a GVWR over 33,000 pounds; such trucks typically have 3 or more axles.)
  • The 33.8 million trucks mentioned above burned 38.8 billion gallons of diesel fuel and 15.5 billion gallons of gasoline. Today’s average price per gallon for diesel is $2.71.
  • They traveled 450.4 billion miles.
  • Approximately 7.4 million Americans are employed in trucking-related jobs, including 3.5 million as truck drivers.
  • Trucking is an industry made up of small businesses; 91% of motor carriers operate six or fewer trucks and 97.3% operate less than 20.
  • Annual revenues for 2016 totaled $676.2 billion.
  • Freight volumes are projected to grow 2.8% in 2017 with an annual growth rate of 3.4% through 2023.
  • Truckload volumes are expected to grow 2.7% per year from 2017 to 2023.
  • Short haul or LTL shipments, will increase 3.3% per year from 2017 to 2023.

Companies, small and large, are making concerted efforts to lessen costs for diesel fuel and obtain greater efficencies thereby reducing overall total costs of operation.  This is a nationwide exercise all movers long-haul and short-haul are participating in.  We are already seeing FedEx, UPS, the Federal Post Office, DHL, police departments, taxi cab companies and others convert from diesel to propane or natural gas as the fuel of choice.  This not only reduces operating expense but reduces carbon emissions.   We also see companies who design and build engines for these big rigs, working hard to improve mileage and engine efficencies.  Progress is being made on a yearly basis.  So, the next time you pass an LTL or STL hauler, think about the industry and the efforts they are in the process of adopting to improve their company.

Advertisements

INTELLIGENT FLEET SOLUTIONS

October 16, 2016


Ever been on an Interstate?  Ever travel those highways WITHOUT seeing one of the “big rigs”?  I don’t think so. I have a commute every day on Interstate 75 and even at 0530 hours the heavy-duty truck traffic is significant.  As I travel that route, I pass two rest stops dedicated solely for drivers needing to take a break.  They are always full; lights on, engines running. (More about that later.)

Let’s take a very quick look at transportation in the United States to get calibrated as to the scope and breadth of the transportation industry. (NOTE: The following information comes from TruckInfo.net.)

  • How big is the trucking industry?
    The trucking companies, warehouses and private sector in the U.S. employs an estimated 8.9 million people employed in trucking-related jobs; nearly 3.5 million were truck drivers. Of this figure UPS employs 60,000 workers and 9% are owner operators.  LTL shippers account for around 13.6 percent of America’s trucking sector.
  • How many trucks operate in the U.S.?
    Estimates of 15.5 million trucks operate in the U.S.  Of this figure 2 million are tractor trailers.
  • How many truckers are there?
    It is an estimated over 3.5 million truck drivers in the U.S.  Of that one in nine are independent, a majority of which are owner operators. Canada has in excess of 250,000 truck drivers.
  • How many trucking companies are there in the U.S.?
    Estimates of 1.2 million companies in the U.S. Of that figure 97% operate 20 or fewer while 90% operate 6 or fewer trucks.
  • How many miles does the transportation industry transports good in a year?
    In 2006 the transportation industry logged 432.9 billion miles. Class 8 trucks accounted for 139.3 billion of those miles, up from 130.5 billion in 2005
  • What is the volume of goods transported by the trucking industry?
    The United States economy depends on trucks to deliver nearly 70 percent of all freight transported annually in the U.S., accounting for $671 billion worth of manufactured and retail goods transported by truck in the U.S. alone. Add $295 billion in truck trade with Canada and $195.6 billion in truck trade with Mexico.

As you can see, the transportation industry, moving products from point “A” to point “B” by truck, is HUGE—absolutely HUGE.    With this being the case, our country has established goals to improving gas mileage for passenger cars, light trucks and heavy-duty trucks.  These goals are dedicated to improving gas mileage but also goals to reduce emissions.  Let’s take a look.

Passenger Car and Light Truck Standards for 2017 and beyond

In 2012, NHTSA established final passenger car and light truck CAFE standards for model years 2017-2021, which the agency projects will require in model year 2021, on average, a combined fleet-wide fuel economy of 40.3-41.0 mpg. As part of the same rulemaking action, EPA issued GHG standards, which are harmonized with NHTSA’s fuel economy standards that are projected to require 163 grams/mile of carbon dioxide (CO2) in model year 2025.  EPA will reexamine the GHG standards for model years 2022-2025 and NHTSA will set new CAFE standards for those model years in the next couple of years, based on the best available information at that time.

The Big Rigs

On June 19, the U.S. Environmental Protection Agency (EPA) and the Department of Transportation’s National Highway Traffic Safety Administration (NHTSA) announced major increases for fuel efficiency of heavy-duty trucks. Part of President Obama’s comprehensive Climate Action Plan, Phase 2 of the Heavy-Duty National Program tightens emission standards for heavy-duty trucks and includes big rigs, delivery vehicles, dump trucks and buses.  The updated efficiency rule for trucks joins a growing list of fuel efficiency measures, including the President’s 2012 doubling of fuel efficiency standards for cars and light-duty trucks (CAFE standards), as well as expected aircraft rules, following the agency’s finding that aircraft emissions endanger human health.

While the miles per gallon (mpg) rating of cars and light duty trucks has increased over the last decade or so, the fuel efficiency of heavy-duty trucks has held at 5 mpg for over four decades. Conversely, the average passenger vehicle reached 24 mpg in 2010.  Under CAFE, cars and light duty trucks are set to reach 54.5 MPG by 2025. 

According to EPA, heavy-duty trucks are the fastest growing emissions segment of the U.S. transportation sector; they are currently responsible for twenty percent (20%) of greenhouse gas (GHG) emissions, while comprising just four percent (4%) of on-road vehicles.  Heavy duty trucks power the consumer economy, carrying seventy percent (70%) of all U.S. freight – weighing in at 10 billion tons of everything from food to electronics, building materials, clothes and other consumer goods.

As you can see, the goals are not only reduction in fuel usage but improvements in emissions.  There are companies and programs dedicated to meeting these goals.  The reason for this post is to indicate that people and companies are working to provide answers; solving problems; providing value-added to our environment and even our way of life. One such company is Intelligent Fleet Solutions.

The big questions is, how do we meet these goals?  The burden is up to companies manufacturing the engines and design of the cabs and trailers.  Alternate fuels are one answer; i.e. using CNG (compressed natural gas), biofuels, hydrogen, etc. but maybe not the entire answer.

One manner in which these goals may be met is reducing engine idle while trucks are at rest.  The following chart will explain the dilemma and one target for reduction in petroleum consumption.

gas-usage-at-idle

This chart shows petroleum consumption of various vehicles at idle.  Notice: diesel engine consumption can use up to 1.00 gallon per hour when idling.  Question, can we lessen this consumption?

Companies designing and manufacturing devices to contribute to this effort are being introduced helping to drive us towards meeting really tough café goals.  One such company is Intelligent Fleet Solutions. Let’s take a look.

INTELLIGENT FLEET SOLUTIONS

What if the vehicle you drive could automatically alter its performance by doing the following?

  • Governing maximum speed in Class 8 vehicles
  • Optimizing acceleration
  • Providing for a more efficient cruise

If you look carefully at the following brochure you will see a device that provides all three.  The DERIVE program is downloaded into your vehicle’s ECM (Electronic Control Module) allowing control from generic to specific.  You are in control.  The program is contained in a hand-held pendent that “jacks” into the same receptacle used to reset your check engine light.  Heavy-duty trucks may have another port for this pendent but the same process is used.  The great part—the software is quick loading and low cost.  A driver or owner has a payback considerably less one year.  My friend Amy Dobrikova is an approved reseller for DERIVE technologies. Please contact her for further information at 765-617-8614.

derive

derive-2

CONCLUSIONS:  Intelligent Fleet Solutions performs a great service in helping to preserve non-renewable fossil fuels AND lessening or eliminating harmful effluent from our environment.  “Solutions” recognizes the fact that “all hands must be on deck” to solve emission problems and conserve remaining petroleum supplies.  This company embodies the fact that America is still THE country in which technology is applied to solve problems and insure specific goals are met.  Intelligent Fleet Solutions is a great contributor to that effort.  Check them out at intelligent-fleet.com


Our two oldest granddaughters attend Georgia State University in Atlanta, Georgia.  Great school and they have majors that will equip them well after graduation.  (No gender studies, basket weaving or quilting classes with these two.)  We visit them frequently, always enjoying our time together but dreading the commute to Atlanta. Love ‘hotlanta’ but absolutely HATE the congestion and that congestion begins about twenty (20) miles outside the city.   When the Braves, Falcons, Hawks, or Gladiators (Ice Hockey) are in town the congestion is doubled.  Interstate 75 is the main route to most of central Florida so summer-time travel is wonderful also.   You get the picture.

This got me to thinking, what is the monetary cost of travel?  Please note, I said monetary; not the cost of stress on one’s system, physical and mental. Data published in April of this year by the American Transportation Research Institute (ATRI) puts the impact of being stuck in traffic into stark terms with a single data point: traffic congestion on the U.S. National Highway System added over $49.6 billion (yes that’s with a “B”) in operational costs to the trucking industry in 2014. That’s just added shipping costs for trucks delivering goods to clients and customers.  This does not include domestic agony experienced by a family of four trying to get to grandmother’s house for Thanksgiving dinner. The ATRI said congestion resulted in a calculated delay totaling more than 728 million hours of lost productivity, equaling 264,500 commercial truck drivers sitting idle for a working year.  More than a dozen states experienced increased costs of over one billion dollars ($1B) each due to congestion.  Traffic congestion tended to be most severe in urban areas, with eighty-eight percent (88%) of the congestion costs concentrated in only eighteen percent (18%) of the network mileage and ninety-five percent (95%) of the total congestion costs occurring in metropolitan areas.  The analysis also demonstrates the impact of congestion costs on a per-truck basis, with average increased costs of $26,625 for trucks that travel 150,000 miles annually.  At one time, traffic congestion was considered an indicator of growth, but                                                                                   above a certain threshold, congestion starts to become a huge drag on possible growth. Specifically, congestion seems to slow job growth when it gets to be worse than about thirty-five (35) to thirty-seven (37) hours of delay per commuter per year (or about four-and-a-half minutes per one-way trip, relative to free-flowing traffic).  A similar threshold exists when the entire road network gets too saturated throughout the course of the day (for transportation wonks, that’s at about 11,000 ADT per lane).  Above that four-and-a-half-minute threshold, however, something else happens: The quality of life of people making those commutes starts to decline. Now, if you have to spend a miserable hour or two five days a week just getting to work, you’re either going to require higher wages to compensate you, or you’re going to look for another job. And if congestion makes it harder to match the right workers to the best jobs, that’s economically inefficient, too.

When categorizing the delays impacting business, we see the following:

  1. Freight Delivery – market size, vehicle/fleet size, both cross-country and local
  2. Business Scheduling – delivery time shifts, reconfiguration of backhaul operations, use of relief drivers. Using Atlanta as an example, repair and replacement facilities, at one time, could accommodate an average of ten (10) clients per day.  Now, that’s down to six (6) per day due to congestion.  That’s money lost.
  3. Business Operations – inventory management, retail stocking, cross-docking
  4. Intermodal Connection Arrangements – access to truck/rail/air/sea interchange terminals.  Transportation must be scheduled and delays for any reason cost firms for rescheduling.
  5. Worker Travel and Compensation – worker time/cost, schedule reliability, “on-the-clock” work travel
  6. Business Relocation Issues – smaller dispersed location strategies, moves outside of major markets, shifts to production elsewhere
  7. Localized Interactions with Other Activities – land use/development and costs passed on to employees.

Each of these seven classes of business delays affect specific areas of the supply chain.  These systematic differences are important because they vary by industry, affect the ability of affected industries to mitigate congestion costs through work-around operational changes, and ultimately affect local economic competitiveness in different ways.

ENVIRONMENTAL CONCERNS:

Congestion also affects environmental areas. No one will be surprised to learn that areas with the largest number of cars on the road see higher levels of air pollution on average. Motor vehicles are one of the largest sources of pollution worldwide. You may be surprised to learn, however, that slower moving traffic emits more pollution than when cars move at freeway speeds. Traffic jams are bad for our air.  It seems intuitive that your car burns more fuel the faster you go. But the truth is that your car burns the most fuel while accelerating to get up to speed. Maintaining a constant speed against wind-resistance burns more or less a constant amount. It’s when you find yourself in a sea of orange traffic cones — stuck in what looks more like a parking lot than a highway — that your car really starts eating up gas. The constant acceleration and braking of stop-and-go traffic burns more gas, and therefore pumps more pollutants into the air.

The relationship between driving speed and pollution isn’t perfectly linear although one study suggests that emissions start to go up when average freeway speed dips below forty-five (45) miles per hour (mph). They also start to go up dramatically as the average speed goes above 65 mph. So, the “golden zone” for fuel-consumption and emissions from your vehicle may be somewhere between 45 and 65 mph. Stopping and starting in traffic jams burns fuel at a higher rate than smooth rate of travel on the open highway. This increase in fuel consumption costs commuters additional money for fuel and contributes to the amount of emissions released by the vehicles. These emissions create air pollution related to global warming.

This leads to a dilemma for urban planners trying to develop roadways that will reduce congestion with an eye to reducing the pollution that it causes. Laying out the traffic cones for massive freeway expansion projects sends air-quality plummeting, but the hope is that air-quality will improve somewhat once the cones are gone and everyone is cruising along happily at regular freeway speeds. Ironically, since the average freeway speeds for non-congested traffic hover around seventy (70) mph and above (with states like Texas looking to increase their speed limits), air-quality is unlikely to improve — and may actually worsen — once those highway improvements are finished.

ROAD RAGE:

This is horrible but we see news releases everday concerning drivers that just “lose” it.  Eight out of ten drivers surveyed in the AAA Foundation’s annual Traffic Safety culture Index rank aggressive driving as a “serious” or “extremely serious” risk that jeopardizes their safety. Although “road rage” incidents provide some of the most shocking views of aggressive driving, many common behaviors, including racing, tailgating, failing to observe signs and regulations, and seeking confrontations with other drivers, all qualify as potentially aggressive behaviors. Speeding is one of the most prevalent aggressive behaviors. AAA Foundation studies show that speeding is a factor in one-third of all fatal crashes.

Despite a strong public awareness and understanding of aggressive driving, many people are willing to excuse aggressive behaviors.  Half of all drivers in our Traffic Safety Culture Index admitted to exceeding both neighborhood and highway speed limits by more than fifteen percent (15%) in the past thirty (30) days.  More remarkable, a quarter of drivers say they consider speeding acceptable. Much of the road rage we see results from having been in bumper-to-bumper traffic previously.  THAT is a proven fact.

CONCLUSIONS:

Traffic hurts—our economy, our environment, our relationships with family and coworkers, and physical health.  As always, I welcome your comments.


The United States has longed for energy independence for years now.  The need to lessen or eliminate reliance on foreign sources for petroleum products by developing alternate fuels is now coming to fruition.  The question is: Will compressed natural gas be a future source of energy for the internal combustion engine?  Resources Magazine thinks so.  Let’s take a quick look at the assessment from Alan J. Krupnick, Senior Fellow and Co-Director, RFF’s Center for Energy and Climate Economics.

“Natural gas holds the promise of reducing carbon emissions and dependence on oil. But until recently, it was an also-ran in the sweepstakes for transforming fuel costs and transportation in the United States. The new abundance of domestically available shale gas and continuingly high gasoline and diesel prices could change that. Will these developments be enough to extend the reach of natural gas vehicles beyond buses, garbage trucks, and delivery trucks?”

I feel his conclusions indicate CNG is a very viable alternative for local delivery vans and trucks as well as “the big rigs”.  Other information substantiates his conclusion.  From this, we can see the following.

Industry Analysis

The CNG market has grown at the rate of 3.7% since 2000. The market for these products has experienced slow growth to due to: 1.) availability of the products, 2.) heat build-up during the compression process, 3.) time delays in the refilling process and 4.) the expense of locating CNG at the market locations. The areas of greatest growth in the CNG market are in the area of transporters that possess fleets (Tractor Trailers), Straight Trucks, and Public Transportation such as school and/or city buses. California and Texas lead the way with CNG fueling stations on a national level. There are approximately 1,300 CNG fueling stations in the US today; however, 730 are public stations with the remainder private fleet stations. There are currently less than 10 public CNG filling stations within the Tri-State area of Tennessee, Georgia, and Alabama. Southeast Tennessee currently has no CNG fueling stations. The industry is rapidly changing as the 2014 EPA NHTSA Heavy Duty Truck Program has been put in place by president Obama. This legislation has forced fleet and fuel managers to reduce emissions as well as increase fuel efficiency. Small savings have been made by reducing drag, adequate tire pressure, and reduced idling practices. CNG is a “game changing” modification that addresses the new standards that are currently in place as well as future reductions that are scheduled for 2018. We will adopt a customer centric approach that addresses the needs of the immediate market based on available original equipment and after market manufacturers. Some industry pundits have estimated CNG will realize 25% annual growth for the next 5 to 10 years on a conservative level.

Market Segment

Key points in defining the market segment for CNG are existing markets and projected future markets. Electric power and industrial markets make up almost 60% of the current consumer market. Existing markets include the fields of Agriculture, Industrial, and Motor Fuel in a static environment. Projected markets include opportunities in a more mobile environment. Transportation appears to be the most likely segment to grow as it makes up less than 1% of total natural gas used. Currently, the market is distributed with limited, if any, diversity of participants. Trending for share gains and losses typically represents large potential for gains across the entire industry. Share losses are predominantly absorbed by the diesel fuel and propane distributors, as recent supply shortages have clearly proven in the motor fuel and poultry industries. Market share will be lost by the above mentioned industries due to loss of confidence by the respective customer bases. The current and projected trends in the motor fuel industry are now driven by the Tier II Fuel Initiative causing off road diesel fuel to be banned in the near future. The result of the ban will continue to be increases in motor fuel pricing. As motor fuel costs increase, CNG becomes not only the clean alternative fuel replacement, but also the affordable alternative. CNG cuts the cost of a diesel equivalent gallon by as much as 50% based on the volatile and often fluctuating diesel market. Also, CNG is a much more effective fuel in cold weather areas as opposed to diesel and the multiple problems which exist.

The implied trends in the propane and agricultural industries currently indicate an extended, long-term propane supply shortage. The result is that CNG becomes the efficient, clean energy solution by cutting propane costs by 25 to 50%. Users of CNG are looking for quality and productivity improvements. The history of CNG development has resulted in the need for creative technology solutions that enable the full application of the CNG Natural Gas Industry. Recent patenting and innovation that Cielo has identified allows CAF to operate more efficiently than diesel or propane. The stability of this market segment is solid, based on CNG product category performance over the past two years. The forecasters predict an exponential growth over the next two years.

CNG STATION:

With this in mind, Cielo Technologies, LLC has entered into a partnership to “sink” one CNG station in the Chattanooga area.  Land has been purchased, layouts determined, zoning completed, and site preparation underway.  Right now, the area selected does not look like much.  The following JPEGs will illustrate that fact.  I intend to give you progress reports as we erect the facility and hopefully in five months, show you the completed and operating compound.  Let’s take a very quick look at the site itself.

ENTERANCE DRIVE

The first digital shows the proposed entry to the station itself.  As I mentioned, not much to look at and definitely needs considerable attention—that attention is on the way.

EXIT DRIVE

This is the proposed exit from the facility.  We feel less confusion will be the order of the day if we have one way in and one way out.

GROUND SITE

There will be three (3) pumping stations installed on a concrete island located left to right on the JPEG above.  Room enough for three “18 wheelers”.

LOCATION OF PUMPING STATION(2)

Another look at the pumping station locations.  The CNG compressors and storage will be to the right of the pumping stations.  All piping will be underground and unexposed to the elements.  We opted to go hard-wire instead of Wi-Fi due to possible interruption of service.

ENVIRONMENTAL MARKETS

May 16, 2015


Environmental markets have been actively traded on both compliant and voluntary levels for the last 7 years. The Kyoto Protocol was the first compliance-driven agreement between thirty-seven  (37)  countries.  This agreement was established by the United Nation Framework Convention on Climate Change (UNFCCC). The purpose of the UNFCCC was to create benchmark emission reduction goals.  Annex I to this agreement began in 2005 and will extend through 2012. The reductions call for five percent (5%)  annual reductions based on a benchmark established in 1990. There are currently thirty-four (34)  countries that were selected to continue into 2013 with compliance guidelines established at the Durban Conference.  These guidelines were to insure that Climate Change regulations would be in place.  These non-binding guidelines will become binding in May 2012. The European Union Trading Scheme will continue along with the Clean Development Mechanism and Joint Implementation Programs to reduce the emissions by an additional 20% by 2020. Currently Certified Emissions Reductions from industrialized and non developed nations are being traded through the aforementioned programs from entities that have adopted programs.

The United States signed the Kyoto Protocol however never put in place compliant guidelines enabling emission reduction instruments to be traded within these markets. Therefore, credits originated in the United States would have to be traded within voluntary markets. The Western Climate Initiative is scheduled to begin January 1, 2013 with California and Quebec as the two participating parties in the first North American compliant cap and trade program. The trading platform will adhere to guidelines outlined in Bill AB 32 ratified in 2006 and recently upheld by election in November 2010 via Proposition 23. Prop 23 was overwhelmingly endorsed by sixty-three percent (63%) of the voters and has cleared the way for a statewide cap and trade program. The California Air Resources Board has cleared the way for the first compliant stateside cap and trade system. Phase I is through 2020 with targeted reductions of 17% overall. The resources board has acknowledged four (4) crediting programs whose protocols were adopted from the Climate Action Reserve; Forestry, Urban Forestry, Ozone Depleting Substances, and Livestock. These programs will be eligible for carbon crediting through the abatement or reduction of carbon emissions. California represents twenty-five (25%)  of the total U.S. GDP and will allow carbon sequestration projects that can be originated anywhere in the continental U.S., Canada, and some regions in Mexico. The Western Climate Initiative (WCI) will be the established platform that California and Quebec will adhere to for climate protocol. WCI member jurisdictions include seven (7) US states and four (4) Canadian provinces:  Arizona, British Columbia, California, Manitoba, Montana, New Mexico, Ontario, Oregon, Quebec, Utah, and Washington. It is expected that states and provinces within the WCI will follow suit once the program is up and running. There is definitely a political element to cap and trade programs. It is somewhat difficult to predict what federal and state programs will be put in place in future years that could expand the areas of compliance. California Carbon Allowances are currently being traded on the Intercontinental Exchange. Pricing for the allowances began at $17 per allowance for the first transaction and then went as high $23. Point Carbon has forecasted carbon allowance prices to rise as high as $75 by 2020. The offsets are credits that are generated from emission reduction projects that are expected to price at approximately 70% of allowance prices.

The voluntary markets were impacted dramatically when federal cap and trade legislation stalled in the Senate in 2009. The economic environment and passing of the health care initiative put a formal cap and trade program on hold.   Voluntary carbon offsetting went from being for the greater good of the public to a luxury line item. The economy has started to slowly correct and voluntary market transactions per Markit have continued to grow. Issuance activity was up to 27.8 million Verified Carbon Standard Credits an increase of 500,000 credits. Credits being traded from 2010 to 2011 were 3.6 million to 9.8 million or an increase of 6.2 million credits. The Gold Standard credits traded at premiums and most transactions were over the counter pricing from $8-$12. Companies such as Whole Foods, Google, Yahoo, and Wal-Mart are forward thinking companies that are either buying voluntary carbon offsets or actually funding projects that directly reduce emissions. The Bonneville Environmental Foundation was set up to offset emissions and list participants such as Chevrolet, The North Face, REI, NHL, MLS, Idaho Power, Silk and Oregon State University.  The Foundation has identified projects that yield certain credits to address the offset needs of these individual entities.

Overall, emission reduction credits are here to stay. The Climate Change initiative is considered to be gaining more traction with the WCI platform being established and is predicted to pick up steam on a national level as states begin to adopt their own regulations regarding greenhouse gas emissions. The Clean Air Act is still in force and additional GGE compliance could be implemented through the EPA.

We are seeing significant effort to “clean up” our environment by reducing emissions by putting into effect compressed natural gas (CNG) fueling stations, propane fueling stations, hybrid automobiles, electric-powered automobiles, methane capture from wast sites, re-processing of oils and several other reclaim measures.  A much greater number of our population is beginning to recognize that we have one world–one Earth.  We had better take care of it.

 

 


Kelley Blue Book (KBB)  recently examined the world of high-efficiency cars the same way a tight-fisted consumer might. That might be why five of the National Highway Traffic Safety Administration’s ten (10) most fuel-efficient cars didn’t even make the list.

I have collected photos of KBB’s best, along with a few extra shots of high-mileage vehicles that didn’t make the cut. From pure electrics to hybrids to turbo diesels, the following is a look at the best and greenest cars on the road today. Before we take a look, let’s gage our post by looking at a very brief history of KBB.

HISTORY:

In 1918, a young man named Les Kelley parked three Model T Fords in an open lot, put $450 in the till and started the Kelley Kar Company. It was to become the largest dealership in the world and, along the way, spawn a need for placing values on used and even new cars, known as Blue Book® values.

1914 was an interesting year. A 19-year-old named Babe Ruth pitched his first game in the majors as a Baltimore Oriole.  And Les Kelley, the son of a preacher from Arkansas, made his way to California at the age of 17.

Les had no money and no job, but he owned an old car. It was in fine shape because he had a knack for mechanics and had overhauled it himself. All of his friends admired his car and frequently tried to buy it. After much persuasion he finally did sell it to one of them. With the money he received from this deal Les bought another old Ford. After giving this car a thorough overhauling, he traded it off, taking in two used cars and a little money on the deal. He reconditioned these cars and sold them. With the money he bought other used automobiles and found himself making enough money to pay his way through college.

1918 was an interesting year. Babe Ruth was now a pitcher for the Boston Red Sox, as they defeated the Chicago Cubs in the World Series. World War I ended on the 11th hour of the 11th day of the 11th month. And like many young men at the end of the war, Les Kelley sought to establish himself in the business world. He leased part of a lot from another car dealer in Los Angeles and started the Kelley Kar Company with three cars for sale. His brother, Buster, at age 13, joined Les as a lot boy, changing tires and washing cars. By the age of 18 Buster ran the repair shop with a dozen mechanics, and Les managed sales. Les and Buster did so well that they had to move to progressively larger sites.

In the early 1920s, to help acquire new inventory, Les Kelley distributed to other dealers and to banks a list of automobiles he wished to buy and the prices he was willing to pay for them. The automotive community began to trust his judgment so much as an accurate reflection of current values, they started to request the list for their own use. When someone asked a dealer what his used car might be worth, the dealer usually took a look at Mr. Kelley’s list, conveniently tucked under his desk blotter. It didn’t take long for Les Kelley to realize that he could provide an ongoing service to dealers and bankers alike.

1926 was an interesting year for individual achievement. A 19-year-old American named Gertrude Ederle swam the English Channel. “Our Trudy” was the first woman to conquer the Channel, and her time was almost two hours faster than the men’s record. Babe Ruth led the Yankees into the World Series (although he made the final out in game seven, when he was caught stealing). Edsel Ford had risen to President of Ford Motor Company, soon to announce the Model A.

And in Los Angeles, Les Kelley decided to expand the list of automobile values he had been producing since 1918 and published the first Blue Book of Motor Car Values . He showed factory list price and cash value on thousands of vehicles, from Cadillacs to Duesenbergs, from Pierce-Arrows to Hupmobiles. A 1926 Packard sedan limousine with balloon tires might fetch as much as $3,825. But a 1921 Nash touring car, even with a clock, was only worth $50. Les named the publication Blue Book after the Social Register, because it meant that you would find valuable information inside. (Emily Post had also just published her first book of etiquette, which was to later be named Etiquette: The Blue Book of Social Usage ). And Les Kelley was to make Kelley Blue Book synonymous with the authoritative source for car values. To this day, across the country, people ask the question, “What’s the Blue Book value of my car?” At the dealership Les was selling “Selected Blue Seal Automobiles,” so he carried the blue and gold ribbon medallion onto the cover of the Blue Book, where it remains today.

By the late 1950s Les Kelley, then in his sixties, decided to cash in on some of that success. He made a decision to sell the dealerships rather than move them again (this time would have meant a move from downtown L.A., the current site of the Staples Center). By 1962 the Kelleys were completely out of the car business and devoting full time to the Blue Book , with Buster as Publisher and Bob (shown here) as Assistant Publisher. The company moved to Long Beach and later to Orange County. Les continued to be active in the business until his death in 1990, at the age of 93.

For the next 30 years the Blue Book was to thrive as a “trade” publication, meaning it was only sold to businesses involved in the automotive industry, such as car dealers, financial institutions and insurance companies. These customers used the bimonthly book to determine everything from loan values to suggested retail prices. Kelley Blue Book continued to innovate, becoming the first publication to show the effect of high or low mileage on a car’s value.

As a natural evolution, the company began publishing other value guides. A New Car Price Manual was added in 1966, and the company became the industry’s leading provider of pricing services. Auto dealers sometimes carried recreational vehicles or took them as trade-ins, so they needed information on these too. Kelley Blue Book developed RV guides that place values on everything from travel trailers to campers to ATVs to snowmobiles. A separate Motorcycle Guide was published, and a Manufactured Housing Guide.

As the quality of cars improved, people began to drive them longer. The average age of a vehicle on the road today has been estimated to be about nine years. The Blue Book covered seven years, so it made sense to produce a sister publication, the Older Car Guide , that provided values another 14 years back. Then came the Early Model Guide , which today provides values all the way back to 1946!

In 1993 Kelley Blue Book made its initial venture into the consumer marketplace by publishing a Consumer Edition of the Blue Book . It quickly became the nation’s number-one-selling automotive book, often making the USA Today best-seller list. It features 15 years of used car values on more than 10,000 models of cars, trucks and vans and is available in bookstores, auto supply stores and other locations.

Quietly though, something called the World Wide Web was introducing regular people to a medium called the Internet. It was innovation time again, and Kelley Blue Book saw a further opportunity to facilitate transactions between consumers and retailers. The company created a Web site, kbb.com, running on a single PC and offering first, new car prices in 1995 and then its famous used car values in 1996. Early in 1996, 20,000 people a month found their way to the site, largely by word-of-mouth. That number has grown a bit since then and now exceeds seven million visitors a month coming to kbb.com and millions more viewing Blue Book information on numerous portals and other automotive sites, including those of auto manufacturers and car dealers.

When kbb.com was launched in 1995, it charged consumers $3.95 for a pricing report. Almost immediately Kelley Blue Book received email from some customers arguing that information on the Internet should be free. Rather than disagree with its own customers, the company pulled the plug on charging after just three weeks and began the switch to a business run like radio and television, supported by advertising and partners. The pricing reports have been free to consumers ever since.

KBB’s 2015 RATINGS:

So much for history. Let’s now take a look at what KBB considers fifteen of the “greenest” automobiles in the lineup today.  Here we go.

VW JETTA

VW GOLF

TOYOTA CAMRY HIBRID

TESLA

SMART CAR

PRIUS

LEAF

KIA

HONDA HYBRID

FORD FOCUS

FORD C-MAX HYBRID


FIAT E

 

CHEVY VOLT

CHEVY SPARK

BMW i3

Please note, the automobiles given above, for the most part, look at mileage only. Not reliability or cost of ownership.  Those numbers represent a post for another day.  Hope you enjoy this one.

CNG/BIO-FUELS

March 20, 2014


The following slides were taken from a post by Charles Murray-Senior Technical Editor, Electronics & Test. The text and commentary are mine. 

Compressed natural gas (CNG) has been a possible alternate fuel for quite some time.  Natural gas is basically methane in varying percentages due to geographical considerations and constituents found in the “mix”.   The heating value ranges between 900 and 1200 Btus/Ft³ with a nominal octane rating of 130.   One gasoline gallon equivalent (GGE) of natural gas is 126.67 cubic feet (3.587 m) at standard conditions.   GEG is the amount of alternative fuel it takes to equal the energy content of one liquid gallon of gasoline. GGE allows consumers to compare the energy content of competing fuels against a commonly known fuel—gasoline.  GGE also compares gasoline to fuels sold as a gas (Natural Gas, Propane, and Hydrogen) and electricity.

This volume of natural gas has the same energy content as one US gallon of gasoline (based on lower heating values: 900 BTU/cu ft of natural gas and 115,000 BTU/gal of gasoline).   One GGE of CNG pressurized at 2,400 psi (17 MPa) is 0.77 cubic foot (21.8 liters).   Again, this volume of CNG at 2,400 psi has the same energy content as one US gallon of gasoline (based on lower heating values: 148,144 BTU/cu ft of CNG and 115,000 BTU/gal of gasoline. Using Boyle’s Law, the equivalent GGE at 3,600 psi (25 MPa) is 0.51 cubic foot (14.4 L or 3.82 actual US gal).

The National Conference of Weights & Measurements (NCWM) has developed a standard unit of measurement for compressed natural gas, defined in the NIST Handbook 44 Appendix D as follows: “1 Gasoline [US] gallon equivalent (GGE) means 2.567 kg (5.660 lb) of natural gas.”

When consumers refuel their CNG vehicles in the USA, the CNG is usually measured and sold in GGE units. This is fairly helpful as a comparison to gallons of gasoline. These facts make it an ideal alternate fuel due to minimal changes and modifications being necessary for automotive engines.  When you throw in the bio-fuel option producing a hybrid vehicle, you have a winning combination.  This eliminates problems with infrastructure not providing stations for filling CNG tanks in a judicious manner.  Let’s take a look at several vehicles to see the status of CNG/Bio-fuel development.

2015 Siverado 2500HD

 

FORD F-150 (2)

 

FUEL TANK

 

HONDA

 

HONDA(2)

 

RAM 2500 (2)

 

RAM 2500 WITH CYLINDERS

 

SILVARADO WITH TANK

 

As you can see, the automotive industry is definitely “on-board” with alternative energy and CNG is one compressed gas they are banking on for the future.  We will see commercial entry for these models in the very near future.  It will be very interesting to see how they are accepted by the marketplace.   I welcome your thoughts.  Many thanks.

%d bloggers like this: