Okay, there will be a test after you read this post.  Here we go.  Do you know these people?

  • Beyoncé
  • Jennifer Lopez
  • Mariah Cary
  • Lady Gaga
  • Ariana Grande
  • Katy Perry
  • Miley Cyrus
  • Karen Uhlenbeck

Don’t feel bad.  I didn’t know either.  This is Karen Uhlenbeck—the mathematician we do not know.  For some unknown reason we all (even me) know the “pop” stars by name; who their significant other or others are, their children, their latest hit single, who they recently “dumped”, where they vacationed, etc. etc.  We know this. I would propose the lady whose picture shown below has contributed more to “human kind” that all the individuals listed above.  Then again, that’s just me.

For the first time, one of the top prizes in mathematics has been given to a woman.  I find this hard to believe because we all know that “girls” can’t do math.  Your mamas told you that and you remembered it.  (I suppose Dr. Uhlenbeck mom was doing her nails and forgot to mention that to her.)

This past Tuesday, the Norwegian Academy of Science and Letters announced it has awarded this year’s Abel Prize — an award modeled on the Nobel Prizes — to Karen Uhlenbeck, an emeritus professor at the University of Texas at Austin. The award cites “the fundamental impact of her work on analysis, geometry and mathematical physics.”   Uhlenbeck won for her foundational work in geometric analysis, which combines the technical power of analysis—a branch of math that extends and generalizes calculus—with the more conceptual areas of geometry and topology. She is the first woman to receive the prize since the award of six (6) million Norwegian kroner (approximately $700,000) was first given in 2003.

One of Dr. Uhlenbeck’s advances in essence described the complex shapes of soap films not in a bubble bath but in abstract, high-dimensional curved spaces. In later work, she helped put a rigorous mathematical underpinning to techniques widely used by physicists in quantum field theory to describe fundamental interactions between particles and forces. (How many think Beyoncé could do that?)

In the process, she helped pioneer a field known as geometric analysis, and she developed techniques now commonly used by many mathematicians. As a matter of fact, she invented the field.

“She did things nobody thought about doing,” said Sun-Yung Alice Chang, a mathematician at Princeton University who served on the five-member prize committee, “and after she did, she laid the foundations for that branch of mathematics.”

An example of objects studied in geometric analysis is a minimal surface. Analogous to a geodesic, a curve that minimizes path length, a minimal surface minimizes area; think of a soap film, a minimal surface that minimizes energy. Analysis focuses on the differential equations governing variations of surface area, whereas geometry and topology focus on the minimal surface representing a solution to the equations. Geometric analysis weaves together both approaches, resulting in new insights.

The field did not exist when Uhlenbeck began graduate school in the mid-1960s, but tantalizing results linking analysis and topology had begun to emerge. In the early 1980s, Uhlenbeck and her collaborators did ground-breaking work in minimal surfaces. They showed how to deal with singular points, that is, points where the minimal surface is no longer smooth or where the solution to the equations is not defined. They proved that there are only finitely many singular points and showed how to study them by expanding them into “bubbles.” As a technique, bubbling made a deep impact and is now a standard tool.

Born in 1942 to an engineer and an artist, Uhlenbeck is a mountain-loving hiker who learned to surf at the age of forty (40). As a child she was a voracious reader and “was interested in everything,” she said in an interview last year with Celebratio.org. “I was always tense, wanting to know what was going on and asking questions.”

She initially majored in physics as an undergraduate at the University of Michigan. But her impatience with lab work and a growing love for math led her to switch majors. She nevertheless retained a lifelong passion for physics, and centered much of her research on problems from that field.  In physics, a gauge theory is a kind of field theory, formulated in the language of the geometry of fiber bundles; the simplest example is electromagnetism. One of the most important gauge theories from the 20th century is Yang-Mills theory, which underlies the standard model of elementary particle physics. Uhlenbeck and other mathematicians began to realize that the Yang-Mills equations have deep connections to problems in geometry and topology. By the early 1980s, she laid the analytic foundations for mathematical investigation of the Yang-Mills equations.

Dr. Uhlenbeck, who lives in Princeton, N.J., learned that she won the prize on Sunday morning.

“When I came out of church, I noticed that I had a text message from Alice Chang that said, Would I please accept a call from Norway?” Dr. Uhlenbeck said. “When I got home, I called Norway back and they told me.”

Who said women can’t do math?

Advertisements

SMARTS

March 17, 2019


Who was the smartest person in the history of our species? Solomon, Albert Einstein, Jesus, Nikola Tesla, Isaac Newton, Leonardo de Vinci, Stephen Hawking—who would you name.  We’ve had several individuals who broke the curve relative to intelligence.   As defined by the Oxford Dictionary of the English Language, IQ:

“an intelligence test score that is obtained by dividing mental age, which reflects the age-graded level of performance as derived from population norms, by chronological age and multiplying by100: a score of100 thus indicates performance at exactly the normal level for that age group. Abbreviation: IQ”

An intelligence quotient or IQ is a score derived from one of several different intelligence measures.  Standardized tests are designed to measure intelligence.  The term “IQ” is a translation of the German Intellizenz Quotient and was coined by the German psychologist William Stern in 1912.  This was a method proposed by Dr. Stern to score early modern children’s intelligence tests such as those developed by Alfred Binet and Theodore Simin in the early twentieth century.  Although the term “IQ” is still in use, the scoring of modern IQ tests such as the Wechsler Adult Intelligence Scale is not based on a projection of the subject’s measured rank on the Gaussian Bell curve with a center value of one hundred (100) and a standard deviation of fifteen (15).  The Stanford-Binet IQ test has a standard deviation of sixteen (16).  As you can see from the graphic below, seventy percent (70%) of the human population has an IQ between eighty-five and one hundred and fifteen.  From one hundred and fifteen to one hundred and thirty you are considered to be highly intelligent.  Above one hundred and thirty you are exceptionally gifted.

What are several qualities of highly intelligent people?  Let’s look.

QUALITIES:

  • A great deal of self-control.
  • Very curious
  • They are avid readers
  • They are intuitive
  • They love learning
  • They are adaptable
  • They are risk-takers
  • They are NOT over-confident
  • They are open-minded
  • They are somewhat introverted

You probably know individuals who fit this profile.  We are going to look at one right now:  John von Neumann.

JON von NEUMANN:

The Financial Times of London celebrated John von Neumann as “The Man of the Century” on Dec. 24, 1999. The headline hailed him as the “architect of the computer age,” not only the “most striking” person of the 20th century, but its “pattern-card”—the pattern from which modern man, like the newest fashion collection, is cut.

The Financial Times and others characterize von Neumann’s importance for the development of modern thinking by what are termed his three great accomplishments, namely:

(1) Von Neumann is the inventor of the computer. All computers in use today have the “architecture” von Neumann developed, which makes it possible to store the program, together with data, in working memory.

(2) By comparing human intelligence to computers, von Neumann laid the foundation for “Artificial Intelligence,” which is taken to be one of the most important areas of research today.

(3) Von Neumann used his “game theory,” to develop a dominant tool for economic analysis, which gained recognition in 1994 when the Nobel Prize for economic sciences was awarded to John C. Harsanyi, John F. Nash, and Richard Selten.

John von Neumann, original name János Neumann, (born December 28, 1903, Budapest, Hungary—died February 8, 1957, Washington, D.C. Hungarian-born American mathematician. As an adult, he appended von to his surname; the hereditary title had been granted his father in 1913. Von Neumann grew from child prodigy to one of the world’s foremost mathematicians by his mid-twenties. Important work in set theory inaugurated a career that touched nearly every major branch of mathematics. Von Neumann’s gift for applied mathematics took his work in directions that influenced quantum theory theory of automation, economics, and defense planning. Von Neumann pioneered game theory, and, along with Alan Turing and Claude Shannon was one of the conceptual inventors of the stored-program digital computer .

Von Neumann did exhibit signs of genius in early childhood: he could joke in Classical Greek and, for a family stunt, he could quickly memorize a page from a telephone book and recite its numbers and addresses. Von Neumann learned languages and math from tutors and attended Budapest’s most prestigious secondary school, the Lutheran Gymnasium . The Neumann family fled Bela Kun’s short-lived communist regime in 1919 for a brief and relatively comfortable exile split between Vienna and the Adriatic resort of Abbazia. Upon completion of von Neumann’s secondary schooling in 1921, his father discouraged him from pursuing a career in mathematics, fearing that there was not enough money in the field. As a compromise, von Neumann simultaneously studied chemistry and mathematics. He earned a degree in chemical engineering from the Swiss Federal Institute in  Zurich and a doctorate in mathematics (1926) from the University of Budapest.

OK, that all well and good but do we know the IQ of Dr. John von Neumann?

John Von Neumann IQ is 190, which is considered as a super genius and in top 0.1% of the population in the world.

With his marvelous IQ, he wrote one hundred and fifty (150) published papers in his life; sixty (60) in pure mathematics, twenty (20) in physics, and sixty (60) in applied mathematics. His last work, an unfinished manuscript written while in the hospital and later published in book form as The Computer and the Brain, gives an indication of the direction of his interests at the time of his death. It discusses how the brain can be viewed as a computing machine. The book is speculative in nature, but discusses several important differences between brains and computers of his day (such as processing speed and parallelism), as well as suggesting directions for future research. Memory is one of the central themes in his book.

I told you he was smart!

BENDABLE BATTERIES

February 1, 2019


I always marvel at the pace of technology and how that technology fills a definite need for products only dreamt of previously.   We all have heard that “necessity is the mother of invention” well, I believe that to a tee.  We need it, we can’t find it, no one makes it, let’s invent it.  This is the way adults solve problems.  Every week technology improves our lives giving us labor-saving devices that “tomorrow” will become commonplace.  All electro-mechanical devices run on amperage provided by voltage impressed.   Many of these devices use battery power for portability.   Lithium-ion batteries seem to be the batteries of choice right now due to their ability to hold a charge and their ability to fast-charge.

Pioneer work with the lithium battery began in 1912 under G.N. Lewis but it was not until the early 1970s when the first non-rechargeable lithium batteries became commercially available. lithium is the lightest of all metals, has the greatest electrochemical potential and provides the largest energy density for weight.

The energy density of lithium-ion is typically twice that of the standard nickel-cadmium. This is a huge advantage recognized by engineers and scientists the world over.  There is potential for higher energy densities. The load characteristics are reasonably good and behave similarly to nickel-cadmium in terms of discharge. The high cell voltage of 3.6 volts allows battery pack designs with only one cell. Most of today’s mobile phones run on a single cell. A nickel-based pack would require three 1.2-volt cells connected in series.

Lithium-ion is a low maintenance battery, an advantage that most other chemistries cannot claim. There is no memory and no scheduled cycling is required to prolong the battery’s life. In addition, the self-discharge is less than half compared to nickel-cadmium, making lithium-ion well suited for modern fuel gauge applications. lithium-ion cells cause little harm when disposed.

If we look at advantages and disadvantages, we see the following:

Advantages

  • High energy density – potential for yet higher capacities.
  • Does not need prolonged priming when new. One regular charge is all that’s needed.
  • Relatively low self-discharge – self-discharge is less than half that of nickel-based batteries.
  • Low Maintenance – no periodic discharge is needed; there is no memory.
  • Specialty cells can provide very high current to applications such as power tools.

Limitations

  • Requires protection circuit to maintain voltage and current within safe limits.
  • Subject to aging, even if not in use – storage in a cool place at 40% charge reduces the aging effect.
  • Transportation restrictions – shipment of larger quantities may be subject to regulatory control. This restriction does not apply to personal carry-on batteries.
  • Expensive to manufacture – about 40 percent higher in cost than nickel-cadmium.
  • Not fully mature – metals and chemicals are changing on a continuing basis.

One amazing property of Li-Ion batteries is their ability to be formed.  Let’s take a look.

Researchers have just published documentation relative to a new technology that will definitely fill a need.

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY:

Researchers at the Ulsan National Institute of Science and Technology in Korea have developed an imprintable and bendable lithium-ion battery they claim is the world’s first, and could hasten the introduction of flexible smart phones that leverage flexible display technology, such as Samsung’s Youm flexible OLED.

Samsung first demonstrated this display technology at CES 2013 as the next step in the evolution of mobile-device displays. The battery could also potentially be used in other flexible devices that debuted at the show, such as a wristwatch and a tablet.

Ulsan researchers had help on the technology from Professor John A. Rogers of the University of Illinois, researchers Young-Gi Lee and Gwangman Kim of Korea’s Electronics and Telecommunications Research Institute, and researcher Eunhae Gil of Kangwon National University. Rogers was also part of the team that developed a breakthrough in transient electronics, or electronics that dissolve inside the body.

The Korea JoongAng Daily newspaper first reported the story, citing the South Korea Ministry of Education, Science and Technology, which co-funded the research with the National Research Foundation of Korea.

The key to the flexible battery technology lies in nanomaterials that can be applied to any surface to create fluid-like polymer electrolytes that are solid, not liquid, according to Ulsan researchers. This is in contrast to typical device lithium-ion batteries, which use liquefied electrolytes that are put in square-shaped cases. Researchers say this also makes the flexible battery more stable and less prone to overheating.

“Conventional lithium-ion batteries that use liquefied electrolytes had problems with safety as the film that separates the electrolytes may melt under heat, in which case the positive and negative may come in contact, causing an explosion,” Lee told the Korean newspaper. “Because the new battery uses flexible but solid materials, and not liquids, it can be expected to show a much higher level of stability than conventional rechargeable batteries.”

This potential explosiveness of the materials in lithium-ion batteries — which in the past received attention because of exploding mobile devices — has been in the news again recently in the case of the Boeing 787 Dreamliner, which has had several instances of liquid leaking lithium-ion batteries. The problems have grounded Boeing’s next-generation jumbo jet until they are investigated and resolved.

This is a very short posting but one I felt would be of great interest to my readers.  New technology; i.e. cutting-edge stuff, etc. is fun to write about and possibly useful to learn.  Hope you enjoy this one.

Please send me your comments:  bobjengr@comcast.net.

COMPUTER SIMULATION

January 20, 2019


More and more engineers, systems analysist, biochemists, city planners, medical practitioners, individuals in entertainment fields are moving towards computer simulation.  Let’s take a quick look at simulation then we will discover several examples of how very powerful this technology can be.

WHAT IS COMPUTER SIMULATION?

Simulation modelling is an excellent tool for analyzing and optimizing dynamic processes. Specifically, when mathematical optimization of complex systems becomes infeasible, and when conducting experiments within real systems is too expensive, time consuming, or dangerous, simulation becomes a powerful tool. The aim of simulation is to support objective decision making by means of dynamic analysis, to enable managers to safely plan their operations, and to save costs.

A computer simulation or a computer model is a computer program that attempts to simulate an abstract model of a particular system. … Computer simulations build on and are useful adjuncts to purely mathematical models in science, technology and entertainment.

Computer simulations have become a useful part of mathematical modelling of many natural systems in physics, chemistry and biology, human systems in economics, psychology, and social science and in the process of engineering new technology, to gain insight into the operation of those systems. They are also widely used in the entertainment fields.

Traditionally, the formal modeling of systems has been possible using mathematical models, which attempts to find analytical solutions to problems enabling the prediction of behavior of the system from a set of parameters and initial conditions.  The word prediction is a very important word in the overall process. One very critical part of the predictive process is designating the parameters properly.  Not only the upper and lower specifications but parameters that define intermediate processes.

The reliability and the trust people put in computer simulations depends on the validity of the simulation model.  The degree of trust is directly related to the software itself and the reputation of the company producing the software. There will considerably more in this course regarding vendors providing software to companies wishing to simulate processes and solve complex problems.

Computer simulations find use in the study of dynamic behavior in an environment that may be difficult or dangerous to implement in real life. Say, a nuclear blast may be represented with a mathematical model that takes into consideration various elements such as velocity, heat and radioactive emissions. Additionally, one may implement changes to the equation by changing certain other variables, like the amount of fissionable material used in the blast.  Another application involves predictive efforts relative to weather systems.  Mathematics involving these determinations are significantly complex and usually involve a branch of math called “chaos theory”.

Simulations largely help in determining behaviors when individual components of a system are altered. Simulations can also be used in engineering to determine potential effects, such as that of river systems for the construction of dams.  Some companies call these behaviors “what-if” scenarios because they allow the engineer or scientist to apply differing parameters to discern cause-effect interaction.

One great advantage a computer simulation has over a mathematical model is allowing a visual representation of events and time line. You can actually see the action and chain of events with simulation and investigate the parameters for acceptance.  You can examine the limits of acceptability using simulation.   All components and assemblies have upper and lower specification limits a and must perform within those limits.

Computer simulation is the discipline of designing a model of an actual or theoretical physical system, executing the model on a digital computer, and analyzing the execution output. Simulation embodies the principle of “learning by doing” — to learn about the system we must first build a model of some sort and then operate the model. The use of simulation is an activity that is as natural as a child who role plays. Children understand the world around them by simulating (with toys and figurines) most of their interactions with other people, animals and objects. As adults, we lose some of this childlike behavior but recapture it later on through computer simulation. To understand reality and all of its complexity, we must build artificial objects and dynamically act out roles with them. Computer simulation is the electronic equivalent of this type of role playing and it serves to drive synthetic environments and virtual worlds. Within the overall task of simulation, there are three primary sub-fields: model design, model execution and model analysis.

REAL-WORLD SIMULATION:

The following examples are taken from computer screen representing real-world situations and/or problems that need solutions.  As mentioned earlier, “what-ifs” may be realized by animating the computer model providing cause-effect and responses to desired inputs. Let’s take a look.

A great host of mechanical and structural problems may be solved by using computer simulation. The example above shows how the diameter of two matching holes may be affected by applying heat to the bracket

 

The Newtonian and non-Newtonian flow of fluids, i.e. liquids and gases, has always been a subject of concern within piping systems.  Flow related to pressure and temperature may be approximated by simulation.

 

The Newtonian and non-Newtonian flow of fluids, i.e. liquids and gases, has always been a subject of concern within piping systems.  Flow related to pressure and temperature may be approximated by simulation.

Electromagnetics is an extremely complex field. The digital above strives to show how a magnetic field reacts to applied voltage.

Chemical engineers are very concerned with reaction time when chemicals are mixed.  One example might be the ignition time when an oxidizer comes in contact with fuel.

Acoustics or how sound propagates through a physical device or structure.

The transfer of heat from a colder surface to a warmer surface has always come into question. Simulation programs are extremely valuable in visualizing this transfer.

 

Equation-based modeling can be simulated showing how a structure, in this case a metal plate, can be affected when forces are applied.

In addition to computer simulation, we have AR or augmented reality and VR virtual reality.  Those subjects are fascinating but will require another post for another day.  Hope you enjoy this one.

 

 


Astrophysics for People in a Hurry was written by Neil deGrasse Tyson.  I think the best place to start is with a brief bio of Dr. Tyson.

NEIL de GRASSE TYSON was borne October 5, 1968 in New York City. When he was nine years old, his interest in astronomy was sparked by a trip to the Hayden Planetarium at the American Museum of Natural History in New York. Tyson followed that passion and received a bachelor’s degree in physics from Harvard University in Cambridge, Massachusetts, in 1980 and a master’s degree in astronomy from the University of Texas at Austin in 1983. He began writing a question-and-answer column for the University of Texas’s popular astronomy magazine StarDate, and material from that column later appeared in his books Merlin’s Tour of the Universe (1989) and Just Visiting This Planet (1998).

Tyson then earned a master’s (1989) and a doctorate in astrophysics (1991) from Columbia University, New York City. He was a postdoctoral research associate at Princeton University from 1991 to 1994, when he joined the Hayden Planetarium as a staff scientist. His research dealt with problems relating to galactic structure and evolution. He became acting director of the Hayden Planetarium in 1995 and director in 1996. From 1995 to 2005 he wrote monthly essays for Natural History magazine, some of which were collected in Death by Black Hole: And Other Cosmic Quandaries (2007), and in 2000 he wrote an autobiography, The Sky Is Not the Limit: Adventures of an Urban Astrophysicist. His later books include Astrophysics for People in a Hurry (2017).

You can see from his biography Dr. Tyson is a “heavy hitter” and knows his subject in and out.  His newest book “Astrophysics for People in a Hurry” treats his readers with respect relative to their time.  During the summer of 2017, it was on the New York Times best seller list at number one for four (4) consecutive months and has never been unlisted from that list since its publication. The book is small and contains only two hundred and nine (209) pages, but please do not let this short book fool you.  It is extremely well written and “loaded” with facts relevant to the subject matter. Very concise and to the point.   I would like now to give you some idea as to the content by coping several passages from the book.  Short passages that will indicate what you will be dealing with as a reader.

  • In the beginning, nearly fourteen billion years ago, all the space and all the matter and all the energy of the knows universe was contained in a volume less than one-trillionth the size of the period that ends this sentence.
  • As the universe aged through 10^-55 seconds, it continued to expand, diluting all concentrations of energy, and what remained of the unified forces split into the “electroweak” and the “strong nuclear” forces.
  • As the cosmos continued to expand and cool, growing larger that the size of our solar system, the temperature dropped rapidly below a trillion degrees Kelvin.
  • After cooling, one electron for every proton has been “frozen” into existence. As the cosmos continues to cool-dropping below a hundred million degrees-protons fuse with other protons as well as with neutrons, forming atomic nuclei and hatching a universe in which ninety percent of these nuclei are hydrogen and ten percent are helium, along with trace amounts of deuterium (heavy hydrogen), tritium (even heavier than hydrogen), and lithium.
  • For the first billion years, the universe continued to expand and cool as matter gravitated into the massive concentrations we call galaxies. Nearly a hundred billion of them formed, each containing hundreds of billions of stars that undergo thermonuclear fusion in their cores.

Dr. Tyson also discusses, Dark Matter, Dark Energy, Invisible Light, the Exoplanet Earth and many other fascinating subjects that can be absorbed in “quick time”.  It is a GREAT read and one I can definitely recommend to you.

ARECIBO

September 27, 2017


Hurricane Maria, as you well know, has caused massive damage to the island of Puerto Rico.  At this writing, the entire island is without power and is struggling to exist without water, telephone communication, health and sanitation facilities.   The digital pictures below will give some indication as to the devastation.

Maria made landfall in the southeastern part of the U.S. territory Wednesday with winds reaching 155 miles per hour, knocking out electricity across the island. An amazingly strong wind devastated the storm flooded parts of downtown San Juan, downed trees and ripped the roofs from homes. Puerto Rico has little financial wherewithal to navigate a major catastrophe, given its decision in May to seek protection from creditors after a decade of economic decline, excessive borrowing and the loss of residents to the U.S. mainland.  Right now, PR is totally dependent upon the United States for recovery.

Imagine winds strong enough to damage and position an automobile in the fashion shown above.  I cannot even tell the make of this car but we must assume it weighs at least two thousand pounds and yet it is thrown in the air like a paper plane.

One huge issue is clearing roads so supplies for relief and medical attention can be delivered to the people.  This is a huge task.

One question I had—how about Arecibo?  Did the radio telescope survive and if so, what damages were sustained?  The digital below will show Arecibo Radio Telescope during “better times”.

Five decades ago, scientists sought a radio telescope that was close to the equator, according to Arecibo’s website. This location would allow the telescope to track planets passing overhead, while also probing the nature of the ionosphere — the layer of the atmosphere in which charged particles produce the northern lights.  The telescope is part of the National Astronomy and Ionosphere Center. The National Science Foundation has a co-operative agreement with the three entities that operate it: SRI International, the Universities Space Research Association and UMET (Metropolitan University.) That radio telescope has provided an absolute wealth of information about our solar system and surrounding and bodies outside our solar system.

The Arecibo Observatory contains the second-largest radio telescope in the world, and that telescope has been out of service ever since Hurricane Maria hit Puerto Rico on Sept. 20. Maria hit the island as a Category 4 hurricane.

While Puerto Rico suffered catastrophic damage across the island, the Arecibo Observatory suffered “relatively minor damages,” Francisco Córdova, the director of the observatory, said in a Facebook post on Sunday (Sept. 24).

In the words of Mr. Cordova: “Still standing after #HurricaneMaria! We suffered some damages, but nothing that can’t be repaired or replaced! More updates to follow in the coming days as we complete our detailed inspections. We stand together with Puerto Rico as we recover from this storm.#PRStrong”.

Despite Córdova’s optimistic message, staff members and other residents of Puerto Rico are in a pretty bad situation. Power has yet to be restored to the island since the storm hit, and people are running out of fuel for generators. With roads still blocked by fallen trees and debris, transporting supplies to people in need is no simple task.

National Geographic’s Nadia Drake, who has been in contact with the observatory and has provided extensive updates via Twitter, reported that “some staff who have lost homes in town are moving on-site” to the facility, which weathered the storm pretty well overall. Drake also reported that the observatory “will likely be serving as a FEMA emergency center,” helping out members of the community who lost their homes in the storm.

The mission of Arecibo will continue but it may be a long time before the radio telescope is fully functional.  Let’s just hope the lives of the people manning the telescope can be put back in order quickly so important and continued work may again be accomplished.

ROBONAUGHTS

September 4, 2016


OK, if you are like me, your sitting there asking yourself just what on Earth is a robonaught?  A robot is an electromechanical device used primarily to take the labor and sometimes danger from human activity.  As you well know, robotic systems have been in use for many years with each year providing systems of increasing sophistication.  An astronaut is an individual operating in outer space.  Let’s take a proper definition for ROBONAUGHT as provided by NASA.

“A Robonaut is a dexterous humanoid robot built and designed at NASA Johnson Space Center in Houston, Texas. Our challenge is to build machines that can help humans work and explore in space. Working side by side with humans, or going where the risks are too great for people, Robonauts will expand our ability for construction and discovery. Central to that effort is a capability we call dexterous manipulation, embodied by an ability to use one’s hand to do work, and our challenge has been to build machines with dexterity that exceeds that of a suited astronaut.”

My information is derived from “NASA Tech Briefs”, Vol 40, No 7, July 2016 publication.

If you had your own personal robotic system, what would you ask that system to do?  Several options surface in my world as follows: 1.) Mow the lawn, 2.) Trim hedges, 3.) Wash my cars, 4.) Clean the gutters, 5.) Vacuum floors in our house, 6.) Wash windows, and 7.) Do the laundry.   (As you can see, I’m not really into yard work or even house work.)  Just about all of the tasks I do on a regular basis are home-grown, outdoor jobs and time-consuming.

For NASA, the International Space Station (ISS) has become a marvelous test-bed for developing the world’s most advanced robotic technology—technology that definitely represents the cutting-edge in space exploration and ground research.  The ISS now hosts a significant array of state-of-the are robotic projects including human-scale dexterous robots and free-flying robots.  (NOTE:  The vendor is Astrobee and they have developed for NASA a free-flyer robotic system consists of structure, propulsion, power, guidance, navigation and control (GN&C), command and data handling (C&DH), avionics, communications, dock mechanism, and perching arm subsystems. The Astrobee element is designed to be self-contained and capable of autonomous localization, orientation, navigation and holonomic motion as well as autonomous resupply of consumables while operating inside the USOS.)  These robotic systems are not only enabling the future of human-robot space exploration but promising extraordinary benefits for Earth-bound applications.

The initial purpose for exploring the design and fabrication of a human robotic system was to assist astronauts in completing tasks in which an additional pair or pairs of hands would be very helpful or to perform jobs either too hazardous or too mundane for crewmembers.  For this reason, the  Robonaut 2, was NASA’s first humanoid robot in space and was selected as the NASA Government Invention of the Year for 2014. Many outstanding inventions were considered for this award but Robonaut 2 was chosen after a challenging review by the NASA selection committee that evaluated the robot in the following areas: 1.) Aerospace Significance, 2.) Industry Significance, 3.) Humanitarian Significance, 4.) Technology Readiness Level, 5.) NASA Use, and 6.) Industry Use and Creativity. Robonaut 2 technologies have resulted in thirty-nine (39) issued patents, with several more under review. The NASA Invention of the Year is a first for a humanoid robot and with another in a series of firsts for Robonaut 2 that include: first robot inside a human space vehicle operating without a cage, and first robot to work with human-rated tools in space.  The R2 system developed by NASA is shown in the following JPEGs:

R2 Robotic System

R2 Robotic System(2)

R2 Robotic System(3)

 

Robonaut 2, NASA’s first humanoid robot in space, was selected as the NASA Government Invention of the Year for 2014. Many outstanding inventions were considered for this award, and Robonaut 2 was chosen after a challenging review by the NASA selection committee that evaluated the robot in the following areas: Aerospace Significance, Industry Significance, Humanitarian Significance, Technology Readiness Level, NASA Use, Industry Use and Creativity. Robonaut 2 technologies have resulted in thirty-nine (39) issued patents, with several more under review. The NASA Invention of the Year is a first for a humanoid robot and another in a series of firsts for Robonaut 2 that include: first robot inside a human space vehicle operating without a cage, and first robot to work with human-rated tools in space.

R2 first powered up for the first time in August 2011. Since that time, robotics engineers have tested R2 on ISS, completing tasks ranging from velocity air measurements to handrail cleaning—simple but necessary tasks that require a great deal of crew time.   R2 also has an on-board task of flipping switches and pushing buttons, each time controlled by space station crew members through the use of virtual reality gear. According to Steve Gaddis, “we are currently working on teaching him how to look for handrails and avoid obstacles.”

The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012.  Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators (“legs”), more capable processors, and new sensors. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions.

One advantage of a humanoid design is that Robonaut can take over simple, repetitive, or especially dangerous tasks on places such as the International Space Station. Because R2 is approaching human dexterity, tasks such as changing out an air filter can be performed without modifications to the existing design.

More and more we are seeing robotic systems do the work of humans.  It is just a matter of time before we see their usage here on terra-ferma.  I mean human-type robotic systems used to serve man.  Let’s just hope we do not evolve into the “age of the machines”.  I think I may take another look at the movie Terminator.

%d bloggers like this: