If you follow my postings you know I love to fly and got my pilot’s license when I was fifteen.  Due to FAA regulations, I had to wait until I was sixteen before I could fly solo.  I logged quite a few hours during my fifteenth year but with a rated pilot in the right seat.  A digital of the type aircraft I flew is given as follows:

Piper Tri-Pacer

As you can see, most would call this a puddle-jumper.  It got me there and I had a good time doing it.

We go from fairly unsophisticated to the cutting-edge when we look at the F-35 Lightning II.  Let’s take a look.

PROGRAM:

The F-35 Lightning II Program (also known as the Joint Strike Fighter Program) is the Department of Defense’s focal point for defining affordable next generation strike aircraft weapon systems for the Navy, Air Force, Marines, and our allies. (The word affordable is now in question since there have been significant cost overruns for the entire program.)  The F-35 will bring cutting-edge technologies to the battle space of the future.  The JSFs advanced airframe, autonomic logistics, avionics, propulsion systems, stealth, and firepower will ensure that the F-35 is the most lethal, supportable and survivable aircraft ever to be used by so many war fighters across the globe.   Digital photographs of the fighter are given as follows:

F-35 Fighter

F-35 Fighter(2)

Someone once said, “ if it looks like it will fly—it will fly”.  This aircraft definitely looks like it can fly and intended for the US Navey, US Air Force and the US Marine Corps.

The JSF will fulfill stated Service needs as follows:

  • U. S. Navy First day of war, survivable strike fighter aircraft to complement F/A-18E/F
  • U.S. Air Force Multirole aircraft (primary-air-to-ground) to replace the F-16 and A-10 and complement the F/A-22
  • U.S. Marine Corps STOVL aircraft to replace the AV-8B and F/A-18 as their only strike fighter
  • United Kingdom Royal Navy & Royal Air Force STOVL aircraft to replace Sea Harriers & GR.7s as a supersonic strike fighter
  • Other Countries Potential JSF customers include current operators of F-16, F/A-18, and AV-8B

INTERNATIONAL COOPERATION:

The F-35 Joint Strike Fighter Program is an internationally oriented program consisting of partnerships with a number of countries. See below for links to the transcripts of the signing ceremonies of the official partnership of each of the programs cooperating partners: United Kingdom (signed 17 Jan 2001 for $2B)

Italy (signed 24 Jun 2002 for $1B)
Netherlands (signed 17 Jun 2002 for $800M)
Turkey (signed 11 Jun 2002 for $175M)
Canada (signed 7 Feb 2002 for $150M)
Australia* (signed 31 Oct 2002 for $150M)
Denmark (signed 28 May 2002 for $125M)
Norway* (signed 20 Jun 2002 for $125M)

A quick look at the various suppliers relative to companies and countries contributing resources may be seen as follows:

VENDORS AND MAJOR CONTRACTORS

CAPABILITIES:

Stealth. The F-35 is designed as a stealth counterpart to the F-22 Raptor air dominance fighter and one that can share “first day of the war” duties against defended targets although it can’t perform air-air or SEAD/ “Wild Weasel” missions to the same standard. The F-35 has a larger single engine instead of the Raptor’s twin thrust-vectoring F119s, removing both super-cruise (sustained flight above Mach 1) and super-maneuverability options. The F-22A is also a much “stealthier” aircraft from all angles, and independent analysis and modeling has concluded that the F-35’s stealth will be weaker from the sides and the rear. Even so, the F-35 is a big improvement over existing ‘teen series’ fighters, and a step above Generation 4+ options like the F/A-18E/F Super HornetEurofighterRafale, and JAS-39 Gripen.  This fact is considered by the DoD to be a drawback.

Engine. The F-35 was designed to offer interchangeable engine options. That has been an important feature for global F-16 and F-15 customers, improving costs and performance, while providing added readiness insurance for dual-engine fleets like the USAF, South Korea, Saudi Arabia, etc. Pratt & Whitney’s lobbying eventually forced GE & Rolls-Royce’s F136 out of the F-35 program, and made their F135-PW-100 engine the only choice for global F-35 fleets.  A special F-135-PW-600 version with Rolls Royce’s LiftFan add-on, and a nozzle that can rotate to point down, will power the vertical-landing F-35B.

The US military had better hope that an engine design problem never grounds all of their fighters. While they’re at it, they should hope that both performance and maintenance contracts remain reasonable, despite the absence of any competitive alternative.

Sensors. The Lightning II will be equipped to levels that would once have defined a high-end reconnaissance aircraft. Its advanced APG-81 AESA (Active Electronically Scanned Array) radar is smaller and less powerful than the F-22A’s APG-77v1; but still offers the strong AESA advantages of simultaneous air-air and air-ground capabilities, major maintenance & availability improvements, and secure, high-bandwidth communications benefits. The F-35 also shares a “sensor fusion” design advance with the F-22, based on an even more extensive sensor set embedded all around the airframe. Both planes will be able to perform as reconnaissance aircraft, though the F-35 will have superior infrared and ground-looking sensors. Both fighters will also have the potential to act as electronic warfare aircraft, though not to the same level as the Super-Hornet’s EA-18G Growler derivative.

These sensors are connected to a lot of computing power, in order to create single-picture view that lets the pilot see everything on one big 20″ LCD screen and just fly the plane, rather than trying to push buttons, switch views, and figure it all out at 6g. As part of that sensor fusion, the F-35 will be the first plane is several decades to fly without a heads-up display. Instead, pilots will wear Elbit/Rockwell’s JHMDS helmet or BAE’s HMSS, and have all of that information projected wherever they look. JHMDS is both a strength that adds new capabilities, like the ability to look “through” the plane’s floor, and a single point-of-failure weakness.

Maintenance. The F-35 has a large number of design features that aim to simplify maintenance and keep life cycle costs down. Since operations and maintenance are usually about 65% or more of a fighter’s lifetime cost, this is one the most important and overlooked aspects of fighter selection.

Stealth aircraft have always had much higher maintenance costs, but the F-35’s designers hope that new measures can reverse that trend. Some of the plane’s stealth coatings are being baked into composite airplane parts, for instance, in the hope that customers will need fewer “Martians” (Materials Application and Repair Specialists) around to apply stealth tapes and putties before each mission. Technical innovations like self-diagnosing aircraft wiring aim to eliminate one of the toughest problems for any mechanic, and the fleet-wide ALIS information and diagnostic system is designed to shift the fleet from scheduled maintenance to maintenance only as needed.

Despite these measures, March 2012 operations and maintenance projections have the F-35 at 142% O&M cost, relative to F-16s, and subsequent reports have risen as high as 160%. It remains to be seen if the advantages of F-35 innovations manage to fulfill their promise, or if projections that they’ll be outweighed in the end by increased internal complexity, and by the proliferation of fault-prone electronics, come true. That has certainly been the general trend over the last 50 years of fighter development, with a very few notable exceptions like America’s F-16s and A-10s, and Sweden’s JAS-39 Gripen.

SPECIFICATIONS:

The specifications for this fighter are really impressive.  As you can see, it can fly at MACH 1.6 and pull a survivable maximum of 9.0 Gs.   It also is capable of carrying a huge array of weapons.  The complete package is given below.

SPECIFICATIONS

COCKPIT:

The F-35 features a full-panel-width glass cockpit touchscreen “panoramic cockpit display” (PCD), with dimensions of 20 by 8 inches (50 by 20 centimeters). A cockpit speech-recognition system (DVI) provided by Adace I has been adopted on the F-35 and the aircraft will be the first operational U.S. fixed-wing aircraft to employ this DVI system, although similar systems have been used on the AV-8B Harrier II and trialled in previous aircraft, such as the F-16 VISTA.

helmet-mounted display system (HMDS) will be fitted to all models of the F-35. While some fighters have offered HMDS along with a head up display (HUD), this will be the first time in several decades that a front line fighter has been designed without a HUD.   The F-35 is equipped with a right-hand HOTAS side stickcontroller. The Martin-Baker US16E ejection seat is used in all F-35 variants. The US16E seat design balances major performance requirements, including safe-terrain-clearance limits, pilot-load limits, and pilot size; it uses a twin-catapult system housed in side rails. The F-35 employs an oxygen system derived from the F-22’s own system, which has been involved in multiple hypoxia incidents on that aircraft; unlike the F-22, the flight profile of the F-35 is similar to other fighters that routinely use such systems.  The cockpit is a pilot’s dream (or nightmare).

COCKPIT

COSTS OVER-RUNS:

The cost of the U.S. Defense Department’s most expensive weapons program, the F-35 Joint Strike Fighter, declined by 1 percent in the past year to $391 billion while lawmakers remain concerned about its software.

The estimated price tag to develop and build 2,457 F-35 Lightning II fighter jets includes $326.9 billion for air frames and $64.3 billion for engines, according to newly released figures from the Pentagon. The combined amount is $4.5 billion, or 1.1 percent, less than an estimate of $395.7 billion released in March 2012.

The decline was attributed in part to revised labor rates charged by the prime contractor — Bethesda, Md.-based Lockheed Martin Corp. — and its subcontractors, according to the Defense Department.

The F-35 is among a Pentagon portfolio of 78 weapons programs projected to cost a total of $1.66 trillion. That’s a 2.7 increase in cost from last year’s projection of $1.62 trillion for 83 systems. Despite the modest rise, none of the programs were flagged for having significant cost overruns.

The figures were released the same week a Republican-led subcommittee in the House of Representatives voted to require that Frank Kendall, the Pentagon’s top weapons buyer, create an independent panel to review the F-35’s software development and submit a report on its status to congressional defense committees by March 3, 2014.

The House Armed Services’ tactical air and land forces subcommittee, led by Rep. Michael Turner, R-Ohio, included the language in its draft of the 2014 defense authorization bill, which sets policy goals and spending targets for the fiscal year beginning Oct. 1.

Kendall himself has said the amount of code still needed to be written creates “some risks” and Air Force Lt. Gen. Christopher Bogdan, the service’s F-35 program manager, has said he’s concerned the slow pace of software development may delay the delivery of the most lethal version of the fighter jet beyond 2017.

That model of the aircraft, known as 3F, is designed to be equipped with a suite of internal and external weapons, including the GPS-guided Joint Direct Attack Munition, laser-guided Paveway II bomb, Advanced Medium-Range Air-to-Air Missile and infrared Sidewinder missile.

The Pentagon in the fiscal year beginning Oct. 1 plans to spend $8.4 billion to buy 29 F-35 Lightning IIs, including 19 for the Air Force, six for the Marine Corps and four for the Navy, according to the budget request released last month. The plane is designed to replace such aircraft as the F-16, A-10, F/A-18 and AV-8B.

CONCLUSIONS:

This is a marvelous piece of technology but it is tremendously expensive.   It is obviously designed to consider “wars of the future”, where they may be fought and who just might be the enemy.  This one is too big to fail and the program, in some fashion, will go to fruition.


Data for this post was taken from the following sources: 1.) Design News Daily, and 2.) Those references given on the individual slides.

I have been a “blue-collar” working engineer since graduation in 1966.  I think it’s a marvelous profession and tremendously rewarding.  I also find that engineering is one of the most trusted professions.  When you are designing a bridge, a machine, a biomedical device, etc. there is little room for PC.   Being politically correct will get you a bum design.  You design towards accomplishing an objective or satisfying a consume needs.  Also, you can’t talk your way into success.  You have to perform at every phase of the engineering program.  There are processes in place that aid our efforts along the way.  Some of these are as follows:

  • Six Sigma
  • Design for Six Sigma
  • QFD or Quality Functional Deployment
  • FMEA or Failure Mode Effect Analysis
  • Computational Fluid Dynamics
  • Reliability Engineering
  • HALT—Highly Accelerated Laboratory Testing
  • Engineering Reliability

There are others depending upon the branch of engineering in question.  There are also a large number of computer programs specifically written for each engineering discipline.

With that being the case, what would you say are the highest paying engineering salary levels by discipline?  You might be surprised.  I was.  The following slides basically speak for themselves and represent entry level, mid-level and high-paying salaries for graduate engineers.  Let’s take a look at the top ten (10).

BIOMEDICAL

I’m not surprised at biomedical engineering being in the top ten.  There is a huge demand for “bio-engineers” due to rapid advances in technology and significant needs relative to non-invasive medical investigations.

The next one, Civil Engineering, does surprise me a little although we live with a crumbling infrastructure.  Much more needs to be accomplished to redesign, replace and upgrade our roads, dams, bridges, levees, etc etc.  We are literally falling apart.CIVIL

The next two should not surprise anyone.  IT is driving innovation in our time and the need for computer programmers, hardware engineers and software engineers will only increase as time goes by.

COMPUTER ENGINERING HARDWARE

COMPUTER ENGINEERING SOFTWARE

Chemical engineering has always been one of the top engineering disciplines.  CEs can apply their “trade” to an extremely large number of endeavors.

CHEMICAL ENGINEERING

EE

During my time EEs were the highest paying jobs.  They still are.

Years ago, environmental engineering was included in the CE discipline. Today, it is important enough to stand alone and provide excellent salary levels.

ENVIRONMENTAL

GEOLOGY AND MINING

Geology and Mining engineering has taken off in recent years due to needs brought about by the oil industry.  More than ever, new sources of natural gas and oil are needed.  The term fracking was unknown ten and certainly twenty years ago.

Material Science is one of the most fascinating areas of investigation undertaken in today’s engineering world.  Composite structures, “additive” manufacturing, adhesives, and a host of other areas of materials engineering are producing needs throughout the profession.

Materials Science

MATERIALS AND SCIENCE

MECHANICAL

I am a mechanical engineer and greatly enjoy the work I do in designing work cells to automate manufacturing and assembly processes.  The field is absolutely wide open.

I hope you enjoy this very brief look at the top ten disciplines.  I also hope you will be encouraged to show this post to you children and grandchildren.  Explain what engineers do and how our profession benefits mankind.


Compressed Natural Gas or CNG is finding its way into a variety of applications, both commercial and residential.  Our country is looking for alternatives to petroleum-based products for transportation and CNG is one method to accomplish this desired outcome.

  • Global CNG demand was 61,668 MCM in 2013 and is expected to reach 108,957.9 MCM by 2020, growing at a CAGR of 8.5% from 2014 to 2020.
  • Light duty vehicles (LDV) were the largest CNG consuming segment and accounted for 48.3% of total market volume in 2013. Growth of passenger cars particularly in emerging markets of BRICS is expected to drive this segment. LDV is also expected to witness highest growth rate over the forecast period. The segment is expected to grow at an estimated CAGR of 9.1% from 2014 to 2020.
  • Asia Pacific was the leading regional CNG market and is expected to continue its dominance over the next six years in the global market. The region accounted for 46.6% of total market volume in 2013. Positive outlook on automotive industry coupled with government support to promote the use of alternative transportation fuel particularly in China and India is expected to drive the regional CNG market. Central & South America is expected to be the fastest growing regional market for CNG at an estimated CAGR of 17% from 2014 to 2020.
  • Highly fragmented CNG industry participants compete on the basis of price differentiation across various regions. Major industry participants operating in the global CNG market include National Iranian Gas Comp, Indraprastha Gas Ltd (IGL), China Natural Gas Inc and Mahanagar gas Ltd (MNGL).

Industry Analysis

In the United States, the CNG market has grown at a rate of 3.7% since the year 2000. The market for these products has seen slow growth to this point for the following reasons: 1.) Availability of the products, 2.) Heat build-up during the compression process, 3.) Time delays in the refilling process and 4.) The expense of locating CNG at the market locations. The areas of greatest growth in the CNG market are in the area of transporters that possess fleets (Tractor Trailers), Straight Trucks, and Public Transportation such as school and/or city buses. California and Texas lead the way with CNG fueling stations on a national level. There are approximately 1,300 CNG fueling stations in the US today; however, 730 are public stations with the remainder being private fleet stations.  To give you an idea as to the need, there are currently fewer than ten (10) public CNG filling stations within the Tri-State area of Tennessee, Georgia, and Alabama. Southeast Tennessee currently has no CNG fueling stations. The industry is rapidly changing as the 2014 EPA NHTSA Heavy Duty Truck Program has been put in place by President Obama. This legislation has forced fleet and fuel managers to reduce emissions as well as increase fuel efficiency. Small savings have been made by reducing drag, adequate tire pressure, and reduced idling practices. CNG is a “game changing” modification that addresses the new standards that are currently in place as well as future reductions that are scheduled for 2018.  The proper approach is to adopt a customer centric approach that addresses the needs of the immediate market based on available original equipment and after market manufacturers. Some industry pundits have estimated CNG will realize 25% annual growth for the next five (5) to ten (10) years on a conservative level.

Market Segment

Key points in defining the market segment for CNG are existing markets and projected future markets. Electric power and industrial markets make up almost 60% of the current consumer market. Existing markets include the fields of Agriculture, Industrial, and Motor Fuel in a static environment. Projected markets include opportunities in a more mobile environment. Transportation appears to be the most likely segment to grow as it makes up less than one percent (1%) of total natural gas used. Currently, the market is distributed with limited, if any, diversity of participants. Trending for share gains and losses typically represents large potential for gains across the entire industry. Share losses are predominantly absorbed by the diesel fuel and propane distributors, as recent supply shortages have clearly proven in the motor fuel and poultry industries. Market share will be lost by the above mentioned industries due to loss of confidence by the respective customer bases. The current and projected trends in the motor fuel industry are now driven by the Tier II Fuel Initiative causing off road diesel fuel to be banned in the near future. The result of the ban will continue to be increases in motor fuel pricing. As motor fuel costs increase, CNG becomes not only the clean alternative fuel replacement, but also the affordable alternative. CNG cuts the cost of a diesel equivalent gallon by as much as fifty percent (50%) based on the volatile and often fluctuating diesel market. Also, CNG is a much more effective fuel in cold weather areas as opposed to diesel and the multiple problems which exist.

The implied trends in the propane and agricultural industries currently indicate an extended, long-term propane supply shortage. The result is that CNG becomes the efficient, clean energy solution by cutting propane costs by twenty-five (25) to fifty percent (50%). Users of CNG are looking for quality and productivity improvements. The history of CNG development has resulted in the need for creative technology solutions that enable the full application of the CNG Natural Gas Industry. Recent patenting and innovation that Cielo has identified allows CAF to operate more efficiently than diesel or propane. The stability of this market segment is solid, based on CNG product category performance over the past two years. The forecasters predict an exponential growth over the next two years.

The major market segments for CNG are:

  • Agricultural, with customer applications being in the fields of poultry farming, grain drying, irrigation, hydroponics and propane displacement for remote locations with no historical access to natural gas.
  • Industrial, with customer applications in the fields of electric generators, heat production, lumber drying, and forklift fuel.
  • Motor Fuel, involving Duel Fuel Fleets and Designated Gasoline Fuel Fleets.

The Motor Fuel segment of the market is generally based on diesel with retail prices in the range of $3.50 to $4.00 per gallon. The vast majority of sales in this category will be handled by on site stations at fleet terminals or using the GTM model providing on demand fleet fueling. Transportation represents the largest sector of gas consumption and emissions in the US. The aforementioned legislation has forced fleet and fuel managers to prepare for potential penalties that could have dramatic balance sheet implications if found to not be compliant.

Over the past thirty (30) years, equipment manufacturing companies have proven that meaningful features can be developed for this class of fuel. These companies have primarily focused on the use of pipelines to improve the quality of transport in Natural Gas. These products have been successfully distributed in many areas of the industry, in a limited capacity.

In the next 5 to 10 years it is estimated that there will be more than 18 million vehicles on US highways. The market potential for CNG in these quantities–with a current retail price of $2.50 per DGE (Diesel Gallon Equivalent)–is approximately $2.6 billion per month in revenue with an equivalent net profit of $45 million dollars. This translates to a market share of approximately two percent (2%) of the overall market. An excellent comparison is the country of Iran has 3,300,000 natural gas vehicles on the road today compared to United States with 250,000 to 300,000.

In conclusion, CNG seems to be one very great possibility for commercial AND domestic transportation.  Only time will tell.  As always, I welcome your comments.


Since 1986 I have done business with a small regional bank; checking account, savings account, etc. I chose that bank, as opposed to larger national banks, due to their size, efficiency and very friendly customer relations.   Good choice on my part and I have been proved correct.   Let me now relate to you a conversation I had two years ago with a lady named Wanda in bookkeeping.

WANDA—Mr. Jackson have you been to Detroit lately?

JACKSON—Its’ been a very long time but no, not within four or five years.

WANDA—Well, your debit card has.  There are sixteen (16) charges on your business account over the past two days.  All from charges in the Detroit area.

JACKSON—What on earth are the charges?

WANDA—McDonalds twice, a pet store, two hotel bookings, a beauty salon, restaurants and there’s more.

JACKSON—None of those charges are mine and I have no idea as to how they were made.

WANDA—Have you lost your card?  Did you leave it someplace?

With this question being asked, I pulled out my wallet and took a look.  The card was right there.

JACKSON—Wanda, I have it right here. How could this have happened with me not having the card stolen or my losing it?

WANDA—We fight these battles every day, Bob.  Here’s what we need to do; let’s close the account right now so no more charges will be made.  You need to get to the bank ASAP and sign sixteen documents stating you have not made the charges shown.  Can you come in today?  We can reimburse your account after establishing another.  Since you have fraud protection you will not lose any money but it will take about two weeks.

I left immediately for a visit to my bank and did just as she said—sign sixteen (16) individual documents stating the charges made to the establishments were fraudulent.  It took the better part of an hour.  I did receive reimbursement for the fraud; $ 612.58 to be exact.  Let’s now take a look at the problem to see just how prevalent it is.

THE PROBLEM:

AND IT IS HUGE !!!

The Scope of the Problem

My card was stolen, I think, by an employee working in a Subway Sandwich Shop.  He or she just lifted the necessary information from the card.  As you can see from the JPEG above, one in ten Amercian consumers has been a victim of identity theft. Over one and one-half million households have had their bank accounts compromised, and these are 2009 numbers.

Potential Amount of Money

The amount of money stolen from me was approximately $600.00 which means I’m small potatoes to the $4,841 dollar average theft.  In our country right now, that’s approximately three month’s worth of full-time work.   Adding insult to injury; the out-of-pocket expense to right the situation is between $851 and $1,378.

Nearly 50%

Our credit reporting agencies do a horrible job with individual accounts which leads to seventy percent of individuals experiencing fraud having real difficulties in removing the negative numbers from their accounts.

Average Time to Repair an Account

As you can see, it takes an average time of 330 hours to repair the damage,  done and to fully correct the damage requires 5,840 hours.  If time is money—that’s money.

The following JPEGs will show the most common methods of stealing identities and how to protect yourself from the occurence.

Most Common Methods of Identify Theft

How to Protect Yourself

BIOMETRICS:

One method to greatly lessen identity theft is the use of Biometrics. Biometrics is defined by the FBI as follows:

“Biometrics is the science and technology of measuring and analyzing biological data. It is used to uniquely identify individuals by their physical characteristics or personal behavior traits. It is used to allow employees access to certain areas and for general ID purposes. A biometrics system goes through three basic steps: 1. Acquiring data, 2. Encryption. 3. Analysis of data.

Biometrics refers to metrics related to human characteristics. Biometrics authentication (or realistic authentication) is used in computer science as a form of identification and access control. It is also used to identify individuals in groups that are under surveillance.

Biometric identifiers are the distinctive, measurable characteristics used to label and describe individuals.  Biometric identifiers are often categorized as physiological versus behavioral characteristics.  Physiological characteristics are related to the shape of the body.  There are several types of biometric identification schemes:

  • Face: the analysis of facial characteristics
  • DNA
  • Fingerprint: the analysis of an individual’s unique fingerprints
  • Hand geometry: the analysis of the shape of the hand and the length of the fingers
  • Retina: the analysis of the capillary vessels located at the back of the eye
  • Iris: the analysis of the colored ring that surrounds the eye’s pupil
  • Signature: the analysis of the way a person signs his name.
  • Vein: the analysis of pattern of veins in the back of the hand and the wrist
  • Voice: the analysis of the tone, pitch, cadence and frequency of a person’s voice.

Behavioral characteristics are related to the pattern of behavior of a person, including but not limited to rhythm, gait, and voice. Some researchers have coined the term behavior metrics to describe the latter class of biometrics.

The magnetic strip used on all American credit and debit cards is antiquated technology that has served its’ purpose.  As we have seen, it certainly is and can be compromised.  The charts above indicate personal experience that drives this home.   A magnetic strip card is a type of card capable of storing data by modifying the magnetism of tiny iron-based magnetic particles on a band of magnetic material on the card. The magnetic strip, sometimes called swipe card or magstripe, is read by swiping past a magnetic reading head. Magnetic stripe cards are commonly used in credit cardsidentity cards, and transportation tickets.

Magnetic recording on steel tape and wire was invented during World War II for recording audio. In the 1950s, magnetic recording of digital computer data on plastic tape coated with iron oxide was invented. In 1960 IBM used the magnetic tape idea to develop a reliable way of securing magnetic strips to plastic cards, under a contract with the US government for a security system. A number of International Organization for Standardization standards, ISO/IEC 7810ISO/IEC 7811ISO/IEC 7812ISO/IEC 7813ISO 8583, and ISO/IEC 4909, now define the physical properties of the card, including size, flexibility, location of the magstrip, magnetic characteristics, and data formats. They also provide the standards for financial cards, including the allocation of card number ranges to different card issuing institutions.

What if, there was a biometric access point on each credit and debit card we owned?    Every time you made a purchase with a card, you had to use biometrics to complete the transaction.  The metric was a singular part of the card with equipment owned and operated by the vendor or merchant to receive the biometric data supplied by each individual.  What if, we do away with passwords and PINs and replace those with biometric information relative to the individual user.  Specific physiological information unique to the user and more importantly the owner of the equipment itself.  Cards, credit and debit, PCs, smart phones, i-pads, tablets, etc—what if.   In my opinion purchase power and digital equipment are headed in this direction.  We know that financial establishments in the European Union are embedding “chips” into credit cards for lessen fraud.  Biometrics is much safer and will provide greater security in the long run.    I think we are headed in that direction.

As always, I welcome your comments.

 

EMBRAER

March 27, 2015


You know Dasher and Dancer and Prancer and Vixson, Gulfstream and Piper and Beechcraft and Cessna; but do you recall the least-known aircraft of all?  OK, so I’m not a poet or songwriter.  Have you ever heard of an aircraft manufacturer called EMBRAER?  Do you recognize their logotype?

LOGO

Well, I’ll bet you have flown on one of their aircraft.

HISTORY:

Embraer S.A. is a Brazilian aerospace conglomerate that produces commercial, military, executive and agricultural aircraft.  The company also provides corporate and private aeronautical services. It is headquartered in ão José dos Campos in the State of São Paulo.

On August 19, 1969, Embraer; (Empresa Brasileira de Aeronáutica S.A.) was created. With the support of the Brazilian government, the Company turned science and technology into engineering and industrial capacity. The Brazilian government was seeking a domestic aircraft manufacture thus making several investment attempts during the 1940s and ’50s to fulfill this need.    Its first president, Ozires Silva, was appointed by the Brazilian government to run the company.   EMBRAER initially produced one turboprop passenger aircraft, the Embraer EMB 110 Bandeirante, a project organized and executed by Ozires Silva. The first EMB 110 Bandeirante to be produced in series made its maiden flight on August 9, 1972. On the 19th of that same month, a public ceremony was held at the Embraer headquarters, attended by officials, employees and journalists from not only Brazil but several countries in South America. That aircraft is shown by the digital below.

40 Years Ago

By the end of the ‘70s, the development of new products, such as the EMB 312 Tucano and the EMB 120 Brasilia, followed by the AMX program in cooperation with Aeritalia (currently Alenia) and Aermacchi companies, allowed Embraer to reach a new technological and industrial level.  At exactly 8:44 AM, on April 8, 1982, the twin-engines EMB 121 Xingu PP-ZXA and PP-ZXB took off from São José dos Campos, piloted by Brasílico Freire Netto, Carlos Arlindo Rondom, Paulo César Schuler Remido and Luiz Carlos Miguez Urbano, en route to France. They were the first two aircraft of a total of forty-one (41) ordered by the French government for use in training military pilots from the Air Force (Armé de L’Air) and Naval Aviation (Aeronavale) department. The aircraft were delivered to the French authorities on April 16, at Le Bourget Airport.  That aircraft may be seen as follows:

Comissioned by the French

The EMB 120 Brasilia aircraft became an important milestone in the history of Embraer. Developed as a response to the evolving demands of the regional air transport industry, its design took advantage of the most advanced technologies available at the time. It was the fastest, lightest and most economical airplane in its category.  Most of the EMB 120s were sold in the United States and other destinations in the Western Hemisphere. Some European airlines such as Régional in France, Atlant-Soyuz Airlines in Russia, DAT in Belgium, and DLT in Germany also purchased EMB-120s. Serial production ended in 2001. As of 2007, it is still available for one-off orders, as it shares much of the production equipment with the ERJ-145 family, which is still being produced. The Angolan Air Force, for example, received a new EMB 120 in 2007.  If you’ve done much flying at all you probably have flown on the EMB 120. SkyWest Airlines operates the largest fleet of EMB 120s under the United Express and Delta Connection brand. Great Lakes Airlines operates six EMB 120s in its fleet, and Ameriflight flies eight as freighters.  This configuration has been a real short-haul workhorse. Another, and possibly better look, is as follows:

Air Moldova

COMMERCIAL LONG-HAUL:

Another workhorse is the EMBRAER 195.  That aircraft may be seen below.  It costs approximately $40 Million, which is just as expensive as the average narrow-body passenger jet and seats 108 passengers in a typical layout, 8 more than the average narrow-body passenger plane. The maximum seating capacity is 122 passengers in an all-economy class configuration.   The 195 uses roughly $11.64 worth of fuel per nautical mile flown (assuming $6 per gallon of jet fuel).  On a per-seat basis, this translates to being 7.3% more cost-efficient than the average aircraft.

A maximum range of 2,200 nautical miles (equal to 2,530 miles) makes this aircraft most appropriate for long domestic flights, or very short international flights.   With a service ceiling (max cruise altitude) of 41,000 feet, it is just slightly higher than the norm for this type of aircraft and can certainly get above most weather patterns along the flight route.

EMBRAER 195.doc

BUSINESS JET:

The Embraer EMB-505 Phenom 300 is a light jet aircraft developed by Embraer which can carry eight (8) or nine (9) occupants.  It has a flying range of 1,971 nmi (3,650 km) and carries a price estimate between US $ 5 million and US $ 8 million in 2012.

At 45,000 feet (14,000 m), the Phenom 300 is pressurized to a cabin altitude of 6,600 feet (2,000 m). The jet features single-point refueling and an externally serviced private rear lavatory, refreshment center and baggage area. It received FAA Type Certification on 14 December 2009 as the Embraer EMB-505.

On 29 December 2009 Embraer delivered the first Phenom 300 to Executive Flight Services at the company’s headquarters at São José dos Campos, Brazil.  In just four years, the Phenom 300 climbed to the top position on the list of most delivered business jets, with 60 units delivered in 2013. The Phenom 300 is the fastest seller in NetJets‘ inventory, counting thirty-six (36).  A beautiful aircraft with the ten (10)  most recent deliveries totaling $90 million. 

BUSINESS

MILITARY ISSUE:

Embraer has started work on modernizing a second production of Northrop F-5E fighters and F-model trainers for the Brazilian air force.

Three aircraft from a total of 11 are already being worked on at the company’s facilities in Gavião Peixoto, Brazil, with deliveries expected to start later this year. Embraer says it completed the delivery of a first batch of 46 modified F-5EM/FMs in 2012.  That aircraft is shown below.

Fighter

Both the modernized F-5M and AMX are being upgraded to a common avionics configuration. “What we are doing in Brazil is basically a commonality between the Super Tucano, F-5 and the AMX so that the pilots would not have many problems for transition,” Embraer says. “You also reduce costs and assist in training.”

The AMX and F-5 fleets are also receiving Elbit Systems-built radars, in addition to upgraded electronic warfare equipment, in-flight refueling systems and other improvements.

Meanwhile, the Brazilian navy is also upgrading its small fleet of 12 Douglas A-4 Skyhawk carrier-based light strike aircraft. At least one of the Skyhawks is currently being modernized at Gavião Peixoto, but Embraer could not immediately offer any details.

Alongside the modernization work for the Brazilian military, the factory at Gavião Peixoto is at work building a number of Super Tucanos for export customers in Angola and Indonesia.

Brazil is has previously increased spending on defense to prepare hosting the FIFA World Cup in 2014 and Olympic Games 2016 respectively.

There is also a growing realization in the country that it will have to work diligently in the future to protect its vast natural resources. This could unfortunately require military preparedness.

Another example of Embraer’s military ability may be seen from the following aircraft:

Heavy Duty Cargo Aircraft

The Embraer KC-390 is a medium-size, twin-engine jet-powered military transport aircraft now under development.  It is able to perform aerial refueling and to transport cargo and troops and will be the heaviest aircraft the company has in its inventory.  It will be able to transport up to 21 metric tons (23 short tons) of cargo, including wheeled armored fighting vehicles.

AGRICULTURAL:

The Ipanema is the market leader, with 50 years of continuous production and over 1,300 units sold, representing about 75% of the nation’s fleet in this segment.   The Ipanema agricultural aircraft is a leading agricultural market in Brazil, with about 60% share.  There has been 40 years of continuous production and constant research to improve the aircraft.  That concentration of effort always focused on the needs of the customers and the national agricultural market.  This brand demonstrates the reliability, solidity and tradition of Ipanema.  One other fact, the Ipanema is the first aircraft certified to fly powered solely by ethanol.  In addition to the economic advantages and obtained improvement in engine performance, ethanol is a renewable source of energy, which helps protect the environment.

Agricultural

CONCLUSION:

As you can see, the United States aircraft manufacturers do have competition and excellent competition at that.    This foreign entry keeps us on our toes.

BOEING 777

March 22, 2015


The following post used the following references as resources: 1.) Aviation Week and 2.) the Boeing Company web site for the 777 aircraft configurations and history of the Boeing Company.

I don’t think there is much doubt that The Boeing Company is and has been the foremost company in the world when it comes to building commercial aircraft. The history of aviation, specifically commercial aviation, would NOT be complete without Boeing being in the picture. There have been five (5) companies that figured prominently in aviation history relative to the United States. Let’s take a look.

THE COMPANIES:

During the last one hundred (100) years, humans have gone from walking on Earth to walking on the moon. They went from riding horses to flying jet airplanes. With each decade, aviation technology crossed another frontier, and, with each crossing, the world changed.

During the 20th century, five companies charted the course of aerospace history in the United States. They were the Boeing Airplane Co., Douglas Aircraft Co., McDonnell Aircraft Corp., North American Aviation and Hughes Aircraft. By the dawning of the new millennium, they had joined forces to share a legacy of victory and discovery, cooperation and competition, high adventure and hard struggle.

Their stories began with five men who shared the vision that gave tangible wings to the eternal dream of flight. William Edward Boeing, born in 1881 in Detroit, Mich., began building floatplanes near Seattle, Wash. Donald Wills Douglas, born in 1892 in New York, began building bombers and passenger transports in Santa Monica, Calif. James Smith McDonnell, born in 1899 in Denver, Colo., began building jet fighters in St. Louis, Mo. James Howard “Dutch” Kindelberger, born in 1895 in Wheeling, W.Va., began building trainers in Los Angeles, Calif. Howard Hughes Jr. was born in Houston, Texas, in 1905. The Hughes Space and Communications Co. built the world’s first geosynchronous communications satellite in 1963.

These companies began their journey across the frontiers of aerospace at different times and under different circumstances. Their paths merged and their contributions are the common heritage of The Boeing Company today.

In 1903, two events launched the history of modern aviation. The Wright brothers made their first flight at Kitty Hawk, N.C., and twenty-two (22) year-old William Boeing left Yale engineering college for the West Coast.

After making his fortune trading forest lands around Grays Harbor, Wash., Boeing moved to Seattle, Wash., in 1908 and, two years later, went to Los Angeles, Calif., for the first American air meet. Boeing tried to get a ride in one of the airplanes, but not one of the dozen aviators participating in the event would oblige. Boeing came back to Seattle disappointed, but determined to learn more about this new science of aviation.

For the next five years, Boeing’s air travel was mostly theoretical, explored during conversations at Seattle’s University Club with George Conrad Westervelt, a Navy engineer who had taken several aeronautics courses from the Massachusetts Institute of Technology.

The two checked out biplane construction and were passengers on an early Curtiss Airplane and Motor Co.-designed biplane that required the pilot and passenger to sit on the wing. Westervelt later wrote that he “could never find any definite answer as to why it held together.” Both were convinced they could build a biplane better than any on the market.

In the autumn of 1915, Boeing returned to California to take flying lessons from another aviation pioneer, Glenn Martin. Before leaving, he asked Westervelt to start designing a new, more practical airplane. Construction of the twin-float seaplane began in Boeing’s boathouse, and they named it the B & W, after their initials. THIS WAS THE BEGINNING.  Boeing has since developed a position in global markets unparallel relative to competition.

This post is specifically involved with the 777 product and changes in the process of being made to upgrade that product to retain markets and fend off competition such as the Airbus. Let’s take a look.

SPECIFICATION FOR THE 777:

In looking at the external physical characteristics, we see the following:

BOEING GENERAL EXTERNAL ARRANGEMENTS

As you can see, this is one BIG aircraft with a wingspan of approximately 200 feet and a length of 242 feet for the “300” version.  The external dimensions are for passenger and freight configurations.  Both enjoy significantly big external dimensions.

Looking at the internal layout for passengers, we see the following:

TYPICAL INTERIOR SEATING ARRANGEMENTS

TECHNICAL CHARACTERISTICS:

If will drill down to the nitty-gritty, we find the following:

TECHNICAL CHARACTERISTICS(1)

TECHNICAL CHARACTERISTICS(2)

As mentioned, the 777 also provides much needed services for freight haulers the world over.  In looking at payload vs. range, we see the following global “footprint” and long range capabilities from Dubai.  I have chosen but similar “footprints” may be had from Hong Kong, London, Los Angles, etc etc.

FREIGHTER PAYLOAD AND RANGE

Even with these very impressive numbers, Boeing felt an upgrade was necessary to remain competitive to other aircraft manufacturers.

UPGRADES:

Ever careful with its stewardship of the cash-generating 777 program, Boeing is planning a series of upgrades to ensure the aircraft remains competitive in the long-range market well after the 777X derivative enters service.

The plan, initially revealed this past January, was presented in detail by the company for the first time on March 9 at the International Society of Transport Air Trading meeting in Arizona. Aimed at providing the equivalent of two percent (2%) fuel-burn savings in baseline performance, the rolling upgrade effort will also include a series of optional product improvements to increase capacity by up to fourteen (14) seats that will push the total potential fuel-burn savings on a per-seat basis to as much as five percent (5%) over the current 777-300ER by late 2016.

At least 0.5% of the overall specific fuel-burn savings will be gained from an improvement package to the aircraft’s GE90-115B engine, the first elements of which General Electric will test later this year.  The bulk of the savings will come from broad changes to reduce aerodynamic drag and structural weight. Additional optional improvements to the cabin will also provide operators with more seating capacity and upgraded features that would offer various levels of extra savings on a per-seat basis, depending on specific configurations and layouts.  The digital below will highlight the improvements announced.

UPGRADES FOR 777

“We are making improvements to the fuel-burn performance and the payload/range and, at same time, adding features and functionality to allow the airlines to continue to keep the aircraft fresh in their fleets,” says 777 Chief Project Engineer and Vice President Larry Schneider. The upgrades, many of which will be retro-fittable, come as Boeing continues to pursue new sales of the current-generation twin to help maintain the 8.3-per-month production rate until the transition to the 777X at the end of the decade. Robert Stallard, an analyst at RBS Europe, notes that Boeing has a firm backlog of 273 777-300s and 777Fs, which equates to around 2.7 years of current production. “We calculate that Boeing needs to get 272 new orders for the 777 to bridge the current gap and then transition production phase on the 777X,” he says.

The upgrades will also boost existing fleets, Boeing says. “Our 777s are operated by the world’s premier airlines and now we are seeing the Chinese carriers moving from 747 fleets to big twins,” says Schneider. “There are huge 777 fleets in Europe and the Middle East, as well as the U.S., so enabling [operators] to be able to keep those up to date and competitive in the market—even though some of them are 15 years old—is a big element of this.”

Initial parts of the upgrade are already being introduced and, in the tradition of the continuous improvements made to the family since it entered service, will be rolled into the aircraft between now and the third quarter of 2016. “There is not a single block point in 2016 where one aircraft will have everything on it. It is going to be a continuous spin-out of those capabilities,” Schneider says. Fuel-burn improvements to both the 777-200LR and -300ER were introduced early in the service life of both derivatives, and the family has also received several upgrades to the interior, avionics and maintenance features over the last decade.

The overall structural weight of the 777-300ER will be reduced by 1,200 lb. “When the -300ER started service in 2004 it was 1,800 lb. heavier, so we have seen a nice healthy improvement in weight,” he adds. The reductions have been derived from production-line improvements being introduced as part of the move to the automated drilling and riveting process for the fuselage, which Boeing expects will cut assembly flow time by almost half. The manufacturer is adopting the fuselage automated upright build (FAUB) process as part of moves to streamline production ahead of the start of assembly of the first 777-9X in 2017.

One significant assembly change is a redesign of the fuselage crown, which follows the simplified approach taken with the 787. “All the systems go through the crown, which historically is designed around a fore and aft lattice system that is quite heavy. This was designed with capability for growth, but that was not needed from a systems standpoint. So we are going to a system of tie rods and composite integration panels, like the 787. The combination has taken out hundreds of pounds and is a significant improvement for workers on the line who install it as an integrated assembly,” Schneider says. Other reductions will come from a shift to a lower weight, less dense form of cabin insulation and adoption of a lower density hydraulic fluid.

Boeing has also decided to remove the tail skid from the 777-300ER as a weight and drag reduction improvement after developing new flight control software to protect the tail during abused takeoffs and landings. “We redesigned the flight control system to enable pilots to fly like normal and give them full elevator authority, so they can control the tail down to the ground without touching it. The system precludes the aircraft from contacting the tail,” Schneider says. Although Boeing originally developed the baseline electronic tail skid feature to prevent this from occurring on the -300ER, the “old system allowed contact, and to be able to handle those loads we had a lot of structure in the airplane to transfer them through the tailskid up through the aft body into the fuselage,” he adds. “So there are hundreds of pounds in the structure, and to be able to take all that out with the enhanced tail strike-protection system is a nice improvement.”

Boeing is also reducing the drag of the 777 by making a series of aerodynamic changes to the wing based on design work conducted for the 787 and, perhaps surprisingly, the long-canceled McDonnell Douglas MD-12. The most visible change, which sharp-eyed observers will also be able to spot from below the aircraft, is a 787-inspired inboard flap fairing redesign.

“We are using some of the technology we developed on the 787 to use the fairing to influence the pressure distribution on the lower wing. In the old days, aerodynamicists were thrilled if you could put a fairing on an airplane for just the penalty of the skin friction drag. On the 787, we spent a lot of time working on the contribution of the flap fairing shape and camber to control the pressures on the lower wing surface.”

Although Schneider admits that the process was a little easier with the 787’s all-new wing, Boeing “went back and took a look at the 777 and we found a nice healthy improvement,” he says. The resulting fairing will be longer and wider, and although the larger wetted area will increase skin friction, the overall benefits associated with the optimized lift distribution over the whole wing will more than compensate. It’s a little counterintuitive,” says Schneider, adding that wind-tunnel test results of the new shape showed close correlation with benefits predicted by computational fluid dynamics (CFD) analysis using the latest boundary layer capabilities and Navier-Stokes codes.

Having altered the pressure distribution along the underside of the wing, Boeing is matching the change on the upper surface by reaching back to technology developed for the MD-12 in the 1990s. The aircraft’s outboard raked wingtip, a feature added to increase span with the development of the longer-range variants, will be modified with a divergent trailing edge. “Today it has very low camber, and by using some Douglas Aircraft technology from the MD-12 we get a poor man’s version of a supercritical airfoil,” says Schneider. The tweak will increase lift at the outboard wing, making span loading more elliptical and reducing induced drag.

Boeing has been conducting loads analysis on the 777 wing to “make sure we understand where all those loads will go,” he says. A related loads analysis to evaluate whether the revisions could also be incorporated into a potential retrofit kit will be completed this month. “When we figure out at which line number those two changes will come together (as they must be introduced simultaneously by necessity), we will do a single flight to ensure we don’t have any buffet issues from the change in lift distribution. That’s our certification plan,” Schneider says.

A third change to the wing will focus on reducing the base drag of the leading-edge slat by introducing a version with a sharper trailing edge. “The trailing-edge step has a bit of drag associated with it, so we will be making it sharper and smoothing the profile,” he explains. The revised part will be made thinner and introduced around mid-2016. Further drag reductions will be made by extending the seals around the inboard end of the elevator to reduce leakage and by making the passenger windows thicker to ensure they are fully flush with the fuselage surface. The latter change will be introduced in early 2016.

In another change adopted from the 787, Boeing also plans to alter the 777 elevator trim bias. The software-controlled change will move the elevator trailing edge position in cruise by up to 2 deg., inducing increased inverse camber. This will increase the download, reducing the overall trim drag and improving long-range cruise efficiency.

The package of changes means that range will be increased by 100nm or, alternatively, an additional 5,000 lb. of payload can be carried. Some of this extra capacity could be utilized by changes in the cabin that will free up space for another fourteen (14) seats. These will include a revised seat track arrangement in the aft of the cabin to enable additional seats where the fuselage tapers. Some of the extra seating, which will increase overall seat count by three percent (3%), could feature the option of arm rests integrated into the cabin wall. Schneider says the added seats, on top of the baseline  two percent (2%) fuel-burn improvement, will improve total operating efficiency by five percent (5%) on a block fuel per-seat basis.

Other cabin change options will include repackaged Jamco-developed lavatory units that provide the same internal space as today’s units but are eight (8) inch narrower externally. The redesign includes the option of a foldable wall between two modules, providing access for a disabled passenger and an assistant. Boeing is also developing noise-damping modifications to reduce cabin sound by up to 2.5 db, full cabin-length LED lighting and a 787-style entryway around Door 2. Boeing is also preparing to offer a factory-fitted option for electrically controlled window shades, similar to the 777 system developed as an aftermarket modification by British Airways.

CONCLUSIONS:

As you can see, the 777 is preparing to continue service for decades ahead by virtue of the modifications and improvements shown above.

As always, I welcome your comments.


The following post uses as references:  Bloomberg Business, National Council on Higher Education, The Business Insider, and The College Board.

May 7 (Bloomberg) — A group of bankers that advises the Federal Reserve’s Board of Governors has warned that farmland prices are inflating “a bubble” and growth in student-loan debt has “parallels to the housing crisis.  “Recent growth in student-loan debt, to nearly $1 trillion, now exceeds credit-card outstandings and has parallels to the housing crisis,” the council said in its Feb. 3, 2012, meeting. The trend has continued, with the Consumer Financial Protection Bureau saying in March 2012 that student debt had topped a record $1 trillion.

I was extremely surprised when first reading this statement published in Bloomberg Business.  That surprise lasted about ten seconds.  My wife and I put three boys through college; Mercer University, Tulane University and the University of Georgia.  Even though they worked and had scholarships, the cost of a university education, even ten years ago, was daunting to a working engineer and his working wife.  I can categorically state the cost of tuition for our three increased between three (3) and ten (10) percent each year depending upon the school.  Have you purchased textbooks lately?  Our youngest son had a book bill approaching $600.00 one semester. He was an undergraduate.  Absolutely ridiculous.  Of course this is not to mention lab fees, parking permits, mandated university health insurance and a host of other requirements the universities levied upon students and their parents. The chart below will indicate the increases by year.  As you can see, these numbers are for public colleges.

TUITION INFLATION

The next chart will indicate tuition and total costs by region for two and four year colleges both public and private.

TUITION AND TOTAL COSTS

Seven in ten (10) seniors (69%) who graduated from public and nonprofit colleges in 2013 had student loan debt, with an average of $28,400 per borrower. This represents a two percent increase from the average debt of 2012 public and nonprofit graduates.  The map below indicates graphically the problem by region.

STUDENT LOAN BY STATE AND REGION

The twenty (20) high-debt public colleges had an individual average debt levels ranging from $33,950 to $48,850, while the twenty (20) high-debt nonprofit colleges ranged from $41,750 to $71,350. Of the twenty (20) low-debt colleges listed, nine were public and eleven (11) were nonprofit schools, with reported average debt levels ranging between $2,250 and $11,200.

Let’s now congratulate the class of 2014. You now “enjoy” being the class with the most individual student debt in history.  This comes at a time when job opportunities are at a minimum.

THE CLASS OF 2014

From the experience my wife and I had with our three boys, I’m not surprised at the following chart.  As you can see, those who wish to obtain a college degree are sometimes forced to secure loans due to the extremely high tuition, book and living expenses. In looking at the graph below, we see that number approaching seventy percent (70%).

MORE STUDENTS TAKING ON DEBT

The next one is really scary.  Take a look.

YOUNG PEOPLE AND WHAT THEY OWE VS WHAT THEY MAKE

Student debt up approximately thirty-five percent (35%) and earned income down five percent (5%) from the year 2009.

One individual, in business, has recognized the gravity relative to this issue—Mr. Mark Cuban.

Mark Cuban states:

“It’s inevitable at some point there will be a cap on student loan guarantees. And when that happens you’re going to see a repeat of what we saw in the housing market: when easy credit for buying or flipping a house disappeared we saw a collapse in the price housing, and we’re going to see that same collapse in the price of student tuition, and that’s going to lead to colleges going out of business.”

I honestly believe Mr. Cuban is correct.  Our economy either improves with significant increases in individual earning power or great issues with student debt will create a situation where smaller less prestigious colleges and even universities will have to close.  The drop in enrollment will be significant.  We have already experienced that in our town with two four year colleges closing.

OK, the big question.  With the economy being in “the tank”, is a four year college degree worth it?  Would it be better and with less stress to look at the “trades”?

  • Plumber. The median salary for a plumber was $50,180 in 2013, the BLS reports. The best-paid pulled in about $86,120, while those in the bottom 10 percent earned $29,590 a year.
  • Electrician Salary: $55,783 (average).
  • Average Machinist Salary: $37,000.
  • Auto Mechanic. The median annual salary for mechanic and automotive technicians was $36,710 in 2013. The highest earners in the field made about $61,210, while the lowest-paid took home $20,920.
  • CAD Technician Salary: $47,966 (average)

Please don’t misunderstand, I have a four year degree in Engineering and love the profession.  The university experience is wonderful and extremely rewarding, but maybe learning a trade and going to night school to obtain that four year degree is not such a bad idea after all.  Even if it does mean an eight or ten year journey.  If there is one thing I have learned in my seventy-two years: we have time. YES, there is time to do what you wish to do.  You have to develop a plan, set realistic goals, stay focused and DO NOT GIVE UP.

I welcome your comments.

Follow

Get every new post delivered to your Inbox.

Join 117 other followers