TEN MOST RELIABLE CARS

April 4, 2018


Conservative design principles may be the key to building a more reliable automobile, say engineers from Consumer Reports who studied vehicle reliability for their 2018 auto issue.  Nine of the ten vehicles receiving “much better than average” overall scores in every available year of the survey were either from Toyota or Lexus.  The only exception was the Acura TSX mid-sized sedan, which received a perfect score in every model year from 2010 to 2014. This probably does not surprise anyone.

Let’s take a look at what Consumer Reports considers the ten most reliable models.

CONCLUSION:

Consumer Reports’ ratings of vehicle reliability are based on survey responses from more than half a million vehicle owners. The surveys ask questions about 17 different potential trouble spots, ranging from engines and transmissions to fuel systems, electrical, suspension, brakes, body hardware, and in-car electronics, among others.

In the ratings, the Camry received “much better than average” ratings (the magazine’s highest score) for in-car electronics in four of the last eight model years on the Consumer Reports survey. It also received perfect scores in all eight years for three engine categories and two transmission categories.

Toyota’s conservative approach does have a downside, however, Fisher added. The company’s vehicles are often dinged by automotive writers for being “dowdy,” or just plain lacking in excitement, he said. “Other manufacturers are willing to take risks for the sake of a performance increase, or for fuel economy boost, or for excitement and drive-ability,” he said. “And those manufacturers continue to get accolades from their peers. However, I would argue that none of those accolades consider reliability.”

OKAY—what are you after? Bells and whistles or a reliable vehicle to get you to and from work?

 

Advertisements

GOTTA GET IT OFF

January 6, 2018


OKAY, how many of you have said already this year?  “MAN, I have to lose some weight.”  I have a dear friend who put on a little weight over a couple of years and he commented: “Twenty or twenty-five pounds every year and pretty soon it adds up.”  It does add up.  Let’s look at several numbers from the CDC and other sources.

  • The CDC organization estimates that three-quarters (3/4of the American population will likely be overweight or obese by 2020. The latest figures, as of 2014, show that more than one-third (36.5%) of U.S. adults age twenty (20) and older and seventeen percent (17%) of children and adolescents aged two through nineteen (2–19) years were obese.
  • American ObesityRates are on the Rise, Gallup Poll Finds. Americans have become even fatter than before, with nearly twenty-eight (28%) percent saying they are clinically obese, a new survey finds. … At 180 pounds this person has a BMI of thirty (30) and is considered obese.

Now, you might say—we are in good company:  According to the World Health Organization, the following countries have the highest rates of obesity.

  • Republic of Nauru. Formerly known as Pleasant Island, this tiny island country in the South Pacific only has a population of 9,300. …
  • American Samoa. …
  • Tokelau
  • Tonga
  • French Polynesia. …
  • Republic of Kiribati. …
  • Saudi Arabia. …
  • Panama.

There is absolutely no doubt that more and more Americans are over weight even surpassing the magic BMI number of 30.  We all know what reduction in weight can do for us on an individual basis, but have you ever considered what reduction in weight can do for “other items”—namely hardware?

  • Using light-weight components, (composite materials) and high-efficiency engines enabled by advanced materials for internal-combustion engines in one-quarter of U.S. fleet trucks and automobiles could possibly save more than five (5) billion gallons of fuel annually by 2030. This is according to the US Energy Department Vehicle Technologies Office.
  • This is possible because, according to the Oak Ridge National Laboratory, The Department of Energy’s Carbon Fiber Technology Facility has a capacity to produce up to twenty-five (25) tons of carbon fiber per year.
  • Replacing heavy steel with high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by ten to sixty percent (10-60 %). Longer term, materials such as magnesium and carbon fiber-reinforced composites could reduce the weight of some components by fifty to seventy-five percent (50-75%).
  • It costs $10,000 per pound to put one pound of payload into Earth orbit. NASA’s goal is to reduce the cost of getting to space down to hundreds of dollars per pound within twenty-five (25) years and tens of dollars per pound within forty (40) years.
  • Space-X Falcon Heavy rocket will be the first ever rocket to break the $1,000 per pound per orbit barrier—less than a tenth as much as the Shuttle. ( SpaceX press release, July 13, 2017.)
  • The Solar Impulse 2 flew 40,000 Km without fuel. The 3,257-pound solar plane used sandwiched carbon fiber and honey-combed alveolate foam for the fuselage, cockpit and wing spars.

So you see, reduction in weight can have lasting affects for just about every person and some pieces of hardware.   Let’s you and I get it off.

DISTRACTIONS

October 18, 2017


Is there anyone in the United States who does NOT use our road systems on a daily basis?  Only senior citizens in medical facilities and those unfortunate enough to have health problems stay off the roads.  I have a daily commute of approximately thirty-seven (37) miles, one way, and you would not believe what I see.  Then again, maybe you would.  You’ve been there, done that, got the “T” shirt.

It’s no surprise to learn that information systems cause driver distraction, but recent news from the AAA Foundation for Traffic Safety indicated the problem may be worse than we thought. A study released by the organization showed that the majority of today’s information technologies are complex, frustrating, and maybe even dangerous to use. Working with researchers from the University of Utah, AAA analyzed the systems in thirty (30) vehicles, rating them on how much visual and cognitive demand they placed on drivers. The conclusion: None of the thirty-produced low demand. Twenty-three (23) of the systems generated “high” or “very high” demand.

“Removing eyes from the road for just two seconds doubles the risk for a crash,” AAA wrote in a press release. “With one in three adults using the systems available while driving, AAA cautions that using these technologies while behind the wheel can have dangerous consequences.”

In the study, University of Utah researchers examined visual (eyes-on-the-road) and cognitive (mental) demands of each system, and looked at the time required to complete tasks. Tasks included the use of voice commands and touch screens to make calls, send texts, tune the radio and program navigation. And the results were uniformly disappointing—really disappointing.

We are going to look at the twelve (12) vehicles categorized by researchers as having “very high demand” information systems. The vehicles vary from entry-level to luxury and sedan to SUV, but they all share one common trait: AAA says the systems distract drivers.  This is to me very discouraging.  Here we go.

CONCLUSIONS:

I’m definitely NOT saying don’t buy these cars but it is worth knowing and compensating for when driving.

V2V TECHNOLOGY

September 9, 2017


You probably know this by now if you read my postings—my wife and I love to go to the movies.  I said GO TO THE MOVIES, not download movies but GO.  If you go to a matinée, and if you are senior, you get a reduced rate.  We do that. Normally a movie beginning at 4:00 P.M. will get you out by 6:00 or 6:30 P.M. Just in time for dinner. Coming from the Carmike Cinema on South Terrace, I looked left and slowly moved over to the inside lane—just in time to hit car in my “blind side”.  Low impact “touching” but never the less an accident anyway.  All cars, I’m told, have blind sides and ours certainly does.  Side mirrors do NOT cover all areas to the left and right of any vehicle.   Maybe there is a looming solution to that dilemma.

V2V:

The global automotive industry seems poised and on the brink of a “Brave New World” in which connectivity and sensor technologies come together to create systems that can eliminate life-threatening collisions and enable automobiles that drive themselves.  Knows as Cooperative Intelligent Transportation Systems, vehicle-to-vehicle or V2V technologies open the door for automobiles to share information and interact with each other, as well as emerging smart infrastructure. These systems, obviously, make transportation safer but offer the promise of reducing traffic congestion.

Smart features of V2V promise to enhance drive awareness via traffic alerts, providing notifications on congestion, obstacles, lane changing, traffic merging and railway crossing alerts.  Additional applications include:

  • Blind spot warnings
  • Forward collision warnings
  • Sudden brake-ahead warnings
  • Approaching emergency vehicle warnings
  • Rollover warnings
  • Travel condition data to improve maintenance services.

Already The Department of Transportation “Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application”, DOT HS 812 014, details the technology as follows:

“The purpose of this research report is to assess the readiness for application of vehicle-to-vehicle (V2V) communications, a system designed to transmit basic safety information between vehicles to facilitate warnings to drivers concerning impending crashes. The United States Department of Transportation and NHTSA have been conducting research on this technology for more than a decade. This report explores technical, legal, and policy issues relevant to V2V, analyzing the research conducted thus far, the technological solutions available for addressing the safety problems identified by the agency, the policy implications of those technological solutions, legal authority and legal issues such as liability and privacy. Using this report and other available information, decision-makers will determine how to proceed with additional activities involving vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-pedestrian (V2P) technologies.”

The agency estimates there are approximately five (5) million annual vehicle crashes, with attendant property damage, injuries, and fatalities. While it may seem obvious, if technology can help drivers avoid crashes, the damage due to crashes simply never occurs.  This is the intent of an operative V2V automotive system. While these “vehicle-resident” crash avoidance technologies can be highly beneficial, V2V communications represent an additional step in helping to warn drivers about impending danger. V2V communications use on-board dedicated short-range radio communication devices to transmit messages about a vehicle’s speed, heading, brake status, and other information to other vehicles and receive the same information from the messages, with range and “line-of-sight” capabilities that exceed current and near-term “vehicle-resident” systems — in some cases, nearly twice the range. This longer detection distance and ability to “see” around corners or “through” other vehicles and helps V2V-equipped vehicles perceive some threats sooner than sensors, cameras, or radar.  This can warn drivers accordingly. V2V technology can also be fused with those vehicle-resident technologies to provide even greater benefits than either approach alone. V2V can augment vehicle-resident systems by acting as a complete system, extending the ability of the overall safety system to address other crash scenarios not covered by V2V communications, such as lane and road departure. A fused system could also augment system accuracy, potentially leading to improved warning timing and reducing the number of false warnings.

Communications represent the keystone of V2V systems.  The current technology builds upon a wireless standard called Dedicated Shor- Range Communication or DSRC.  DSRC is based upon the IEEE 802.11p protocol.  Transmissions of these systems consists of highly secure, short-to-medium-range, high-speed wireless communication channels, which enable vehicles to connect with each other for short periods of time.  Using DSRC, two or more vehicles can exchange basic safety messages, which describe each vehicle’s speed, position, heading, acceleration rate, size and braking status.  The system sends these messages to the onboard units of surrounding vehicles ten (10) times per second, where they are interpreted and provide warnings to the driver.  To achieve this, V2V systems leverage telematics to track vehicles via GPS monitoring the location, movements, behavior and status of each vehicle.

Based on preliminary information, NHTSA currently estimates that the V2V equipment and supporting communications functions (including a security management system) would cost approximately $341 to $350 per vehicle in 2020 dollars. It is possible that the cost could decrease to approximately $209 to $227 by 2058, as manufacturers gain experience producing this equipment (the learning curve). These costs would also include an additional $9 to $18 per year in fuel costs due to added vehicle weight from the V2V system. Estimated costs for the security management system range from $1 to $6 per vehicle, and they will increase over time due to the need to support an increasing number of vehicles with the V2V technologies. The communications costs range from $3 to $13 per vehicle. Cost estimates are not expected to change significantly by the inclusion of V2V-based safety applications, since the applications themselves are software and their costs are negligible.  Based on preliminary estimates, the total projected preliminary annual costs of the V2V system fluctuate year after year but generally show a declining trend. The estimated total annual costs range from $0.3 to $2.1 billion in 2020 with the specific costs being dependent upon the technology implementation scenarios and discount rates. The costs peak to $1.1 to $6.4 billion between 2022 and 2024, and then they gradually decrease to $1.1 to $4.6 billion.

In terms of safety impacts, the agency estimates annually that just two of many possible V2V safety applications, IMA (Integrated Motor Assists) and LTA (Land Transport Authority), would on an annual basis potentially prevent 25,000 to 592,000 crashes, save 49 to 1,083 lives, avoid 11,000 to 270,000 MAIS 1-5 injuries, and reduce 31,000 to 728,000 property-damage-only crashes by the time V2V technology had spread through the entire fleet. We chose those two applications for analysis at this stage because they are good illustrations of benefits that V2V can provide above and beyond the safety benefits of vehicle-resident cameras and sensors. Of course, the number of lives potentially saved would likely increase significantly with the implementation of additional V2V and V2I safety applications that would be enabled if vehicles were equipped with DSRC capability.

CONCLUSIONS: 

It is apparent to me that we are driving (pardon the pun) towards self-driving automobiles. I have no idea as to when this technology will become fully adopted, if ever.  If that happens in part or across the vehicle spectrum, there will need to be some form of V2V. One car definitely needs to know where other cars are relative to position, speed, acceleration, and overall movement. My wife NEVER goes to sleep or naps while I’m driving—OK maybe one time as mentioned previously.  She is always remarkably attentive and aware when I’m behind the wheel.  This comes from experience gained over fifty-two years of marriage.  “The times they are a-changing”.   The great concern I have is how we are to maintain the systems and how “hackable” they may become.  As I awoke this morning, I read the following:

The credit reporting agency Equifax said Thursday that hackers gained access to sensitive personal data — Social Security numbers, birth dates and home addresses — for up to 143 million Americans, a major cybersecurity breach at a firm that serves as one of the three major clearinghouses for Americans’ credit histories.

I am sure, like me, that gives you pause.  If hackers can do that, just think about the chaos that can occur if V2V systems can be accessed and controlled.  Talk about keeping one up at night.

As always, I welcome your comments.


Portions of this post were taken from Design News Daily publication written by Chris Witz, August 2017.

I generally don’t “do” politics but recent activity relative to the Federal Jobs Initiative program have fallen upon hard times.  President Donald Trump has decided to disband the council of his Manufacturing Jobs Initiative. The announcement came Wednesday morning, after a significant exodus of council membership.  This exodus was in response to the President’s comments regarding a recent white supremacist protest in Charlottesville, VA.  By Tweet, the president said:

Rather than putting pressure on the businesspeople of the Manufacturing Council & Strategy & Policy Forum, I am ending both. Thank you all!

— Donald J. Trump (@realDonaldTrump) August 16, 2017

I personally was very surprised by his reaction to several members pulling out of his committee and wonder if there was not more to ending the activities than meets the eye.

The members counseling President Trump were:

Brian Krzanich—CEO Intel

Ken Frazier—CEO Merk & Company

Kevin Plank—CEO UnderArmour

Elon Musk—CEO of SpaceX and Tesla

Bob Iger—CEO of Disney

Travis Kalanick—Former CEO of Uber

Scott Paul—President, Alliance for American Manufacturing

Richard Trumka—President, AFL-CIO

Inge Thulin—CEO 3M

Jamie Dimon—CEO of JPMorganChase

Steven Schwarzman—CEO of Blackstone

Rich Lesser—CEO of Boston Consulting Group

Doug McMillon—CEO of Walmart

Indra Nooyi—CEO and Chairperson of PepsiCo

Ginni Rometty—President and CEO of IBM

Jack Welch—Former CEO of General Electric Company

Toby Cosgrove—CEO of the Cleveland Clinic

Mary Barra—President and CEO of General Motors

Kevin Warsh—Fellow at the Hoover Institute

Paul Atkins– CEO of Patomak Global Partners LLC

Mark Weinberger– Global chairman and CEO, EY

Jim McNerney– Former chairman, president and CEO, Boeing

Adebayo Ogunlesi– Chairman, managing partner, Global Infrastructure Partners

Phillip Howard– Lawyer, Covington; founder of Common Good

Larry Fink—CEO of BlackRock

Matt Rose– Executive chairman, BNSF Railway

Andrew Liveris– Chairman, CEO, The Dow Chemical Company

Bill Brown—CEO, Harris Corporation

Michael Dell—CEO, Dell Technologies

John Ferriola– Chairman, president, CEO, Nucor Corporation

Jeff Fettig– Chairman, former CEO, Whirlpool Corporation

Alex Gorsky– Chairman, CEO, Johnson & Johnson

Greg Hayes– Chairman, CEO, United Technologies Corp

Marillyn Hewson– Chairman, president, CEO, Lockheed Martin Corporation

Jim Kamsickas– President, CEO, Dana Inc

Rich Kyle– President, CEO, The Timken Company

Jeff Immelt– Chairman, former CEO, General Electric

Denise Morrison– President, CEO, Campbell Soup Company

Dennis Muilenburg– Chairman, president, CEO, Boeing

Michael Polk– CEO, Newell Brands

Mark Sutton– Chairman, CEO, International Paper

Wendell Weeks—CEO, Corning

Mark Fields– Former CEO, Ford Motor Company

Mario Longhi– Former CEO, U.S. Steel

Doug Oberhelman– Former CEO, Caterpillar

Klaus Kleinfeld– Former Chairman, CEO, Arconic

I think we can all agree; this group of individuals are “BIG HITTERS”.  People on top of their game.  In looking at the list, I was very surprised at the diversity of products they represent.

As of Wednesday, members departing the committee are as follows:   Kenneth Frazier, CEO of pharmaceutical company Merck; Under Armour CEO Kevin Plank; Scott Paul, the president of the Alliance for American Manufacturing; Richard Trumka, of the AFL-CIO, along with Thea Lee, the AFL-CIO’s deputy chief of staff; 3M CEO Inge Thulin; and Intel CEO Brian Krzanich.

In a blog post , Intel’s Krzanich explained his departure, saying:

“I resigned to call attention to the serious harm our divided political climate is causing to critical issues, including the serious need to address the decline of American manufacturing. Politics and political agendas have sidelined the important mission of rebuilding America’s manufacturing base. … I am not a politician. I am an engineer who has spent most of his career working in factories that manufacture the world’s most advanced devices. Yet, it is clear even to me that nearly every issue is now politicized to the point where significant progress is impossible. Promoting American manufacturing should not be a political issue.”

Under Armour’s Plank, echoed Krzanich’s sentiment, expressing a desire to focus on technological innovation over political entanglements. In a statement released by Under Amour, Plank said,

“We remain resolute in our potential and ability to improve American manufacturing. However, Under Armour engages in innovation and sports, not politics …” In the past year Under Armour has gained attention for applying 3D printing techniques to shoe design and manufacturing.

Paul, of the Alliance of American Manufacturing, tweeted about his departure, saying, “… it’s the right thing to do.”

I’m resigning from the Manufacturing Jobs Initiative because it’s the right thing for me to do.

— Scott Paul (@ScottPaulAAM) August 15, 2017

President Trump’s Manufacturing Jobs Initiative, first announced back in January, was supposed to be a think tank, bringing together the most prominent business leaders in American manufacturing to tackle the problem of creating job growth in the manufacturing sector. At its inception the council boasted CEOs from companies including Tesla, Ford, Dow Chemical, Dell, Lockheed-Martin, and General Electric among its 28 members. However, over the course of the year the council had been steadily dwindling, with the largest exodus coming this week.

The first major blow to the council’s membership came in June when Tesla CEO Elon Musk resigned from the council in response to President Trump pulling out of the Paris climate accord. Musk, a known environmentalist , tweeted:

Am departing presidential councils. Climate change is real. Leaving Paris is not good for America or the world.

— Elon Musk (@elonmusk) June 1, 2017

At that same conference, when asked why he believed CEOs were leaving the manufacturing council, the President accused members of the council of being at odds with his plans to re-shore more jobs back to the US:

“Because [these CEOs] are not taking their job seriously as it pertains to this country. We want jobs, manufacturing in this country. If you look at some of those people that you’re talking about, they’re outside of the country. … We want products made in the country. Now, I have to tell you, some of the folks that will leave, they are leaving out of embarrassment because they make their products outside and I’ve been lecturing them … about you have to bring it back to this country. You can’t do it necessarily in Ireland and all of these other places. You have to bring this work back to this country. That’s what I want. I want manufacturing to be back into the United States so that American workers can benefit.”

Symbolic or Impactful?

It is unclear whether the dissolution of the manufacturing council will have an impact on Trump’s efforts to grow jobs in the US manufacturing sector. Some analysts have called the council little more than a symbolic gesture that was unlikely to have had any long-term impact on American manufacturing to begin with. Other analysts have credit Trump as a driving factor behind a spike in re-shoring in 2017. However other factors including labor costs and lack of skilled workers overseas are also playing a significant role as more advanced technologies in industries such as automotive and electronics hit the market.

CONCLUSIONS:

I personally regret the dissolution of the committee.  I think, given the proper leadership, they could have been very helpful regarding suggestions as to how to create and/or bring back jobs to our country.  In my opinion, President Trump simply did not have the leadership ability to hold the group together.  His actions over the past few months, beginning with leaving the Paris Climate Accord, simply gave them the excuse to leave the committee.  They simply flaked out.

As always, I welcome your comments.


One of the best things the automotive industry accomplishes is showing us what might be in our future.  They all have the finances, creative talent and vision to provide a glimpse into their “wish list” for upcoming vehicles.  Mercedes Benz has done just that with their futuristic F 015 Luxury in Motion.

In order to provide a foundation for the new autonomous F 015 Luxury in Motion research vehicle, an interdisciplinary team of experts from Mercedes-Benz has devised a scenario that incorporates different aspects of day-to-day mobility. Above and beyond its mobility function, this scenario perceives the motor car as a private retreat that additionally offers an important added value for society at large. (I like the word retreat.) If you take a look at how much time the “average” individual spends in his or her automobile or truck, we see the following:

  • On average, Americans drive 29.2 miles per day, making two trips with an average total duration of forty-six (46) minutes. This and other revealing data are the result of a ground-breaking study currently underway by the AAA Foundation for Traffic Safety and the Urban Institute.
  • Motorists age sixteen (16) years and older drive, on average, 29.2 miles per day or 10,658 miles per year.
  • Women take more driving trips, but men spend twenty-five (25) percent more time behind the wheel and drive thirty-five (35) percent more miles than women.
  • Both teenagers and seniors over the age of seventy-five (75) drive less than any other age group; motorists 30-49 years old drive an average 13,140 miles annually, more than any other age group.
  • The average distance and time spent driving increase in relation to higher levels of education. A driver with a grade school or some high school education drove an average of 19.9 miles and 32 minutes daily, while a college graduate drove an average of 37.2 miles and 58 minutes.
  • Drivers who reported living “in the country” or “a small town” drive greater distances (12,264 miles annually) and spend a greater amount of time driving than people who described living in a “medium sized town” or city (9,709 miles annually).
  • Motorists in the South drive the most (11,826 miles annually), while those in the Northeast drive the least (8,468 miles annually).

With this being the case, why not enjoy it?

The F 015 made its debut at the Consumer Electronics Show in Las Vegas more than two years ago. It’s packed with advanced (or what was considered advanced in 2015) autonomous technology, and can, in theory, run for almost 900 kilometers on a mixture of pure electric power and a hydrogen fuel cell.

But while countless other vehicles are still trying to prove that cars can, literally, drive themselves, the Mercedes-Benz offering takes this for granted. Instead, this vehicle wants us to consider what we’ll actually do while the car is driving us around.

The steering wheel slides into the dashboard to create more of a “lounge” space. The seating configuration allows four people to face each other if they want to talk. And when the onboard conversation dries up, a bewildering collection of screens — one on the rear wall, and one on each of the doors — offers plenty of opportunity to interact with various media.

The F 015 could have done all of this as a flash-in-the-pan show car — seen at a couple of major events before vanishing without trace. But in fact, it has been touring almost constantly since that Vegas debut.

“Anyone who focuses solely on the technology has not yet grasped how autonomous driving will change our society,” emphasizes Dr Dieter Zetsche, Chairman of the Board of Management of Daimler AG and Head of Mercedes-Benz Cars. “The car is growing beyond its role as a mere means of transport and will ultimately become a mobile living space.”

The visionary research vehicle was born, a vehicle which raises comfort and luxury to a new level by offering a maximum of space and a lounge character on the inside. Every facet of the F 015 Luxury in Motion is the utmost reflection of the Mercedes way of interpreting the terms “modern luxury”, emotion and intelligence.

This innovative four-seater is a forerunner of a mobility revolution, and this is immediately apparent from its futuristic appearance. Sensuousness and clarity, the core elements of the Mercedes-Benz design philosophy, combine to create a unique, progressive aesthetic appeal.

OK, with this being the case, let us now take a pictorial look at what the “Benz” has to offer.

One look and you can see the car is definitely aerodynamic in styling.  I am very sure that much time has been spent with this “ride” in wind tunnels with slip streams being monitored carefully.  That is where drag coefficients are determined initially.

The two JPEGs above indicate the front and rear swept glass windshields that definitely reduce induced drag.

The interiors are the most striking feature of this automobile.

Please note, this version is a four-seater but with plenty of leg-room.

Each occupant has a touch screen, presumably for accessing wireless or the Internet.  One thing, as yet there is no published list price for the car.  I’m sure that is being considered at this time but no USD numbers to date.  Also, as mentioned the car is self-driving so that brings on added complexities.  By design, this vehicle is a moving computer.  It has to be.  I am always very interested in maintenance and training necessary to diagnose and repair a vehicle such as this.  Infrastructure MUST be in place to facilitate quick turnaround when trouble arises–both mechanical and electrical.

As always, I welcome your comments.

VOLVO ANNOUNCEMENT

July 7, 2017


Certain portions of this post were taken from Mr. Chris Wiltz writing for Design News Daily.

I don’t know if you are familiar with the VOLVO line of automobiles but for years the brand has been known for safety and durability.  My wife drives a 2005 VOLVO S-40 with great satisfaction relative to reliability and cost of maintenance.  The S-40 has about 150,000 miles on the odometer and continues to run like a Singer Sewing Machine.   The “boxy, smoking diesel” VOLVO of years-gone-by has been replaced by a very sleek aerodynamic configuration representing significant improvements in design and styling.  You can take a look at the next two digitals to see where they are inside and out.

As you can see from the JPEG above, the styling is definitely twenty-first century with agreeable slip-stream considerations in mind.

The interior is state-of-the art with all the whistles and bells necessary to attract the most discerning buyer.

Volvo announced this past Tuesday that starting in 2019 it will only make fully electric or hybrid cars.  “This announcement marks the end of the solely combustion engine-powered car,” Håkan Samuelsson, Volvo’s president and chief executive, said in a statement.  The move is a significant bet by the carmaker indicating they feel the age of the internal-combustion engine is quickly coming to an end.  Right now, the Gothenburg, Sweden-based automaker is lone among the world’s major automakers to move so aggressively into electric or hybrid cars. Volvo sold around half a million cars last year, significantly less than the world’s largest car companies such as Toyota, Volkswagen, and GM, but far greater than the 76,000 sold by Tesla, the all-electric carmaker.

Every car it produces from 2019 forward will have an electric motor.   Håkan Samuelsson indicated there has been a clear increase in consumer demand as well as a “commitment towards reducing the carbon footprint thereby contributing to better air quality in our cities.”  The Swedish automaker will cease production of pure internal combustion engine (ICE) vehicles and will not plan any new developments into diesel engines.

The company will begin producing three levels of electric vehicles (mild, Twin Engine, and fully electric) and has committed to commercializing one million Twin Engine or all-electric cars until 2025.   Between 2019 and 2021 Volvo plans to launch five fully electric cars, three of which will be Volvo models and two that will be high performance electric vehicles from Polestar, Volvo’s performance car division. Samuelsson said all of these electric vehicles will be new models and not necessarily new stylings of existing Volvo models.

Technical details on the vehicles were sparse during a press conference held by Volvo, but the company did offer information about its three electric vehicle tiers. The mild electric vehicles, which Volvo views as a stepping stone away from ICEs, will feature a forty-eight (48) volt system featuring a battery in conjunction with a complex system functioning as a starter, generator, and electric motor.   Twin Engine will be a plug-in hybrid system. During the press conference Henrik Green, Senior VP of R&D at Volvo, said the company will be striving to provide a “very competitive range” with these new vehicles, which will be available in medium range and long range – at least up to 500 kilometers (about 311 miles) on a single charge. Green said Volvo has not yet settled on a battery supplier, but said the company is looking at all available suppliers for the best option.  “When it comes to batteries of course it’s a highly competitive and important component in all the future pure battery electric vehicles,” he said. Samuelsson added that this should also be taken as an invitation for more companies to invest in battery research and development. “We need new players and competition in battery manufacturing,” Samuelsson said.

This new announcement represents a dramatic shift in point of view for Volvo. Back in 2014 Samuelsson said the company didn’t believe in all-electric vehicles and said that hybrids were the way forward. Why the change of heart? Samuelsson told the press conference audience that Volvo was initially skeptical about the cost level of batteries and the lack of infrastructure to for recharging electric cars. “Things have moved faster, costumer demand has increased, battery costs have come down and there is movement now in charging infrastructure,” he said.

Top of Form

VOLVO did not unveil any details on vehicle costs. However, earlier reports from the Geneva Motor Show in March quoted Lex Kerssemakers , CEO of Volvo Car USA, as saying that the company’s first all-electric vehicle would have a range of at least 250 miles and price point of between 35,000 and $40,000 when it is released in 2019.

I think this is a fascinating step on the part of VOLVO.  They are placing all of their money on environmental efforts to reduce emissions.  I think that is very commendable.  Hopefully their vision for the future improves their brand and does not harm their sales efforts.

%d bloggers like this: