Portions of this post were taken from Design News Daily publication written by Chris Witz, August 2017.

I generally don’t “do” politics but recent activity relative to the Federal Jobs Initiative program have fallen upon hard times.  President Donald Trump has decided to disband the council of his Manufacturing Jobs Initiative. The announcement came Wednesday morning, after a significant exodus of council membership.  This exodus was in response to the President’s comments regarding a recent white supremacist protest in Charlottesville, VA.  By Tweet, the president said:

Rather than putting pressure on the businesspeople of the Manufacturing Council & Strategy & Policy Forum, I am ending both. Thank you all!

— Donald J. Trump (@realDonaldTrump) August 16, 2017

I personally was very surprised by his reaction to several members pulling out of his committee and wonder if there was not more to ending the activities than meets the eye.

The members counseling President Trump were:

Brian Krzanich—CEO Intel

Ken Frazier—CEO Merk & Company

Kevin Plank—CEO UnderArmour

Elon Musk—CEO of SpaceX and Tesla

Bob Iger—CEO of Disney

Travis Kalanick—Former CEO of Uber

Scott Paul—President, Alliance for American Manufacturing

Richard Trumka—President, AFL-CIO

Inge Thulin—CEO 3M

Jamie Dimon—CEO of JPMorganChase

Steven Schwarzman—CEO of Blackstone

Rich Lesser—CEO of Boston Consulting Group

Doug McMillon—CEO of Walmart

Indra Nooyi—CEO and Chairperson of PepsiCo

Ginni Rometty—President and CEO of IBM

Jack Welch—Former CEO of General Electric Company

Toby Cosgrove—CEO of the Cleveland Clinic

Mary Barra—President and CEO of General Motors

Kevin Warsh—Fellow at the Hoover Institute

Paul Atkins– CEO of Patomak Global Partners LLC

Mark Weinberger– Global chairman and CEO, EY

Jim McNerney– Former chairman, president and CEO, Boeing

Adebayo Ogunlesi– Chairman, managing partner, Global Infrastructure Partners

Phillip Howard– Lawyer, Covington; founder of Common Good

Larry Fink—CEO of BlackRock

Matt Rose– Executive chairman, BNSF Railway

Andrew Liveris– Chairman, CEO, The Dow Chemical Company

Bill Brown—CEO, Harris Corporation

Michael Dell—CEO, Dell Technologies

John Ferriola– Chairman, president, CEO, Nucor Corporation

Jeff Fettig– Chairman, former CEO, Whirlpool Corporation

Alex Gorsky– Chairman, CEO, Johnson & Johnson

Greg Hayes– Chairman, CEO, United Technologies Corp

Marillyn Hewson– Chairman, president, CEO, Lockheed Martin Corporation

Jim Kamsickas– President, CEO, Dana Inc

Rich Kyle– President, CEO, The Timken Company

Jeff Immelt– Chairman, former CEO, General Electric

Denise Morrison– President, CEO, Campbell Soup Company

Dennis Muilenburg– Chairman, president, CEO, Boeing

Michael Polk– CEO, Newell Brands

Mark Sutton– Chairman, CEO, International Paper

Wendell Weeks—CEO, Corning

Mark Fields– Former CEO, Ford Motor Company

Mario Longhi– Former CEO, U.S. Steel

Doug Oberhelman– Former CEO, Caterpillar

Klaus Kleinfeld– Former Chairman, CEO, Arconic

I think we can all agree; this group of individuals are “BIG HITTERS”.  People on top of their game.  In looking at the list, I was very surprised at the diversity of products they represent.

As of Wednesday, members departing the committee are as follows:   Kenneth Frazier, CEO of pharmaceutical company Merck; Under Armour CEO Kevin Plank; Scott Paul, the president of the Alliance for American Manufacturing; Richard Trumka, of the AFL-CIO, along with Thea Lee, the AFL-CIO’s deputy chief of staff; 3M CEO Inge Thulin; and Intel CEO Brian Krzanich.

In a blog post , Intel’s Krzanich explained his departure, saying:

“I resigned to call attention to the serious harm our divided political climate is causing to critical issues, including the serious need to address the decline of American manufacturing. Politics and political agendas have sidelined the important mission of rebuilding America’s manufacturing base. … I am not a politician. I am an engineer who has spent most of his career working in factories that manufacture the world’s most advanced devices. Yet, it is clear even to me that nearly every issue is now politicized to the point where significant progress is impossible. Promoting American manufacturing should not be a political issue.”

Under Armour’s Plank, echoed Krzanich’s sentiment, expressing a desire to focus on technological innovation over political entanglements. In a statement released by Under Amour, Plank said,

“We remain resolute in our potential and ability to improve American manufacturing. However, Under Armour engages in innovation and sports, not politics …” In the past year Under Armour has gained attention for applying 3D printing techniques to shoe design and manufacturing.

Paul, of the Alliance of American Manufacturing, tweeted about his departure, saying, “… it’s the right thing to do.”

I’m resigning from the Manufacturing Jobs Initiative because it’s the right thing for me to do.

— Scott Paul (@ScottPaulAAM) August 15, 2017

President Trump’s Manufacturing Jobs Initiative, first announced back in January, was supposed to be a think tank, bringing together the most prominent business leaders in American manufacturing to tackle the problem of creating job growth in the manufacturing sector. At its inception the council boasted CEOs from companies including Tesla, Ford, Dow Chemical, Dell, Lockheed-Martin, and General Electric among its 28 members. However, over the course of the year the council had been steadily dwindling, with the largest exodus coming this week.

The first major blow to the council’s membership came in June when Tesla CEO Elon Musk resigned from the council in response to President Trump pulling out of the Paris climate accord. Musk, a known environmentalist , tweeted:

Am departing presidential councils. Climate change is real. Leaving Paris is not good for America or the world.

— Elon Musk (@elonmusk) June 1, 2017

At that same conference, when asked why he believed CEOs were leaving the manufacturing council, the President accused members of the council of being at odds with his plans to re-shore more jobs back to the US:

“Because [these CEOs] are not taking their job seriously as it pertains to this country. We want jobs, manufacturing in this country. If you look at some of those people that you’re talking about, they’re outside of the country. … We want products made in the country. Now, I have to tell you, some of the folks that will leave, they are leaving out of embarrassment because they make their products outside and I’ve been lecturing them … about you have to bring it back to this country. You can’t do it necessarily in Ireland and all of these other places. You have to bring this work back to this country. That’s what I want. I want manufacturing to be back into the United States so that American workers can benefit.”

Symbolic or Impactful?

It is unclear whether the dissolution of the manufacturing council will have an impact on Trump’s efforts to grow jobs in the US manufacturing sector. Some analysts have called the council little more than a symbolic gesture that was unlikely to have had any long-term impact on American manufacturing to begin with. Other analysts have credit Trump as a driving factor behind a spike in re-shoring in 2017. However other factors including labor costs and lack of skilled workers overseas are also playing a significant role as more advanced technologies in industries such as automotive and electronics hit the market.

CONCLUSIONS:

I personally regret the dissolution of the committee.  I think, given the proper leadership, they could have been very helpful regarding suggestions as to how to create and/or bring back jobs to our country.  In my opinion, President Trump simply did not have the leadership ability to hold the group together.  His actions over the past few months, beginning with leaving the Paris Climate Accord, simply gave them the excuse to leave the committee.  They simply flaked out.

As always, I welcome your comments.


One of the best things the automotive industry accomplishes is showing us what might be in our future.  They all have the finances, creative talent and vision to provide a glimpse into their “wish list” for upcoming vehicles.  Mercedes Benz has done just that with their futuristic F 015 Luxury in Motion.

In order to provide a foundation for the new autonomous F 015 Luxury in Motion research vehicle, an interdisciplinary team of experts from Mercedes-Benz has devised a scenario that incorporates different aspects of day-to-day mobility. Above and beyond its mobility function, this scenario perceives the motor car as a private retreat that additionally offers an important added value for society at large. (I like the word retreat.) If you take a look at how much time the “average” individual spends in his or her automobile or truck, we see the following:

  • On average, Americans drive 29.2 miles per day, making two trips with an average total duration of forty-six (46) minutes. This and other revealing data are the result of a ground-breaking study currently underway by the AAA Foundation for Traffic Safety and the Urban Institute.
  • Motorists age sixteen (16) years and older drive, on average, 29.2 miles per day or 10,658 miles per year.
  • Women take more driving trips, but men spend twenty-five (25) percent more time behind the wheel and drive thirty-five (35) percent more miles than women.
  • Both teenagers and seniors over the age of seventy-five (75) drive less than any other age group; motorists 30-49 years old drive an average 13,140 miles annually, more than any other age group.
  • The average distance and time spent driving increase in relation to higher levels of education. A driver with a grade school or some high school education drove an average of 19.9 miles and 32 minutes daily, while a college graduate drove an average of 37.2 miles and 58 minutes.
  • Drivers who reported living “in the country” or “a small town” drive greater distances (12,264 miles annually) and spend a greater amount of time driving than people who described living in a “medium sized town” or city (9,709 miles annually).
  • Motorists in the South drive the most (11,826 miles annually), while those in the Northeast drive the least (8,468 miles annually).

With this being the case, why not enjoy it?

The F 015 made its debut at the Consumer Electronics Show in Las Vegas more than two years ago. It’s packed with advanced (or what was considered advanced in 2015) autonomous technology, and can, in theory, run for almost 900 kilometers on a mixture of pure electric power and a hydrogen fuel cell.

But while countless other vehicles are still trying to prove that cars can, literally, drive themselves, the Mercedes-Benz offering takes this for granted. Instead, this vehicle wants us to consider what we’ll actually do while the car is driving us around.

The steering wheel slides into the dashboard to create more of a “lounge” space. The seating configuration allows four people to face each other if they want to talk. And when the onboard conversation dries up, a bewildering collection of screens — one on the rear wall, and one on each of the doors — offers plenty of opportunity to interact with various media.

The F 015 could have done all of this as a flash-in-the-pan show car — seen at a couple of major events before vanishing without trace. But in fact, it has been touring almost constantly since that Vegas debut.

“Anyone who focuses solely on the technology has not yet grasped how autonomous driving will change our society,” emphasizes Dr Dieter Zetsche, Chairman of the Board of Management of Daimler AG and Head of Mercedes-Benz Cars. “The car is growing beyond its role as a mere means of transport and will ultimately become a mobile living space.”

The visionary research vehicle was born, a vehicle which raises comfort and luxury to a new level by offering a maximum of space and a lounge character on the inside. Every facet of the F 015 Luxury in Motion is the utmost reflection of the Mercedes way of interpreting the terms “modern luxury”, emotion and intelligence.

This innovative four-seater is a forerunner of a mobility revolution, and this is immediately apparent from its futuristic appearance. Sensuousness and clarity, the core elements of the Mercedes-Benz design philosophy, combine to create a unique, progressive aesthetic appeal.

OK, with this being the case, let us now take a pictorial look at what the “Benz” has to offer.

One look and you can see the car is definitely aerodynamic in styling.  I am very sure that much time has been spent with this “ride” in wind tunnels with slip streams being monitored carefully.  That is where drag coefficients are determined initially.

The two JPEGs above indicate the front and rear swept glass windshields that definitely reduce induced drag.

The interiors are the most striking feature of this automobile.

Please note, this version is a four-seater but with plenty of leg-room.

Each occupant has a touch screen, presumably for accessing wireless or the Internet.  One thing, as yet there is no published list price for the car.  I’m sure that is being considered at this time but no USD numbers to date.  Also, as mentioned the car is self-driving so that brings on added complexities.  By design, this vehicle is a moving computer.  It has to be.  I am always very interested in maintenance and training necessary to diagnose and repair a vehicle such as this.  Infrastructure MUST be in place to facilitate quick turnaround when trouble arises–both mechanical and electrical.

As always, I welcome your comments.

VOLVO ANNOUNCEMENT

July 7, 2017


Certain portions of this post were taken from Mr. Chris Wiltz writing for Design News Daily.

I don’t know if you are familiar with the VOLVO line of automobiles but for years the brand has been known for safety and durability.  My wife drives a 2005 VOLVO S-40 with great satisfaction relative to reliability and cost of maintenance.  The S-40 has about 150,000 miles on the odometer and continues to run like a Singer Sewing Machine.   The “boxy, smoking diesel” VOLVO of years-gone-by has been replaced by a very sleek aerodynamic configuration representing significant improvements in design and styling.  You can take a look at the next two digitals to see where they are inside and out.

As you can see from the JPEG above, the styling is definitely twenty-first century with agreeable slip-stream considerations in mind.

The interior is state-of-the art with all the whistles and bells necessary to attract the most discerning buyer.

Volvo announced this past Tuesday that starting in 2019 it will only make fully electric or hybrid cars.  “This announcement marks the end of the solely combustion engine-powered car,” Håkan Samuelsson, Volvo’s president and chief executive, said in a statement.  The move is a significant bet by the carmaker indicating they feel the age of the internal-combustion engine is quickly coming to an end.  Right now, the Gothenburg, Sweden-based automaker is lone among the world’s major automakers to move so aggressively into electric or hybrid cars. Volvo sold around half a million cars last year, significantly less than the world’s largest car companies such as Toyota, Volkswagen, and GM, but far greater than the 76,000 sold by Tesla, the all-electric carmaker.

Every car it produces from 2019 forward will have an electric motor.   Håkan Samuelsson indicated there has been a clear increase in consumer demand as well as a “commitment towards reducing the carbon footprint thereby contributing to better air quality in our cities.”  The Swedish automaker will cease production of pure internal combustion engine (ICE) vehicles and will not plan any new developments into diesel engines.

The company will begin producing three levels of electric vehicles (mild, Twin Engine, and fully electric) and has committed to commercializing one million Twin Engine or all-electric cars until 2025.   Between 2019 and 2021 Volvo plans to launch five fully electric cars, three of which will be Volvo models and two that will be high performance electric vehicles from Polestar, Volvo’s performance car division. Samuelsson said all of these electric vehicles will be new models and not necessarily new stylings of existing Volvo models.

Technical details on the vehicles were sparse during a press conference held by Volvo, but the company did offer information about its three electric vehicle tiers. The mild electric vehicles, which Volvo views as a stepping stone away from ICEs, will feature a forty-eight (48) volt system featuring a battery in conjunction with a complex system functioning as a starter, generator, and electric motor.   Twin Engine will be a plug-in hybrid system. During the press conference Henrik Green, Senior VP of R&D at Volvo, said the company will be striving to provide a “very competitive range” with these new vehicles, which will be available in medium range and long range – at least up to 500 kilometers (about 311 miles) on a single charge. Green said Volvo has not yet settled on a battery supplier, but said the company is looking at all available suppliers for the best option.  “When it comes to batteries of course it’s a highly competitive and important component in all the future pure battery electric vehicles,” he said. Samuelsson added that this should also be taken as an invitation for more companies to invest in battery research and development. “We need new players and competition in battery manufacturing,” Samuelsson said.

This new announcement represents a dramatic shift in point of view for Volvo. Back in 2014 Samuelsson said the company didn’t believe in all-electric vehicles and said that hybrids were the way forward. Why the change of heart? Samuelsson told the press conference audience that Volvo was initially skeptical about the cost level of batteries and the lack of infrastructure to for recharging electric cars. “Things have moved faster, costumer demand has increased, battery costs have come down and there is movement now in charging infrastructure,” he said.

Top of Form

VOLVO did not unveil any details on vehicle costs. However, earlier reports from the Geneva Motor Show in March quoted Lex Kerssemakers , CEO of Volvo Car USA, as saying that the company’s first all-electric vehicle would have a range of at least 250 miles and price point of between 35,000 and $40,000 when it is released in 2019.

I think this is a fascinating step on the part of VOLVO.  They are placing all of their money on environmental efforts to reduce emissions.  I think that is very commendable.  Hopefully their vision for the future improves their brand and does not harm their sales efforts.


I know I’m spoiled.  I like to know that when I get behind the wheel, put the key in the ignition, start my vehicle, pull out of the driveway, etc. I can get to my destination without mechanical issues.  I think we all are basically there.  Now, to do that, you have to maintain your “ride”.  I have a 1999 Toyota Pre-runner with 308,000 plus miles. Every three thousand miles I have it serviced.  Too much you say?  Well, I do have 308K and it’s still humming like a Singer Sewing Machine.

Mr. Charles Murry has been following the automotive industry for over thirty years.  Mr. Murry is also a senior editor for Design News Daily Magazine.  Much of the information below results from his recent post on the TEN MOST UNRELIABLE VEHICLES.  Each year Consumer Reports receives over one-half million consumer surveys on reliability information relative to the vehicles they drive.  The story is not always not a good one.  Let’s take a look at what CU readers consider the must unreliable vehicles and why.

Please keep in mind this is a CU report based upon feedback from vehicle owners.  Please do not shoot the messenger.  As always, I welcome your comments and hope this help your buying research.


FACTS:

  • 707,758 motor vehicles were reported stolen in the United States in 2015, up three point one (3.1) percent from 2014, according to the FBI.
  • A motor vehicle was stolen in the United States every forty-five (45) seconds in 2015.
  • Eight of the top ten cities with the highest rate of vehicle theft in 2015 were in California, according to the National Insurance Crime Bureau.
  • Nationwide, the 2015 motor vehicle theft rate per 100,000 people was 220.2, up two point two (2.2) percent from 2015.2 in 2014. The highest rate was reported in the West, 371.5 or up eight point two (8.2) percent from 342.2 in 2014.
  • In 2015, only thirteen point one (13.1) percent of motor vehicle thefts were cleared, either by arrests or by exceptional mean, compared with 2014 percent for arson and nineteen point four (19.4) percent for all property crimes. Very disappointing statistics indeed.
  • Autos accounted for 74.7 percent of all motor vehicles stolen in 2015, trucks and buses accounted for 14.8 percent and other vehicles for 10.5 percent.

Given below are the cities in which most vehicles are stolen:

top-10-cities-for-stolen-vehicles

TOP TEN VEHICLES STOLEN:

The National Insurance Crime Bureau ranked the 10 most stolen vehicles in the country with data from the NCIC. Let’s take a look.  The actual numbers are in parentheses.

  1. Honda Accord (52,244)
  2. Honda Civic(49,430)
  3. Ford pickup (full size) (29,396)
  4. Chevrolet pickup (full size) (27,771)
  5. Toyota Camry (15,466)
  6. Ram pickup (full size) (11,212)
  7. Toyota Corolla(10,547)
  8. Nissan Altima (10,374)
  9. Dodge Caravan (9,798)
  10. Chevrolet Impala(9,225)

Automotive engineers continue to examine smartphone system and design to provide models for the development of an increasingly sophisticated user experience, with large center information displays and capacitive touchscreen being a good example.  Now designers are adding another smartphone feature, the fingerprint sensor to enhance modernization of the driver’s interface to functions in and beyond the automobile. This and other forms of biometric authentication, show great promise if implemented with sensitivity to user privacy and the extremes of the automotive operating environment.

BIOMETRICS:

Just what is the science of Biometrics?

Biometrics may be a fairly new term to some individuals so it is entirely appropriate at this time to define the technology.  This will lay the groundwork for the discussion to follow.  According to the International Biometric Society:

“Biometrics is used to refer to the emerging field of technology devoted to identification of individuals using biological traits, such as those based on retinal or iris scanning, fingerprints, or face recognition.”

The terms “Biometrics” and “Biometry” have been used since early in the 20th century to refer to the field of development of statistical and mathematical methods applicable to data analysis problems in the biological sciences.

From the Free Dictionary, we see the following definition:

  • The statistical study of biological phenomena.
  • The measurement of physical characteristics, such as fingerprints, DNA, or retinal patterns for use in verifying the identity of individuals.
  • Biometricsrefers to metrics related to human characteristics. Biometrics authentication (or realistic authentication) is used in computer science as a form of identification and access control. It is also used to identify individuals in groups that are under surveillance.

Biometric identifiers are the distinctive, measurable characteristics used to label and describe individuals. Biometric identifiers are often categorized as physiological versus behavioral characteristics. Physiological characteristics are related to the shape of the body.  Examples include, but are not limited to fingerprint, palm veins and odor/scent.  Behavioral characteristics are related to the pattern of behavior of a person, including but not limited to typing rhythm, gait, and voice.  Some researchers have coined the term behaviometrics to describe the latter class of biometrics.

More traditional means of access control include token-based identification systems, such as a driver’s license or passport, and knowledge-based identification systems, such as a password or personal identification number.  Since biometric identifiers are unique to individuals, they are more reliable in verifying identity than token and knowledge-based methods; however, the collection of biometric identifiers raises privacy concerns about the ultimate use of this information.

The oldest biometric identifier is facial recognition. The dimensions, proportions and physical attributes of a person’s face are unique and occur very early in infants.   A child will (obviously) recognize a parent, a brother or sister.  It is only since the advent of computers and accompanying software that the ability to quantify facial features has become possible.

The FBI has long been a leader in biometrics and has used various forms of biometric identification since the very earliest day.  This Federal institution assumed responsibility for managing the national fingerprint collection in 1924.  As you know, fingerprints vary from person to person (even identical twins have different prints) and don’t change over time. As a result, they are an effective way of identifying fugitives and helping to prove both guilt and innocence.

AUTOMOTIVE BIOMETRICS USING FINGERPRINT TECHNOLOGY:

What areas of a typical vehicle might benefit from specifically identifying a human being and matching that person to a particular car? Several possibilities come to mind:

  • Secure Access;
    ● Ignition Permission;
    ● Seat Reservations;
    ● On board communication systems;
    ● Anti-Theft programs;
    ● Driving license suspension programs.

All of these would insure privacy and access.  The two digital photographs below will serve to indicate how this methodology might work for an automobile.

starting-the-car

The fingerprint reader can be located in the steering wheel so the driver can concentrate in a better fashion.  This definitely desirable if biometric fingerprints are used for purposes other than starting the vehicle.

starting-the-car2

With this in mind, there are three mainstream fingerprint-sensing technologies available for automotive applications. These are as follows:

  • Capacitive Sensing—This is used in the world’s best-selling smartphones due to very small size: a sensing pad a few tens of microns thick and a small controller allow for very low power consumption.
  • Optical Fingerprint Sensing—Optical sensors are highly reliable and accurate, and so are widely used at border crossings. However, the sensors require a backlight to illuminate the finer.  They are still comparatively bulky compared to capacitive solutions.
  • Ultrasonic Sensing—This offers reliable detection of fingerprints in 3 D but has not found its way into mainstream mobile devices and is relative expensive.

CONCLUSIONS:

I believe biometrics will play a much bigger role in the automotive industry over the next few years.  Biometric fingerprinting could be used in a host of areas including:

  • Access to cabin compartment
  • Starting
  • Accessing cellphone communications
  • Allowing for application software located on cellphone so warm up in very cold climates could be made possible.

Now—here is the downside.  Someone has to be capable of troubleshooting a failed device and fix same if difficulties arise.  As complexity grows, we move more toward replace than fix.  Replace is costly.

As always, I welcome your comments.


One of the items on my bucket list has been to attend the Consumer Electronics Show in Las Vegas.  (I probably need to put a rush on this one because the clock is ticking.)  For 50 years, CES has been the launching pad for innovation and new technology.  Much of this technology has changed the world. Held in Las Vegas every year, it is the world’s gathering place for all who thrive on the business of consumer technologies and where next-generation innovations are introduced to the commercial marketplace.   The International Consumer Electronics Show (International CES) showcases more than 3,800 exhibiting companies, including manufacturers, developers and suppliers of consumer technology hardware, content, technology delivery systems and more; a conference program with more than three hundred (300) conference sessions and more than one-hundred and sixty-five thousand attendees from one hundred1 (50) countries.  Because it is owned and produced by the Consumer Technology Association (CTA)™ — formerly the Consumer Electronics Association (CEA)® — the technology trade association representing the $287 billion U.S. consumer technology industry, and it attracts the world’s business leaders and pioneering thinkers to a forum where the industry’s most relevant issues are addressed.  The range of products is immense as seen from the listing of product categories below.

PRODUCT CATEGORIES:

  • 3D Printing
  • Accessories
  • Augmented Reality
  • Audio
  • Communications Infrastructure
  • Computer Hardware/Software/Services
  • Content Creation & Distribution
  • Digital/Online Media
  • Digital Imaging/Photography
  • Drones
  • Electronic Gaming
  • Fitness and Sports
  • Health and Biotech
  • Internet Services
  • Personal Privacy & Cyber Security
  • Robotics
  • Sensors
  • Smart Home
  • Startups
  • Vehicle Technology
  • Video
  • Wearables
  • Wireless Devices & Services

If we look at world-changing revolution and evolution coming from CES over the years, we may see the following advances in technology, most of which now commercialized:

  • Videocassette Recorder (VCR), 1970
  • Laserdisc Player, 1974
  • Camcorder and Compact Disc Player, 1981
  • Digital Audio Technology, 1990
  • Compact Disc – Interactive, 1991
  • Digital Satellite System (DSS), 1994
  • Digital Versatile Disk (DVD), 1996
  • High Definition Television (HDTV), 1998
  • Hard-disc VCR (PVR), 1999
  • Satellite Radio, 2000
  • Microsoft Xbox and Plasma TV, 2001
  • Home Media Server, 2002
  • Blu-Ray DVD and HDTV PVR, 2003
  • HD Radio, 2004
  • IP TV, 2005
  • Convergence of content and technology, 2007
  • OLED TV, 2008
  • 3D HDTV, 2009
  • Tablets, Netbooks and Android Devices, 2010
  • Connected TV, Smart Appliances, Android Honeycomb, Ford’s Electric Focus, Motorola Atrix, Microsoft Avatar Kinect, 2011
  • Ultrabooks, 3D OLED, Android 4.0 Tablets, 2012
  • Ultra HDTV, Flexible OLED, Driverless Car Technology, 2013
  • 3D Printers, Sensor Technology, Curved UHD, Wearable Technologies, 2014
  • 4K UHD, Virtual Reality, Unmanned Systems, 2015

Why don’t we do this, let’s now take a very brief look at several exhibits to get a feel for the products.  Here we go.

Augmented Reality (AR):

Through specially designed hardware and software full of cameras, sensors, algorithms and more, your perception of reality can be instantly altered in context with your environment. Applications include sports scores showing on TV during a match, the path of trajectory overlaying an image, gaming, construction plans and more.  VR (virtual reality) equipment is becoming extremely popular, not only with consumers, but with the Department of Defense, Department of Motor Vehicles, and companies venturing out to technology for training purposes.

augmented-reality

Cyber Security:

The Cyber & Personal Security Marketplace will feature innovations ranging from smart wallets and safe payment apps to secure messaging and private Internet access.  If you have never been hacked, you are one in a million.  I really don’t think there are many people who have remained unaffected by digital fraud.  One entire section of the CES is devoted to cyber security.

cyber-security

E-Commerce:

Enterprise solutions are integral for business. From analytics, consulting, integration and cyber security to e-commerce and mobile payment, the options are ever-evolving.  As you well know, each year the number of online shoppers increases and will eventually outpace the number of shoppers visiting “brick-and-motor stores.  Some feel this may see the demise of shopping centers altogether.

e-commerce

Self-Driving Autonomous Automobiles:

Some say if you are five years old or under you may never need a driver’s license.  I personally think this is a little far-fetched but who knows.  Self-driving automobiles are featured prominently at the CES.

self-driving-automobiles

Virtual Reality (VR):

Whether it will be the launch of the next wave of immersive multimedia for virtual reality systems and environments or gaming hardware, software and accessories designed for mobile, PCs or consoles, these exhibitors are sure to energize, empower and excite at CES 2017.

vr

i-Products:

From electronic plug-ins to fashionable cases, speakers, headphones and exciting new games and applications, the product Marketplace will feature the latest third-party accessories and software for your Apple iPod®, iPhone® and iPad® devices.

i-products

3-D Printing:

Most 3D printers are used for building prototypes for the medical, aerospace, engineering and automotive industries. But with the advancement of the digital technology supporting it, these machines are moving toward more compact units with affordable price points for today’s consumer.

30-d-printing

Robotic Systems:

The Robotics Marketplace will showcase intelligent, autonomous machines that are changing the way we live at work, at school, at the doctor’s office and at home.

robotics

Healthcare and Wellness:

Digital health continues to grow at an astonishing pace, with innovative solutions for diagnosing, monitoring and treating illnesses, to advancements in health care delivery and smarter lifestyles.

health-and-wellness

Sports Technology:

In a world where an athlete’s success hinges on milliseconds or millimeters, high-performance improvement and feedback are critical.

sports-technology

CONCLUSIONS:

I think it’s amazing and to our credit as a country that CES exists and presents, on an annual basis, designs and visions from the best and brightest.  A great show-place for ideas the world over from established companies and companies who wish to make their mark on technology.  Can’t wait to go—maybe next year.  As always, I welcome your comments.

FARADAY FUTURE FFZERO1

January 5, 2017


I certainly had no idea engineers and automobile manufacturers have been working on autonomous or driverless automobiles for years. Experiments have been conducted on automating automobiles since the 1920.  Very promising trials took place in the 1950s and work has proceeded since then. The first self-sufficient and truly autonomous cars appeared in the 1980s, with Carnegie Mellon University‘s Navlab and ALV  projects in 1984 and Mercedes-Benz and Bundeswehr University Munich‘s Eureka Prometheus Projects in 1987. Since then, numerous major companies and research organizations have developed working prototype autonomous vehicles including Mercedes-BenzGeneral MotorsContinental Automotive Systems,  Autoliv Inc., Bosch, Nissan, Toyota, Audi, Volvo, Vislab from the University of Parma, Oxford University, and Google.  In July 2013, Vislab demonstrated the BRAiVE, a vehicle that moved autonomously on a mixed traffic route open to public traffic.  

As of 2013, four U.S. states have passed laws permitting autonomous cars: NevadaFloridaCalifornia, and Michigan.  With the intensity involved, I’m quite sure there will be others to follow.   In Europe, cities in Belgium, France, Italy and the UK are planning to operate transport systems for driverless cars, and Germany, the Netherlands, and Spain have allowed testing robotic cars in traffic.

There is absolutely no way progress could be accomplished without technologies such as GPS, proximity sensors, visual cameras and of course the software necessary to drive each system and integrate each system so success may result.  These technologies will continue to improve over the next few years.  I heard a comment yesterday that indicated if your son or daughter is under ten years old, he or she may never have the need for a driver’s license.  Time will tell.

CLASSIFICATIONS OF DRIVERLESS VEHICLES:

The American Society of Automotive Engineers has developed five stages or classifications of autonomous automobiles.  These stages are as follows:

sae-classifications

FARADAY FUTURE FFZERO1:  THE CAR

I would like to introduce to you now the FARADAY FUTURE FFZERO1.   Future’s 1,000-horsepower concept car should make Tesla very, very nervous.  The media announcement was made just this week and is as follows:

LAS VEGAS — With a thumping bass soundtrack in a lengthy airplane hangar-like building in Vegas, Faraday Future unveiled their new FF 91 electric “super car” on 4 January 2017.

The automaker was criticized at last year’s Consumer Electronics Show (CES) for showing off their FFZERO1 concept car, which turned out to be more style than substance. This year’s unveiling of the FF 91 was different, in that they attempted to show off a real vehicle that consumers will be able to order soon.

Filled with more hyperbole and superlatives than a car show and tech conference combined, Faraday Future promises the fastest acceleration for a production automobile at 0-60mph in 2.39s with a whopping 1050hp. They also laid claim to the most advanced battery technology in the industry, and boldly claimed they would disrupt all aspects of the car industry.

Faraday Future even dared to put themselves on a roadmap of “historical steps in technology,” equating their electric vehicle to the creation of the electric motor by Michael Faraday, alternating current by Nikola Tesla and even the internet by Tim Berners-Lee.  Digital pictures that follow will indicate the overall design of the vehicle. The first JPEG shows the initial rollout and introduction at the CES 2017 this week.

unveiling-and-media-announcement

faraday-concept

faraday-2

faraday-1

DESCRIPTION:

First off, although it’s a concept high-performance one-seater, it rides on FF’s new Variable Platform Architecture (VPA) on which it will base all its future cars. Essentially, it’s a skateboard-style chassis with that allows FF to easily scale up or down the platform for different vehicle types.  Moreover, with this layout, FF can have one, two or three motor setups, making for front-, rear- or all-wheel drive. And, from a safety standpoint, the structure also makes for larger crumple zones. While the variable chassis is all well and good, you won’t spend any time interacting with it, really. You will, however, spend lots of time in the FF cabin. Thankfully, that’s been as well thought out as the platform.

Inside the FFZERO1, just like future FF production cars, the steering column has been fitted with a smartphone. This allows it to become the focal point for the interface between the driver and the car — from sitting behind the wheel or from inside the owner’s home. When commanded by that smartphone, the autonomous FFZERO1 (oh, yeah, it can drive itself, too) can come retrieve the driver.     More of that as we move along.

The driver sits at a perfect 45-degree angle that is most beneficial to circulation in a seat derived from NASA designs. There, the driver can easily view the propeller-shaped, asymmetric instrument panel. Moreover, in this electric race car, the driver wears an unique Halo Safety System with integrated head and neck support, oxygen and water supply — combined into a prototype helmet.

Rethinking where passengers are placed in a vehicle, since all the power components are beneath the driver rather than in front, Faraday Future designers pushed the driver near the front and shaped around the single seat a “perfectly aerodynamic teardrop profile.” This is accented by FF’s soon-to-be signature ‘UFO line’ that runs around the center of the vehicle. This mystical line and is, as FF put it, “intended to give the sense that this vehicle is not completely of this world.”

Combining form and function, FF has created aero tunnels that run through the interior length of the vehicle. These allow air to flow through the car rather than around it. More than accentuating the alien look of the thing, the tunnels also dramatically reduce drag and improve battery cooling. This does away for any need of bulky, space-stealing radiator.  This is truly an innovative design and one that surely will be copied by other manufactures.

Amazingly, all of this was pulled together in just 18 months when the team of multidisciplinary experts from the technology, automotive, aerospace and digital content came together to create a new line of electric cars. Apparently working nights and weekends, FF was able to take the all-digital FFZERO1 and turn it into the concept model you see today.

The FFZERO1 unveiling comes after news of FF’s plans to invest $1 billion, reportedly backed by the Chinese, in the creation of a 3 million-square-foot manufacturing facility in North Las Vegas. FF plans to break ground on this phase one investment in the next few weeks, ultimately employing 4,500 people.

Now, if you’re anything like me, you’re already wondering how such a team and design happened to come together so quickly and create something that seems not only promising but also industry-changing. Is Faraday Future the cover for the long-rumored Apple Car set to debut in 2019? I guess we’ll have to wait and see.

SELF-DRIVING:

A very impressive demonstration was the self-parking capability of the vehicle itself.

self-parking

The company demonstrated a self-parking capability in the lot outside, showing the car searching the aisles for an empty space and then backing in to it.

COSTS AND AVAILABILITY:

Faraday plans to release the FF91 in 2018. To pre-order, hopefuls will need to provide a refundable $5,000 (£4,080) deposit.  Prospective buyers were told they would be able to connect to the forthcoming car via a virtual “FFID” account.

“For the car to have a 130-kWh battery pack, it would be very heavy, and very expensive – extremely expensive to have a battery that size.”  On stage, Faraday executive Peter Savagian explained that the FF19 would be chargeable from various electrical standards. He added its range would extend to 482 miles (775km) when driven at 55mph. Many analysts expect interest in electric vehicles to continue to rise in coming years. “We estimate around one in 10 vehicles will be electric or hybrid by 2020, at around 8 million vehicles,” said Simon Bryant at analysts Futuresource.  I personally feel this is very optimistic but time will certainly tell.  I do not plan on owning a driverless vehicle in my lifetime but who knows.

As always, I welcome your comments.

%d bloggers like this: