BOEING 737 MAX

May 11, 2019


The five points given below were taken from an excellent article written by Jacob Beningo and appeared in “Electronics & Test Aerospace”, May 2, 2019.  I have added my own comment relative to those five (5) points.  It appears, from what we know now, there were no mechanical failures causing both aircraft to crash.  The real failures were lack of training and possibly embedded electronic systems effecting on-board systems. 

Recently the news headlines have been dominated by two crashes involving Boeing’s new 737 MAX aircraft. Both of these tragedies occurred under similar circumstances and within six months of each other. The fallout from these disasters may only be starting as aircraft around the world have been grounded, production of the 737 MAX has been decreased and March sales of the aircraft dropped to zero. The damage to Boeing’s reputation as a safety leader has now also come into question as investigations have been opened into how the system at the center of the investigations, MCAS, was developed and certified.

The investigations into the sequence of events that led to the loss of these aircraft with resulting causes will take time to fully discover—maybe even years but certainly months. However, with the information that has currently been released, embedded systems companies and developers can look at the fiasco Boeing is currently going through and learn and be reminded of several general lessons that they can apply to their own industries and products.

Lesson #1 – Don’t compromise your product to save or make money short-term

There is normal pressure on businesses and developers today to increase revenue, reduce costs and ship products as fast as possible. The result is not always quality. It isn’t security. It isn’t user friendly. The objective is maximum short-term growth at any cost as long as the short-term growth is maximized.  The company needed to remain in good standing with Wall Street and their investors.  That seems to be the bottom line.  Boeing appeared to be under significant pressure from customers and shareholders to deliver an aircraft that could compete with the Airbus A319neo.  They may have started to cave to this normative pressure.

Lesson #2 – Identify and mitigate single points of failure

Boeing and the FAA are looking at embedded systems in trying to discover the root cause of both failures and how corrections may be made to eliminate future tragedies.  In any embedded system that is being developed, it’s important to understand the potential failure modes and what effect those failures will have on the system and how they can be mitigated. There are many ways that teams go about doing this, including performing a Design Failure & Effects Analysis (DFMEA) which analyzes design functions, failure modes and their effect on the customer or user. Once such an analysis is done, we can then determine how we can mitigate the effect of a failure.  This is common practice for systems and subsystems of any complexity.

Lesson #3 – Don’t assume your user can handle it

An interesting lesson many engineers can take from the fiasco is that we can’t assume or rely on our users to properly operate our devices, especially if those devices are meant to operate autonomously. Complex systems require more time to analyze and troubleshoot. It seems that Boeing assumed that if an issue arose, the user had enough training and experience, and knew the existing procedures well enough to compensate. Right or wrong, as designers, we may need to use “lowered expectations” and do everything we can to protect the user from himself.

Lesson #4 – Highly tested and certified systems have defects

Edsger Dijkstra wrote that “Program testing can be used to show the presence of bugs, but never to show their absence.” We can’t show that a system doesn’t have bugs which means we have to assume that even our highly-tested and certified systems have defects. This should change the way every developer thinks about how they write software. Instead of trying to expose defects on a case-by-case basis, we should be developing defect strategies that can detect the system is not behaving properly or that something does not seem normal with its inputs. By doing this, we can test as many defects out of our system as possible. But when a new one arises in the field, a generic defect mechanism will hopefully be able to detect that something is amiss and take a corrective action.  

Lesson #5 – Sensors and systems fail

The fact that sensors and systems fail should seem like an obvious statement, but quite a few developers write software as if their microcontroller will never lock-up, encounter a single event upset or have corrupted memory. Sensors will freeze, processors will lock-up, garbage-in will produce garbage-out. Developers need to assume that things will go wrong and write code to handle those cases, rather than if we will always have a system that works as well in the field as it does on out lab benches. If you design your system considering the fact that it will fail, you’ll end up with a robust system that has to do a lot of hard work before it finally finds a way to fail (if it ever does).

I had an opportunity to hear the chief engineering program manager discuss the “Dreamliner” and the complexities of that system.  They were LEGION. Extremely complex.  Very time-consuming to work out all of the “bugs” relative to all of the computer programming necessary for successful AND safe air travel.  Trying to make a system “simple” by making it complex is a daunting task and one that needs to be accomplished, but it is always a “push” to get this done in a timely fashion and satisfy management and Wall Street.

LOCKHEED CONSTELLATION

March 10, 2019


One of the most gifted engineers in our nation’s history was Mr. Bill Lear.  Lear was born in Hannibal, Missouri on 26 June 1902 and over a forty-six (46) year time period produced one hundred and twenty (120) patents.  He founded the LearJet Corporation.  The Lear jet is without doubt one of the most beautiful aircraft ever conceived.  From one memorable life came one memorable quote, as follows:

“If an airplane looks like it will fly—it will fly”.

He was talking about profile, lines, curvature while imagining the “slip-stream” created by the leading edges and the flight surfaces.  One other airplane that fits that description is the Lockheed Constellation or “Connie” as the design came to be known.  A remarkably beautiful aircraft.

My very first flight was in 1969. My father, sister and I departed Lovell Field in Chattanooga, Tennessee heading to Atlanta.  We flew to Atlanta in a DC-3, twin engine propeller-driven aircraft.  (I’m sure after death I will have to change planes in Atlanta before arriving in heaven.  Some things never change.)  Moving from arrival gate to departure gate during the very early years of commercial aviation took a minimal amount of time.   The Atlanta Hartsfield-Jackson International Airport was not the city within a city that exists today.  Upon arriving at our departure gate, I saw for the very first time a marvelous aircraft meeting all of the descriptive points Mr. Lear had in mind. Let’s take a look.

LOCKHEED CONSTELLATION:

The Lockheed Constellation (“Connie”) was a propeller-driven, four-engine airliner built by the Lockheed Corporation between 1943 and 1958 at the Burbank, California Lockheed facilities. The Constellation’s fuselage is shaped like an airfoil to add lift.   It curves upward at the rear to raise the triple tail out of the prop wash and slightly downward at the front so the nose-gear strut did not have to be impossibly long. Lockheed decided that the airplane’s admittedly large propellers needed even more ground clearance than did Douglas or Boeing on their competing transports, which resulted in the Connie’s long, spindly gear legs.

It was known as “the world’s best tri-motor” because it had so many engine failures it often flew on three.  There were large numbers of engine fires during the Constellation’s early development, but many airline pilots flew it for years without ever feathering an engine.

The Constellation was one of the first pressurized airliners with the Boeing 307 Stratoliner being the very first.  Cabin pressurization was absolutely required to improve the service ceiling of commercial aircraft and make flying above the “weather” a very welcome reality.  During WWII it was discovered that flying about 10,000 feet required oxygen to preclude issues with dizziness.  It was no different for commercial flying.

Lockheed built 856 aircraft using numerous model configurations—all with the same triple-tail design and dolphin-shaped fuselage. Most were powered by four 18-cylinder Wright R-3350s. The Constellation was used as a civil airliner and as a military and civil air transport, seeing service in the Berlin Airlift . It was also the presidential aircraft for Dwight D. Eisenhower.   At the present time President Eisenhower’s Air Force One is resting in a field at Marana Regional Airport.   Dubbed Columbine II in honor of the state flower of first lady Mamie Eisenhower’s native Colorado, the plane was state-of-the-art in its time.  It’s a real shame this early version of Air Force One is not on display.

The Constellation’s wing design was close to that of the P-38 Lightning, differing obviously in size.  The triple tail kept the aircraft’s height low enough to fit in existing hangars, while features included hydraulically boosted controls and a de-icing system used on wing and tail leading edges.  The aircraft had a maximum speed of over 375 mph (600 km/h), faster than that of a Japanese Zero fighter, a cruise speed of 340 mph (550 km/h), and a service ceiling of 24,000 ft (7,300 m).  At the time the service ceiling was a significant breakthrough in aviation technology.

According to Anthony Sampson in Empires of the Sky, Lockheed’s Skunk Factory and Kelly Johnson may have undertaken the intricate design, but Howard Hughes’ intercession in the design process drove the concept, shape, capabilities, appearance, and ethos.   These rumors were discredited by Kelly Johnson. Howard Hughes and Jack Frye confirmed that the rumors were not true in a letter in November 1941.

After World War II the Constellation came into its own as a very fast civil airliner. Aircraft already in production for the USAAF as C-69 transports were finished as civil airliners, with TWA receiving the first on 1 October 1945. TWA’s first transatlantic proving flight departed Washington, DC, on December 3, 1945, arriving in Paris on December 4 via Gander, Nova Scotia and Shannon, Ireland.

Trans World Airlines transatlantic service started on February 6, 1946 with a New York-Paris flight in a Constellation. On June 17, 1947 Pan American World Airways opened the first ever scheduled round-the-world service with their L-749 Clipper America. The famous flight “Pan Am 1” operated until 1982.

As the first pressurized airliner in widespread use, the Constellation helped to usher in affordable and comfortable air travel. Operators of Constellations included the following airlines:

CABIN:

For its time, the cabin represented the ultimate in luxury with comfort and room to spare.

Maybe someone can comment on a statement I have heard more than once.  In the early days of commercial aviation, all of the cabin crew had to be registered nurses.  Do you know if that is a fact?

COCKPIT:

Notice from the digital below, all of the flight systems were analogue. No digital in those days.  Also notice, the aircraft was meant to be managed by a three-man flight crew; i.e. pilot-in-command, co-pilot and flight engineer or navigator.  The right side of the cockpit was designed for a navigator.

Two fairly large fans, one left and one right, kept the flight crew reasonably comfortable.

Times have certainly changed from my first flight in 1969.  No more analogue or two-man flight crew and now air travel is the “new” Greyhound.  It’s affordable, at least to some degree.

As always, I welcome your comments.

FLY ME

May 19, 2018


I really enjoy traveling, that is BEING THERE.  Getting there is another story.  In the Southeastern portion of the United States you generally have to go through Atlanta to reach your final destination.  It’s just a fact of life.   If we take a quick look at ATL for the month of January 2018, we see the following statistics:

Please remember, all passengers including crew must go through screening (TSA) before boarding their flight.  That means EVERYONE.   Kennedy, Chicago, LAX, Miami, etc. operates in a similar fashion.  I have waited in the TSA line at ATL for close to two (2) hours then, take off your shoes, belt, empty your pockets, remove your glasses, watch, put your laptop and cell phone face up on top of all luggage, etc. etc.   People who fly on a regular basis get use to it but it’s always a hassle.  There is another way, maybe expensive but more and more business travelers are discovering and using business aircraft.

BUSINESS AIRCRAFT:

The primary driver of business aircraft use today is scheduling flexibility and reduction in the complexities relative to travel. In fact, according to the most recent study of general aviation trends by the National Business Aviation Association (NBAA), passengers indicated, on average, that more than fifty percent (50%) of the business aircraft flights taken enable the business traveler to keep schedules they otherwise could not meet efficiently using scheduled commercial flights.

This past Friday, Aviation International News (AIN) published its annual Charter Market Report titled, “The industry is climbing.” It reported private charters in the U.S. increased ten percent (10%) in the number of flights (543,449 compared with 493,431) and twelve- point seven percent (12.7%) in flight hours (765,196 compared with 679,018) during the first half of 2017.

With that type of good news, perhaps it’s not surprising that companies such as Wheels Up, VistaJet, Victor, Stellar Aero Labs and JetSmarter, which all operate in that space, collectively announced nearly four hundred ($400) million in new investments just since the start of the summer. “People have business to do and you can’t-do it flying commercially,” says Kenny Dichter, the CEO and co-founder of Wheels Up, which uses the King Air 350i to help its customers get to those smaller airports that are hard to reach. At the other end of the charter and jet card and program membership spectrum, VistaJet has made its mark with luxury-laden long-range jets catering to Ultra High Net Worth families and global executives who hop between Continents like you and I cross the street.

DELTA IS READY WHEN YOUR ARE:

True but there are disadvantages to flying commercial.

  • The loss of time is a major issue on commercial flights. From the long lines, potential layovers and the often-longer trip to the airport as well as having to check in early. This can easily add up to losing hours upon hours of time that could have been spent more productively. In addition, security delays can not only be a huge hassle, they can cost more time as well.
  • Passengers have to find a flight that fits in with their schedule or can be forced to alter their calendar to fit in with the airlines.
  • With crowded seating, there is little space to conduct business and even less privacy. If you had hoped to conduct a meeting or negotiate a deal in private, other passengers and crew are likely to overhear those conversations.
  • Commercial airlines offer little in the way of amenities. Today, food and beverages options rarely include much more than a drink and a bag of pretzels. First class is better, but you still get what you get.
  • The risk of lost luggage with passengers separated from their bags is another issue when flying commercially.

ADVANTAGES OF PRIVATE BUSINESS TRAVEL:

  • You’ll avoid the inconvenience of the liquid bans that come with flying commercially.
  • You can travel with special belongings, business samples, sports gear, instruments or even bring your pet into the cabin if you so choose.
  • You’ll not only have more time to conduct business, you’ll have more time to spend with your family and friends by reducing the hours you spend traveling.
  • Flying on a private jet projects an image of success. You’ll be seen as an individual or organization that is well-run, efficient and can afford to fly privately.
  • A light commercial jet which can seat five to six (5- 6) people, will cost around $2,000 per hour, larger aircraft which can hold more people and fly further cost more.
  • With a private jet you can fly out of an airport that is much closer to your home or business location, allowing you to skip the traffic, bypass security lines and those frequent delays that commercial airlines often incur.
  • Once on your flight, you’ll find the ultimate in exceptional customer service with individualized attention and the treatment you deserve.
  • Private planes offer luxury furnishings and plenty of space to conduct private business. Order your preferred food and drinks ahead of time, and you can even enjoy your favorite meal on the flight if you desire.

CONCLUSIONS:

Most of us, myself included, cannot afford private travel, business or otherwise, but more and more businesses are investigating private business travel for very busy executives.  I do not mean leasing, I mean scheduling “a ride” from a company such as mentioned earlier in this post.  In Chattanooga, we have HESS Jet. The service area for HESS Jet may be seen as follows:

An example of the aircraft you can schedule is shown below.  It is a four-seat, twin engine small jet capable of servicing the eastern half of the United States.   If you need an aircraft with larger seating capacity, that can be arranged also.

Now take a look at the interior of the aircraft above.  Think you could get use to this?  Most business men and women would definitely say yes.

I know several people who charter business aircraft during SEC football season.  They, of course, split the costs and really travel in style.  This is becoming more and more common in our country today.  Maybe something to think about.

WHERE WERE YOU

September 11, 2017


Do you remember where you were on September 9, 2001?  At 8:46 on the morning of September 9, 2001 Mohammed Atta and other hijackers aboard American Airlines Flight 11 crash the plane into floors 93-99 of the North Tower of the World Trade Center, killing everyone on board and hundreds inside the building.

Seventeen (17) minutes later at 9:03 am – Hijackers crash United Airlines Flight 175 into floors 75-85 of the WTC’s South Tower, killing everyone on board and hundreds inside the building.

The WTC buildings, before their demise, are pictured in the digital picture below.

The first crash is shown as follows:

I was in the “cube farm” working as a mechanical engineer for the Roper Corporation, Inc when Duane Lee came over and indicated his wife had just called telling him a small plane had crashed into one of the towers of the World Trade Center in New York.  I have a private pilot’s license so my first impression was a student pilot had gotten into heavy winds and mismanaged the controls allowing the plane to veer into the tower.  Maybe mechanical problems with the aircraft.  Maybe a medical emergency.  None of these really seemed plausible because there are very specific FAA regulations regarding airplanes relative to structures.

91.119 Minimum safe altitudes; general

“Over congested areas – Over any congested area of a city, town, or settlement, or over any open-air assembly of persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of the aircraft.”

” Over other than congested areas – An altitude of 500 feet above the surface except over open water or sparsely populated areas. In that case, the aircraft may not be operated closer than 500 feet to any person, vessel, vehicle, or structure.”

I think we can all agree; downtown NYC is a significantly congested area so one thousand feet (1,000) above and two thousand (2,000) feet within a horizontal radius would be the norm.  Something did NOT add up.  I called one of my sons and asked him if he had heard about the small airplane hitting the tower.  SMALL—not small, an airliner.  As we were speaking, the second plane hit the south tower.  It became very obvious that we were under attack.   That fact was confirmed when at 9:37 am – Hijackers aboard Flight 77 crash the plane into the western façade of the Pentagon in Washington, D.C., killing fifty-nine (59) aboard the plane and one hundred and twenty-five (125) military and civilian personnel inside the building.

At 9:42 am – For the first time in history, the FAA grounds all flights over or bound for the continental United States. Some three thousand (3,300) commercial flights and twelve hundred (1,200) private planes are guided to airports in Canada and the United States over the next two-and-a-half hours.

The resulting destruction is given with the following three pictures:

 

At 10:07 am – After passengers and crew members aboard the hijacked Flight 93 contact friends and family and learn about the attacks in New York and Washington, they mount an attempt to retake the plane. In response, hijackers deliberately crash the plane into a field in Somerset County, Pennsylvania, killing all 40 passengers and crew aboard.

For me, this was one of the worst days in my not-so-short life.  By noon, it was obvious we were at war.  With whom, I had no idea but payback was in order and with President Bush in office that payback would be assured.  Only cowards kill innocent civilians—ONLY COWARDS.

THE BONE YARD

January 24, 2017


I entered the Air Force in 1966 and served until 1970.  I had the great fortune of working for the Air Force Logistics Command (AFLC) headquartered out of Write Patterson Air Force Base in Cleveland, Ohio.  Our biggest “customer” was the Strategic Air Force Commend or SAC.  SAC was responsible for all  ICBMs our country had in its inventory.  My job was project engineer in a section that supported the Titan II Missile, specifically the thrust chamber and turbopumps.  I interfaced with Martian, Aerojet General, Raytheon, and many other great vendors supporting the weapons system.   Weapons were located at the following sites:

  • 308 Missile Wing—Little Rock Air Force Base
  • 381 Missile Wing—McConnel Air Force Base
  • 390 Missile Wing—Davis-Monthan Air Force Base
  • 395 Strategic Missile Squadron—Vandenberg Air Force Base.

Little Rock, McConnel, and Davis-Monthan each had two squadrons or eighteen (18) per site.  There were fifty-five (55) operational Titan II missiles in the SAC inventory, each having atomic war heads.  This, by the way, was also the missile that launched the Gemini astronauts.

During my four years in AFLC, I had an opportunity to visit Little Rock AFB and Davis-Monthan AFB for brief TDY (temporary duty assignments). Each time the “mission” was to oversee re-assembly of turbopumps that had been repaired or updated. The seals between the turbopumps and the thrust chamber were absolutely critical and had to be perfectly flat to avoid leakage during liftoff.  Metrology equipment was employed to insure the flatness needed prior to installation.  It was a real process with page after page of instruction.

An underground missile silo is a remarkable piece of engineering.  A city underground—living quarters, kitchen, adequate medical facilities, communication section, elevators, etc.  You get the picture.   All of the Titan II sites were decommissioned as a result of the SALT (Strategic Arms Limitation Treaty) during the mid 1980s.

OK, with that being said, one remarkable area located at Davis-Monthan AFB is the “resting place” for many, if not most aircraft that are no longer in the operational inventory.  This is where they go to retire.  While at Davis-Monthan, I had an opportunity to visit the boneyard and it was a real “trip”.

THE BONEYARD:

Davis-Monthan AFB’s role in the storage of military aircraft began after World War II, and continues today. It has evolved into “the largest aircraft boneyard in the world”.

With the area’s low humidity– ten to twenty percent (10%-20%) range, meager rainfall of eleven inches (11″) annually, hard alkaline soil, and high altitude of 2,550 feet, Davis-Monthan is the logical choice for a major storage facility.  Aircraft are there for cannibalization of parts or storage for further use.

In 1965, the Department of Defense decided to close its Litchfield Park storage facility in Phoenix, and consolidate the Navy’s surplus air fleet into Davis-Monthan. Along with this move, the name of the 2704th Air Force Storage and Disposition Group was changed to Military Aircraft Storage and Disposition Center (MASDC) to better reflect its joint services mission.

In early 1965, aircraft from Litchfield Park began the move from Phoenix to Tucson, mostly moved by truck, a cheaper alternative than removing planes from their protective coverings, flying them, and protecting them again.

The last Air Force B-47 jet bomber was retired at the end of 1969 and the entire fleet was dismantled at D-M except for thirty (30) Stratojets, which were saved for display in air museums.  In 1085, the facilities’ name was changed again, from MASDC to the Aerospace Maintenance and Regeneration Center (AMARC) as outdated ICBM missiles also entered storage at Davis-Monthan.  In the 1990s, 365 surplus B-52 bombers were dismantled at the facility.

AMARG:

The 309th Aerospace Maintenance and Regeneration Group (AMARG), or Boneyard, is a United States Air Force aircraft and missile storage and maintenance facility in Tucson, Arizona, located on Davis-Monthan Air Force Base. AMARG was previously Aerospace Maintenance and Regeneration Center, AMARC, the Military Aircraft Storage and Disposition Center, MASDC, and was established after World War II as the 3040th Aircraft Storage Group.

AMARG takes care of more than 4,400 aircraft, which makes it the largest aircraft storage and preservation facility in the world. An Air Force Materiel Command unit, the group is under the command of the 309th Maintenance Wing at Hill Air Force BaseUtah. (NOTE:  My time in AFLC was spent at Hill Air Force Base.  I was specifically assigned to the Ogden Air Material Area or OAMA.)  AMARG was originally meant to store excess Department of Defense and Coast Guard aircraft, but has in recent years been designated the sole repository of out-of-service aircraft from all branches of the US government.

In the 1980s, the center began processing ICBMs for dismantling or reuse in satellite launches, and was renamed the Aerospace Maintenance and Regeneration Center (AMARC) to reflect the expanded focus on all aerospace assets.  A map of the boneyard may be seen below.  The surface area is acres in size.

map

As you can see from the following digital pictures, aircraft of all types are stored in the desert at Davis-Monthan AFB.

bone-yard

The aircraft below are F-4 Phantom fighters that served in Vietnam.

f-4-phantom

The view below shows you just how many acres the boneyard requires.

bone-yard-2

 

AIRCRAFT INVENTORY USED BY AMARG:

AMARG uses the following official “Type” categories for aircraft in storage:

  • Type 1000 – aircraft at AMARG for long-term storage, to be maintained until recalled to active service. These aircraft are “inviolate” – have a high potential to return to flying status and no parts may be removed from them. These aircraft are “represerved” every four years.
  • Type 2000 – aircraft available for parts reclamation, as “aircraft storage bins” for parts, to keep other aircraft flying.
  • Type 3000 – “flying hold” aircraft kept in near flyable condition in short-term, temporary storage; waiting for transfer to another unit, sale to another country, or reclassification to the other three types.
  • Type 4000 – aircraft in excess of DoD needs – these have been gutted and every useable part has been reclaimed. They will be sold, broken down into scrap, smelted into ingots, and recycled.

STORAGE PROCEDURES:

There are four categories of storage for aircraft at AMARG:

  • Long Term – Aircraft are kept intact for future use
  • Parts Reclamation – Aircraft are kept, picked apartand used for spare parts
  • Flying Hold – Aircraft are kept intact for shorter stays than Long Term
  • Excess of DoDneeds – Aircraft are sold off whole or in parts

AMARG employs 550 people, almost all civilians. The 2,600 acres (11 km2) facility is adjacent to the base. For every one dollar ($1) the federal government spends operating the facility, it saves or produces eleven dollars ($11) from harvesting spare parts and selling off inventory. Congressional oversight determines what equipment may be sold to which customer.

An aircraft going into storage undergoes the following treatments:

  • All guns, ejection seat charges, and classified hardware are removed.
  • All Navy aircraft are carefully washed with fresh water, to remove salty water environment residue, and then completely dried.
  • The fuel system is protected by draining it, refilling it with lightweight oil, and then draining it again. This leaves a protective oil film.
  • The aircraft is sealed from dust, sunlight, and high temperatures. This is done using a variety of materials, including a high-tech vinyl plastic compound that is sprayed on the aircraft. This compound is called spraylatafter its producer the Spraylat Corporation, and is applied in two coats, a black coat that seals the aircraft and a white coat that reflects the sun and helps to keep internal temperatures low.  The plane is then towed by a tug to its designated “storage” position.

The Group annually in-processes an undisclosed number of aircraft for storage and out-processes a number of aircraft for return to the active service, either repainted and sold to friendly foreign governments, recycled as target or remotely controlled drones or rebuilt as civilian cargo, transport, and/or utility aircraft.  There is much scrutiny over who (civilians, companies, foreign governments) can buy what kinds of parts. At times, these sales are canceled. The Air Force for example reclaimed several F-16s from AMARG for the Strike Fighter Tactics Instructor Courses which were originally meant to be sold to Pakistan, but never delivered due to an early-90’s embargo.

CONCLUSIONS:

I have absolutely no idea as to how much money in inventory is located at D-M but as you might expect, it’s in the billions of USD. As always, I welcome your comments.

AERION

February 27, 2016


Aerospace Defense and Technology, February 2016 publication, presented a fascinating article on joint engineering efforts provided by Aerion and the Airbus Group relative to a new supersonic business jet. This team has dedicated design and production planning since 2014, which has definitely been productive with a mid-November announcement from Flexjet ordering twenty (20) aircraft.  Aviation Week made the announcement as follows:

“Flexjet has placed a firm order valued at $2.4 billion for 20 Aerion AS2 supersonic jets, with delivery to begin in 2023. First flight is expected in 2021.

Flexjet CEO Kenn Ricci said the company will use the supersonic jet for overseas flights and also in China, which does not have restrictions on sonic booms.

Customers are already excited about the jet, he said. They immediately began citing city pairs where they would like to fly. But no one wants to fly it sub-sonically, Ricci said. The AS2 can fly sub-sonically over land in the U.S., Europe and areas where the boom is restricted. But it won’t be cost-effective to do so.

The three-engine jet will burn a high amount of fuel, roughly 1,000 gal. Per hr., and its long length will restrict its use at some airports, Ricci said. “It’s still going to be an expensive plane to operate,” he said. Still, with the aircraft traveling at Mach 1.2, its boom will not touch the ground, Ricci said. Because of that, regulators may be able to be convinced to allow the jet to fly supersonically across the country, he said. Even so, the aircraft can be placed at points on the Atlantic and Pacific for international travel.”

The digital photograph below indicates the basic airframe and shows the three engines designed into the fuselage.

Aeron AS2

Kelly Johnson, leader of the famous Lockheed “Skunk Works” stated years ago; “If it looks like it will fly, it will fly.  Well, this one looks like it will fly.

This biz jet will hold eight to twelve passengers and will have an intercontinental-capable range of 4,750 nautical miles at supersonic speeds.  At these speeds, three hours will be cut from traveling across the Atlantic and more than six hours on longer trans-Pacific routes.  It could get you from London to New York in 4 hours and 24 minutes. It takes a normal jet about seven hours to make that trip. The typical flight time from Los Angeles to Sydney, Australia is about 15 hours and 30 minutes. On the Aerion AS2, the flight time would be just ten hours.

The AS2 will fly at a speed of Mach 1.5, using supersonic laminar flow technology.  The wing design will allow for lighter fuel consumption and increased travel ranges by reducing aerodynamic drag by twenty percent (20%).  NASA has issued a contract to model supersonic boom at ground level to ensure no issues result from supersonic flight.   New noise regulations coming in 2020 caused Aerion to change design from two to three engines to meet upcoming noise specifications.

The three-engine jet will make its first flight in 2021 and enter service in 2023.

As you can see from the digital below, the design is definitely cutting edge.  Other specifics are as follows:

 General characteristics

  • Crew: 2
  • Capacity: 8–12 passengers
  • Length: 170 feet (51.8 m)
  • Wingspan: 61 feet (18.6 m)
  • Height: 22 feet (6.7 m)
  • Wing area: 1,350 ft² (125 m²)
  • Empty weight: 49,800 lb (22,588 kg)
  • Max. takeoff weight: 121,000 lb (54,884 kg)
  • Powerplant: 3 × turbofans (low bypass ratio), 16,000 lb s.t.
  • Cabin size: 30 feet long, 6’2″ high, 7’3″ wide (9.1 * 1.9 * 2.2 m)

Performance

  • Maximum speed: Mach 1.5 (1140 mph) 1837 km/h
  • Cruise speed: Mach 1.4
    • Mach 0.95 at lower altitudes to minimize noise
    • Mach 1.1–1.2
  • Range: 4750 nautical miles  to 5300 nautical miles (8797 km to 9816 km)
  • Controls: Fly-by-wire flight controls
  • Structure: Ten (10) spar carbon fiber wing structure, fuselage and empennage structures.
  • Landing Gear: Articulating main landing gear system that minimizes space requirements when stowed.
  • Fuel System: A fuel system that is integrated with the digital fly-by-wire control system for control of center of gravity

Aerion and Airbus are presently working to specify the engines for the AS2 while keeping in mind the upcoming noise requirements.  Their goal is to provide acceptable fuel usage just below MACH 1.

Specifics

The interior is an absolute dream, as you can see from the next two JPEGs.  Talk about first class.

Interior

Interior (2)

This aircraft “ain’t “cheap but will serve a very specific function and is targeting a very small clientele.  Of course, there are no figures on how much this mean ride will cost relative to operating expense or maintenance but payback will have to result or there will be issues with cash flow and continued operation.  This one will be fun to watch.


The following post uses as reference material from the “Aviation Week” on-line publication.

LOS ANGELES – Boeing closed out C-17 deliveries and seven decades of aircraft production in Long Beach, California, with the departure of the last airlifter for the Qatar Emiri air force to the company’s San Antonio facility on Nov 29.

The final aircraft is one of four C-17s that will be delivered to Qatar in 2016, and together with one aircraft that remains unsold and in storage in Texas, takes the overall production tally to 279. Not including the prototype, structural test airframes and the five undelivered aircraft, Boeing has so far officially delivered 271 C-17s, including 223 to the U.S. Air Force and 48 to international operators.

The Qatar C-17 is one of 10 “white tails” for which Boeing committed to building without having a firm customer in 2013. Of the remaining aircraft, sales finalized this year include a single C-17 for Canada, which accepted its fifth in March, and the United Arab Emirates, which took two more aircraft for a total fleet of eight. Two additional aircraft from the final batch were also acquired by Australia, which formally accepted its eighth and last C-17 at Long Beach on Sept. 4. Other international operators include the U.K., Kuwait, India and the 12-nation Strategic Airlift Capability consortium of NATO.

While Boeing continues to provide support, maintenance and upgrades to the airlifter fleet under the C-17 Globemaster III Integrated Sustainment Program (GISP) Performance-Based Logistics program, the future of the production site at Long Beach remains undecided. Even though large sections of both the Boeing F/A-18 and Lockheed Martin F-35 are produced in California, the C-17 is the last series-built, fixed-wing aircraft to be completely assembled and delivered in the state. So the last delivery ends more than 70 years of full aircraft production at Long Beach and more than a century of complete fixed-wing aircraft serial manufacturing in California.

Let’s take a look at several interesting statistics of the C-17.  The following digital will indicate the basic configuration.

C-17 Digital

C-17 and Mountain

As you can see, this is one beautiful aircraft.

The cargo bay is monstrous, which is one reason for its popularity over the years.  Personnel or cargo or both are equally at home in this aircraft with generous accommodations.  In the digital below, you can see material and personnel share the cavernous internal structure, and I might add, with room to spare.

Cargo Bay

The cockpit is equally impressive with digital “everything”.  The days of analogue instrumentation are in the past.  The cabin crew is a three-person experience.

Cockpit

Now, we look at the basic design.

DESIGN:

The C-17 is 174 feet (53 m) long and has a wingspan of about 170 feet (52 m). It can airlift cargo fairly close to a battle area. The size and weight of U.S. mechanized firepower and equipment has grown in recent decades from increased air mobility requirements, particularly for large or heavy non-palletized outsize cargo.

The C-17 is powered by four Pratt & Whitney F117-PW-100 turbofan engines, which are based on the commercial Pratt and Whitney PW2040 used on the Boeing 757. Each engine is rated at 40,400 foot-pounds of force or 180 kN of thrust. The engine’s thrust reversers direct engine exhaust air upwards and forward, reducing the chances of foreign object damage by ingestion of runway debris, and providing enough reverse thrust to back the aircraft up on the ground while taxiing. The thrust reversers can also be used in flight at idle-reverse for added drag in maximum-rate descents. In vortex surfing tests performed by C-17s, up to 10% fuel savings were reported. Debris being swept into the engines on less-than-acceptable runways is a real concern to the flight crew.  This problem has been solved.

For cargo operations the C-17 requires a crew of three: pilot, copilot, and loadmaster. The cargo compartment is 88 feet (26.82 m) long by 18 feet (5.49 m) wide by 12 feet 4 inches (3.76 m) high. The cargo floor has rollers for palletized cargo but it can be flipped to provide a flat floor suitable for vehicles and other rolling stock. Cargo is loaded through a large aft ramp that accommodates rolling stock, such as a 69-ton (63-metric ton) M1 Abrams main battle tank, other armored vehicles, trucks, and trailers, along with palletized cargo.

Maximum payload of the C-17 is 170,900 lb (77,500 kg), and its Maximum takeoff weight is 585,000 lb (265,350 kg). With a payload of 160,000 lb (72,600 kg) and an initial cruise altitude of 28,000 ft (8,500 m), the C-17 has an unrefueled range of about 2,400 nautical miles (4,400 km) on the first 71 aircraft, and 2,800 nautical miles (5,200 km) on all subsequent extended-range models that include a sealed center wing bay as a fuel tank. Boeing informally calls these aircraft the C-17 ER.  The C-17’s cruise speed is about 450 knots (833 km/h) (Mach 0.74). It is designed to airdrop 102 paratroopers and their equipment. The U.S. Army’s canceled Ground Combat Vehicle was to be transported by the C-17.

The C-17 is designed to operate from runways as short as 3,500 ft (1,064 m) and as narrow as 90 ft (27 m). In addition, the C-17 can operate from unpaved, unimproved runways (although with greater chance of damage to the aircraft). The thrust reversers can be used to back the aircraft and reverse direction on narrow taxiways using a three- (or more) point turn. The plane is designed for 20 man-hours of maintenance per flight hour, and a 74% mission availability rate.

NATO CAPABILITY:

The United States recognized the need to provide the C-17 to NATO forces as early as 2006.  An increasing threat potential to Western Europe resulted in the purchase of the C-17 aircraft.

At the 2006 Farnborough Airshow, a number of NATO member nations signed a letter of intent to jointly purchase and operate several C-17s within the NATO Strategic Airlift Capability.  Strategic Airlift Capability members are Bulgaria, Estonia, Hungary, Lithuania, the Netherlands, Norway, Poland, Romania, Slovenia, the United States, as well as two Partnership for Peace countries Finland and Sweden as of 2010.   The purchase was for two C-17s, and a third was contributed by the U.S. On 14 July 2009, Boeing delivered the first C-17 under NATO’s Strategic Airlift Capability (SAC) program. The second and third C-17s were delivered in September and October 2009.

The SAC C-17s are based at Pápa Air Base, Hungary. The Heavy Airlift Wing is hosted by Hungary, which acts as the flag nation.  The aircraft are manned in similar fashion as the NATO E-3 AWACS aircraft.  The C-17 flight crew is multi-national, but each mission is assigned to an individual member nation based on the SAC’s annual flight hour share agreement. The NATO Airlift Management Programe Office (NAMPO) provides management and support for the Heavy Airlift Wing. NAMPO is a part of the NATO Support Agency (NSPA).   In September 2014, Boeing revealed that the three C-17s supporting NATO SAC missions had achieved a readiness rate of nearly 94 percent over the last five years and supported over 1,000 missions.

SUMMARY:

The C-17 has seen duty in the following countries:

  • India
  • Qatar
  • UAE
  • New Zealand
  • Australia
  • Canada
  • Kuwait
  • United Kingdom

Once again, the “stats” are as follows:

GENERAL CHARACTERISTICS SUMMARY:

  • Crew: 3: 2 pilots, 1 loadmaster (five additional personnel required for aeromedical evacuation)
  • Capacity:
    • 102 paratroopers or
    • 134 troops with palletized and sidewall seats or
    • 54 troops with sidewall seats (allows 13 cargo pallets) only or
    • 36 litter and 54 ambulatory patients and medical attendants or
    • Cargo, such as an M1 Abrams tank, three Strykers, or six M1117 Armored Security Vehicles
  • Payload: 170,900 lb (77,519 kg) of cargo distributed at max over 18 463L master pallets or a mix of palletized cargo and vehicles
  • Length: 174 ft (53 m)
  • Wingspan: 169.8 ft (51.75 m)
  • Height: 55.1 ft (16.8 m)
  • Wing area: 3,800 ft² (353 m²)
  • Empty weight: 282,500 lb (128,100 kg)
  • Max. takeoff weight: 585,000 lb (265,350 kg)
  • Powerplant: 4 × Pratt & Whitney F117-PW-100 turbofans, 40,440 lbf (180 kN) each
  • Fuel capacity: 35,546 U.S. gal (134,556 L)

Performance

  • Cruise speed: Mach 0.74 (450 knots, 515 mph, 830 km/h)
  • Range: 2,420 nmi  (2,785 mi, 4,482 km) ; 5,610 nmi (10,390 km) with paratroopers
  • Service ceiling: 45,000 ft (13,716 m)
  • Max. wing loading: 150 lb/ft² (750 kg/m²)
  • Minimum thrust/weight: 0.277
  • Takeoff run at MTOW: 7,600 ft (2,316 m)
  • Landing distance: 3,500 ft (1,060 m)

One of the most successful designs in military history.  As always, I welcome your comments.

%d bloggers like this: