Portions of this post are taken from the January 2018 article written by John Lewis of “Vision Systems”.

I feel there is considerable confusion between Artificial Intelligence (AI), Machine Learning and Deep Learning.  Seemingly, we use these terms and phrases interchangeably and they certainly have different meanings.  Natural Learning is the intelligence displayed by humans and certain animals. Why don’t we do the numbers:

AI:

Artificial Intelligence refers to machines mimicking human cognitive functions such as problem solving or learning.  When a machine understands human speech or can compete with humans in a game of chess, AI applies.  There are several surprising opinions about AI as follows:

  • Sixty-one percent (61%) of people see artificial intelligence making the world a better place
  • Fifty-seven percent (57%) would prefer an AI doctor perform an eye exam
  • Fifty-five percent (55%) would trust an autonomous car. (I’m really not there as yet.)

The term artificial intelligence was coined in 1956, but AI has become more popular today thanks to increased data volumes, advanced algorithms, and improvements in computing power and storage.

Early AI research in the 1950s explored topics like problem solving and symbolic methods. In the 1960s, the US Department of Defense took interest in this type of work and began training computers to mimic basic human reasoning. For example, the Defense Advanced Research Projects Agency (DARPA) completed street mapping projects in the 1970s. And DARPA produced intelligent personal assistants in 2003, long before Siri, Alexa or Cortana were household names. This early work paved the way for the automation and formal reasoning that we see in computers today, including decision support systems and smart search systems that can be designed to complement and augment human abilities.

While Hollywood movies and science fiction novels depict AI as human-like robots that take over the world, the current evolution of AI technologies isn’t that scary – or quite that smart. Instead, AI has evolved to provide many specific benefits in every industry.

MACHINE LEARNING:

Machine Learning is the current state-of-the-art application of AI and largely responsible for its recent rapid growth. Based upon the idea of giving machines access to data so that they can learn for themselves, machine learning has been enabled by the internet, and the associated rise in digital information being generated, stored and made available for analysis.

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level understanding. Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Machine learning focuses on the development of computer programs that can access data and use it learn for themselves.

DEEP LEARNING:

Deep Learning concentrates on a subset of machine-learning techniques, with the term “deep” generally referring to the number of hidden layers in the deep neural network.  While conventional neural network may contain a few hidden layers, a deep network may have tens or hundreds of layers.  In deep learning, a computer model learns to perform classification tasks directly from text, sound or image data. In the case of images, deep learning requires substantial computing power and involves feeding large amounts of labeled data through a multi-layer neural network architecture to create a model that can classify the objects contained within the image.

CONCLUSIONS:

Brave new world we are living in.  Someone said that AI is definitely the future of computing power and eventually robotic systems that could possibly replace humans.  I just hope the programmers adhere to Dr. Isaac Asimov’s three laws:

 

  • The First Law of Robotics: A robot may not injure a human being or, through inaction, allow a human being to come to harm.

 

  • The Second Law of Robotics: A robot must obey the orders given to it by human beings, except where such orders would conflict with the First Law.

 

  • The Third Law of Robotics: A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

With those words, science-fiction author Isaac Asimov changed how the world saw robots. Where they had largely been Frankenstein-esque, metal monsters in the pulp magazines, Asimov saw the potential for robotics as more domestic: as a labor-saving device; the ultimate worker. In doing so, he continued a literary tradition of speculative tales: What happens when humanity remakes itself in its image?

As always, I welcome your comments.

Advertisements

The convergence of “smart” microphones, new digital signal processing technology, voice recognition and natural language processing has opened the door for voice interfaces.  Let’s first define a “smart device”.

A smart device is an electronic device, generally connected to other devices or networks via different wireless protocols such as Bluetooth, NFC, Wi-Fi, 3G, etc., that can operate to some extent interactively and autonomously.

I am told by my youngest granddaughter that all the cool kids now have in-home, voice-activated devices like Amazon Echo or Google Home. These devices can play your favorite music, answer questions, read books, control home automation, and all those other things people thought the future was about in the 1960s. For the most part, the speech recognition of the devices works well; although you may find yourself with an extra dollhouse or two occasionally. (I do wonder if they speak “southern” but that’s another question for another day.)

A smart speaker is, essentially, a speaker with added internet connectivity and “smart assistant” voice-control functionality. The smart assistant is typically Amazon Alexa or Google Assistant, both of which are independently managed by their parent companies and have been opened up for other third-parties to implement into their hardware. The idea is that the more people who bring these into their homes, the more Amazon and Google have a “space” in every abode where they’re always accessible.

Let me first state that my family does not, as yet, have a smart device but we may be inching in that direction.  If we look at numbers, we see the following projections:

  • 175 million smart devices will be installed in a majority of U.S. households by 2022 with at least seventy (70) million households having at least one smart speaker in their home. (Digital Voice Assistants Platforms, Revenues & Opportunities, 2017-2022. Juniper Research, November 2017.)
  • Amazon sold over eleven (11) million Alexa voice-controlled Amazon Echo devices in 2016. That number was expected to double for 2017. (Smart Home Devices Forecast, 2017 to 2022(US) Forester Research, October 2017.
  • Amazon Echo accounted for 70.6% of all voice-enabled speaker users in the United States in 2017, followed by Google Home at 23.8%. (eMarketer, April 2017)
  • In 2018, 38.5 million millennials are expected to use voice-enabled digital assistants—such as Amazon Alexa, Apple Siri, Google Now and Microsoft Cortana—at least once per month. (eMarketer, April 2017.)
  • The growing smart speaker market is expected to hit 56.3 million shipments, globally in 2018. (Canalys Research, January 2018)
  • The United States will remain the most important market for smart speakers in 2018, with shipments expected to reach 38.4 million units. China is a distant second at 4.4 million units. (Canalys Research, April 2018.)

With that being the case, let’s now look at what smart speakers are now commercialized and available either as online purchases or retail markets:

  • Amazon Echo Spot–$114.99
  • Sonos One–$199.00
  • Google Home–$129.00
  • Amazon Echo Show–$179.99
  • Google Home Max–$399.00
  • Google Home Mini–$49.00
  • Fabriq Choros–$69.99
  • Amazon Echo (Second Generation) –$$84.99
  • Harman Kardon Evoke–$199.00
  • Amazon Echo Plus–$149.00

CONCLUSIONS:  If you are interested in purchasing one from the list above, I would definitely recommend you do your homework.  Investigate the services provided by a smart speaker to make sure you are getting what you desire.  Be aware that there will certainly be additional items enter the marketplace as time goes by.  GOOD LUCK.

MOST HATED COMPANIES

February 3, 2018


The list of the “most hated American companies” was provided by KATE GIBSON in the MONEYWATCH web site, February 1, 2018, 2:20 PM.  The text and narrative is this author’s.

Corporate America is sometimes, but not always, blamed for a number of misdeeds, swindles, “let’s bash the little guy”, etc. behavior.  Many times, those charges are warranted.   You get the picture.   Given below, is a very quick list of the twenty (20) most hated U.S. companies.  This list is according to 24/7 Wall St., which took customer surveys, employee reviews and news events into account in devising its list: ( I might mention the list is in descending order so the most-egregious offender is at the bottom.

  • The Weinstein Company. I think we can all understand this one but I strongly believe most of the employees of The Weinstein Company are honest hard-working individuals who do their job on a daily basis.  One big problem—you CANNOT tell me the word did not get around relative to Weinstein’s activities.  Those who knew are definitely complicit and should be ashamed of themselves.  This includes those holier-than-thou- actresses and actors pretending not-to-know.
  • United Airlines. The Chicago-based carrier is still in the dog housewith customers after a video of a passenger being forcibly removed from his seat on an overbooked flight went viral last year. You simply do NOT treat individuals, much less customers, in the manner in which this guy was treated.  I wonder how much money United has lost due to the video?
  • Fake news, deceptive ads, invasion of privacy.  You get the picture and YET millions subscribe.  This post will be hyperlinked to Facebook to improve readership.  That’s about the only reason I use the website.
  • I don’t really know these birds but apparently the telecom, one of the nation’s biggest internet and telephone service providers, reportedly gets poor reviews from customers and employees alike. I think that just might be said for many of the telecoms.
  • This one baffles me to a great extent but the chemical company has drawn public ire at a lengthy list of harmful products, including DDT, PCBs and Agent Orange. Most recently, it’s accused of causing cancer in hundreds exposed to its weed killer, Roundup.
  • I’m a Comcast subscriber and let me tell you their customer service is the WORST. They are terrible.  Enough said.
  • I have taken Uber multiple times with great success but there are individuals who have been harassed.  Hit by complaints of sexual harassment at the company and a video of its then-CEO Travis Kalanick arguing with an Uber driver, the company last year faced a slew of lawsuit and saw 13 executives resign, including Kalanick.
  • Sears Holdings. Sears plans to close more than one hundred (100) additional stores through the spring of 2018, with the count of Sears and Kmart stores already down to under 1,300 from 3,467 in 2007. Apparently, customer satisfaction is a huge problem also.  The retail giant needs a facelift and considerable management help to stay viable in this digital on-line-ordering world.
  • Trump Organization.  At this point in time, Donald Trumpis the least popular president in U.S. history, with a thirty-five (35) percent approval rating at the end of December. That disapproval extends to the Trump brand, which includes golf courses, a hotel chain and real estate holdings around the globe. One again, I suspect that most of the employees working for “the Donald” are honest hard-working individuals.
  • Wells Fargo. At one time, I had a Wells Fargo business account. NEVER AGAIN. I won’t go into detail.
  • The insurance industry is not exactly beloved, and allegations of fraud have not helped Cigna’s case. Multiple lawsuits allege the company inflated medical costs and overcharged customers.
  • Spirit Airlines. I’ve flown Spirit Airlines and you get what you pay for. I do not know why customers do not know that but it is always the case.  You want to be treated fairly, fly with other carriers.
  • Vice Media The media organization has lately been roiled by allegations of systemic sexual harassment, dating back to 2003. One of these day some bright individual in the corporate offices will understand you must value your employees.
  • The telecom gets knocked for poor customer experiences that could in part be due to service, with Sprint getting low grades for speed and data, as well as calling, texting and overall reliability.
  • Foxconn Technology Group. Once again, I’m not that familiar with Foxconn Technology Group. The company makes and assembles consumer electronics for entities including Apple and Nintendo. It’s also caught attention for poor working and living conditions after a series of employee suicides at a compound in China. It recently drew negative press for a planned complex in Wisconsin.
  • Electronic Arts. The video-game maker known for its successful franchises is also viewed poorly by gamers for buying smaller studios or operations for a specific game and then taking away its originality.
  • University of Phoenix. I would expect every potential student wishing to go on-line for training courses do their homework relative to the most-desirable provider. The University of Phoenix does a commendable job in advertising but apparently there are multiple complaints concerning the quality of services.
  • I’m a little burned out with the NFL right now. My Falcons and Titans have had a rough year and I’m ready to move on to baseball. Each club sets their own spring training reporting dates each year, though all camps open the same week. Pitchers and catchers always arrive first. The position players don’t have to show up until a few days later. Here are this year’s reporting dates for the 15 Cactus League teams, the teams that hold spring training in Arizona.
  • Fox Entertainment Group. If you do not like the channel—do something else.  I bounce back and forth across the various schedules to find something I really obtain value-added from.  The Food Network, the History Channel, SEC Network.  You choose.  There are hundreds of channels to take a look at.
  • The consumer credit reporting was hit by a massive hack last year, exposing the personal data of more than 145 million Americans and putting them at risk of identity theft. Arguably worse, the company sat on the information for a month before letting the public know.

CONCLUSIONS:  In looking at this survey, there are companies that deserve their most-hated-status and, in my opinion, some that do not.  Beauty is in the eye of the beholder.  As always, I welcome your comments.

ABIBLIOPHOBIA

January 10, 2018


Abibliophobia is the fear of running out of reading material.  Basically, just look up the Greek root-phobia and add whatever word you are afraid of, replace the ending with -o- and couple the results with phobia.  If you have any experience with libraries, the Internet, the back of soup cans, etc. you know there is more than enough material out there to be read and digested. It amazes me that this word has just “popped” up of the last few years.

Now, the World Wide Web is a cavernous source of reading material.  Indeed, it’s a bigger readers’ repository than the world has ever known, so it seems rather ironic that the term abibliophobia appears to have been coined on the Web during the last three or four years. It would seem impossible for anyone with regular access to the Internet to be an abibliophobe (someone suffering from a fear of running out of reading material) or to become abibliophobic when more and more reading matter is available by the hour.  Let’s look at just what is available to convince the abibliophobic individual that there is no fear of running out of reading material.

  • There Are More Than 440 Million Blogs In The World. By October 2011, there were an estimated 173 million blogs Nielsen estimates that by the end of 2011, that number had climbed to 181 million. That was four years after Tumblr launched, and in May 2011, there were just 17.5 million Tumblr blogs.  Today, there are over 360 million blogs on Tumblr alone, and there are millions more on other platforms. While there are some reliable statistics on the number of blogs in 2011, things have changed dramatically with the rise of services like Tumblr, WordPress, Squarespace, Medium and more. Exactly how many blogs there are in the world is difficult to know, but what’s clear is that blogs online number in the hundreds of millions. The total number of blogs on TumblrSquarespace, and WordPress alone equals over 440 million. In actuality, the total number of blogs in the world likely greatly exceeds this number. We do know that content is being consumed online more widely, more quickly, and more voraciously than ever before.
  • According to WordPress, 76.3 million posts are published on WordPress each month, and more than 409 million people view 22.3 billion blog pages each month. It’s interesting to see that there are about 1 billion websites and blogs in the world today. But that figure is not as helpful as looking at the other statistics involving blogging. For example, did you know that more than 409 million people on WordPress view more than 23.6 billion pages each month? Did you know that each month members produce 69.5 million new posts?
  • Websites with a blog have over 434% more indexed pages.
  • 76% of online marketers say they plan to add more content over the 2018 year.
  • There are an estimated 119,487 libraries of all kinds in the United States today.
  • It is estimated that there are 000 libraries in the world. Russia, India and China have about 50.000 each.

Thanks to Johannes Gensfleisch zur Laden zum Gutenberg, the written word flourished after he invented the printing press.  Gutenberg in 1439 was the first European to use movable type. Among his many contributions to printing are: the invention of a process for mass-producing movable type; the use of oil-based ink for printing books; adjustable molds; mechanical movable type; and the use of a wooden printing press similar to the agricultural screw presses of the period. His truly epochal invention was the combination of these elements into a practical system that allowed the mass production of printed books and was economically viable for printers and readers alike. Gutenberg’s method for making type is traditionally considered to have included a type metal alloy and a hand mold for casting type. The alloy was a mixture of lead, tin, and antimony melted at a relatively low temperature for faster and more economical casting.  His invention was a game-changing event for all prospective readers the world over.  No longer will there be a fear of or absence of material to read.

CONCLUSIONS:

I think the basic conclusion here is not the fear of having no reading material but the fear of reading.

  • If I read, I might miss my favorite TV programs.
  • If I read, I might miss that important phone call.
  • Why read when I can TWEET?
  • Why read when I can stream Netflix or HULU?
  • I’m such a slow reader. It just takes too much time.
  • I cannot find any subject I’m really that interested in.
  • I really have no quite place to read.
  • ___________________ Fill in the blanks.

Reading does take a commitment, so why not set goals and commit?

BITCOIN

December 9, 2017


I have been hearing a great deal about Bitcoin lately specifically on the early-morning television business channels. I am not too sure what this is all about so I thought I would take a look.    First, an “official” definition.

Bitcoin is a cryptocurrency and worldwide payment system. It is the first decentralized digital currency, as the system works without a central bank or single administrator. … Bitcoin was invented by an unknown person or group of people under the name Satoshi Nakamoto and released as open-source software in 2009.

The “unknown” part really disturbs me as well as the “cryptocurrency” aspects, but let’s continue.  Do you remember the Star Trek episodes in which someone asks, ‘how much does it cost and the answer is _______ credits’?  This is specifically what Bitcoin does, it is digital currency. No one controls Bitcoin; they aren’t printed, like dollars or euros – they’re produced by people, and increasingly businesses, running computers all around the world, using software that solves mathematical problems. A Bitcoin looks as follows-if you acquire a physical object representing“coin”.

Bitcoin transactions are completed when a “block” is added to the blockchain database that underpins the currency however, this can be a laborious process.  Segwit2x proposes moving bitcoin’s transaction data outside of the block and on to a parallel track to allow more transactions to take place. The changes happened in November and it remains to be seen if those changes will have a positive or negative impact on the price of bitcoin in the long term.

It’s been an incredible 2017 for bitcoin growth, with its value quadrupling in the past six months, surpassing the value of an ounce of gold for the first time. It means if you invested £2,000 five years ago, you would be a millionaire today.

You cannot “churn out” an unlimited number of Bitcoin. The bitcoin protocol – the rules that make bitcoin work – say that only twenty-one (21) million bitcoins can ever be created by miners. However, these coins can be divided into smaller parts (the smallest divisible amount is one hundred millionth of a bitcoin and is called a ‘Satoshi’, after the founder of bitcoin).

Conventional currency has been based on gold or silver. Theoretically, you knew that if you handed over a dollar at the bank, you could get some gold back (although this didn’t actually work in practice). But bitcoin isn’t based on gold; it’s based on mathematics. To me this is absolutely fascinating.  Around the world, people are using software programs that follow a mathematical formula to produce bitcoins. The mathematical formula is freely available, so that anyone can check it. The software is also open source, meaning that anyone can look at it to make sure that it does what it is supposed to.

SPECIFIC CHARACTERISTICS:

  1. It’s decentralized

The bitcoin network isn’t controlled by one central authority. Every machine that mines bitcoin and processes transactions makes up a part of the network, and the machines work together. That means that, in theory, one central authority can’t tinker with monetary policy and cause a meltdown – or simply decide to take people’s bitcoins away from them, as the Central European Bank decided to do in Cyprus in early 2013. And if some part of the network goes offline for some reason, the money keeps on flowing.

  1. It’s easy to set up

Conventional banks make you jump through hoops simply to open a bank account. Setting up merchant accounts for payment is another Kafkaesque task, beset by bureaucracy. However, you can set up a bitcoin address in seconds, no questions asked, and with no fees payable.

  1. It’s anonymous

Well, kind of. Users can hold multiple bitcoin addresses, and they aren’t linked to names, addresses, or other personally identifying information.

  1. It’s completely transparent

Bitcoin stores details of every single transaction that ever happened in the network in a huge version of a general ledger, called the blockchain. The blockchain tells all. If you have a publicly used bitcoin address, anyone can tell how many bitcoins are stored at that address. They just don’t know that it’s yours. There are measures that people can take to make their activities opaquer on the bitcoin network, though, such as not using the same bitcoin addresses consistently, and not transferring lots of bitcoin to a single address.

  1. Transaction fees are miniscule

Your bank may charge you a £10 fee for international transfers. Bitcoin doesn’t.

  1. It’s fast

You can send money anywhere and it will arrive minutes later, as soon as the bitcoin network processes the payment.

  1. It’s non-reputable

When your bitcoins are sent, there’s no getting them back, unless the recipient returns them to you. They’re gone forever.

WHERE TO BUY AND SELL

I definitely recommend you do your homework before buying Bitcoin because the value is roller coaster in nature, but given below are several exchanges in which Bitcoin can be purchased or sold.  Good luck.

CONSLUSIONS:

Is Bitcoin a bubble? It’s a natural question to ask—especially after Bitcoin’s price shot up from $12,000 to $15,000 this past week.

Brent Goldfarb is a business professor at the University of Maryland, and William Deringer is a historian at MIT. Both have done research on the history and economics of bubbles, and they talked to Ars by phone this week as Bitcoin continues its surge.

Both academics saw clear parallels between the bubbles they’ve studied and Bitcoin’s current rally. Bubbles tend to be driven either by new technologies (like railroads in 1840s Britain or the Internet in the 1990s) or by new financial innovations (like the financial engineering that produced the 2008 financial crisis). Bitcoin, of course, is both a new technology and a major financial innovation.

“A lot of bubbles historically involve some kind of new financial technology the effects of which people can’t really predict,” Deringer told Ars. “These new financial innovations create enthusiasm at a speed that is greater than people are able to reckon with all the consequences.”

Neither scholar wanted to predict when the current Bitcoin boom would end. But Goldfarb argued that we’re seeing classic signs that often occur near the end of a bubble. The end of a bubble, he told us, often comes with “a high amount of volatility and a lot of excitement.”

Goldfarb expects that in the coming months we’ll see more “stories about people who got fabulously wealthy on bitcoin.” That, in turn, could draw in more and more novice investors looking to get in on the action. From there, some triggering event will start a panic that will lead to a market crash.

“Uncertainty of valuation is often a huge issue in bubbles,” Deringer told Ars. Unlike a stock or bond, Bitcoin pays no interest or dividends, making it hard to figure out how much the currency ought to be worth. “It is hard to pinpoint exactly what the fundamentals of Bitcoin are,” Deringer said.

That uncertainty has allowed Bitcoin’s value to soar a 1,000-fold over the last five years. But it could also make the market vulnerable to crashes if investors start to lose confidence.

I would say travel at your own risk.

 


OKAY first, let us define “OPEN SOURCE SOFTWARE” as follows:

Open-source software (OSS) is computer software with its source-code made available with a license in which the copyright holder provides the rights to study, change, and distribute the software to anyone and for any purpose. Open-source software may be developed in a collaborative public manner. The benefits include:

  • COST—Generally, open source software if free.
  • FLEXIBILITY—Computer specialists can alter the software to fit their needs for the program(s) they are writing code for.
  • FREEDOM—Generally, no issues with patents or copyrights.
  • SECURITY—The one issue with security is using open source software and embedded code due to compatibility issues.
  • ACCOUNTABILITY—Once again, there are no issues with accountability and producers of the code are known.

A very detailed article written by Jacob Beningo has seven (7) excellent points for avoiding, like the plague, open source software.  Given below are his arguments.

REASON 1—LACKS TRACEABLE SOFTWARE DEVELOPMENT LIFE CYCLE–Open source software usually starts with an ingenious developer working out their garage or basement hoping to create code that is very functional and useful. Eventually multiple developers with spare time on their hands get involved. The software evolves but it doesn’t really follow a traceable design cycle or even follow best practices. These various developers implement what they want or push the code in the direction that meets their needs. The result is software that works in limited situations and circumstances and users need to cross their fingers and pray that their needs and conditions match them.

REASON 2—DESIGNED FOR FUNCTIONALITY AND NOT ROBUSTNESS–Open source software is often written for functionality only. Accessed and written to an SD card for communication over USB connections. The issue here is that while it functions the code, it generally is not robust and is never designed to anticipate issues.  This is rarely the case and while the software is free, very quickly developers can find that their open source software is just functional and can’t stand up to real-world pressures. Developers will find themselves having to dig through unknown terrain trying to figure out how best to improve or handle errors that weren’t expected by the original developers.

REASON 3—ACCIDENTIALLY EXPOSING CONFIDENTIAL INTELLECTURAL PROPERTY–There are several different licensing schemes that open source software developers use. Some really do give away the farm; however, there are also licenses that require any modifications or even associated software to be released as open source. If close attention is not being paid, a developer could find themselves having to release confidential code and algorithms to the world. Free software just cost the company in revealing the code or if they want to be protected, they now need to spend money on attorney fees to make sure that they aren’t giving it all away by using “free” software.

REASON 4—LACKING AUTOMATED AND/OR MANUAL TESTING–A formalized testing process, especially automated tests are critical to ensuring that a code base is robust and has sufficient quality to meet its needs. I’ve seen open source Python projects that include automated testing which is encouraging but for low level firmware and embedded systems we seem to still lag behind the rest of the software industry. Without automated tests, we have no way to know if integrating that open source component broke something in it that we won’t notice until we go to production.

REASON 5—POOR DOCUMENTATION OR DOCUMENTATION THAT IS LACKING COMPLETELY–Documentation has been getting better among open source projects that have been around for a long time or that have strong commercial backing. Smaller projects though that are driven by individuals tend to have little to no documentation. If the open source code doesn’t have documentation, putting it into practice or debugging it is going to be a nightmare and more expensive than just getting commercial or industrial-grade software.

REASON 6—REAL-TIME SUPPORT IS LACKING–There are few things more frustrating than doing everything you can to get something to work or debugged and you just hit the wall. When this happens, the best way to resolve the issue is to get support. The problem with open source is that there is no guarantee that you will get the support you need in a timely manner to resolve any issues. Sure, there are forums and social media to request help but those are manned by people giving up their free time to help solve problems. If they don’t have the time to dig into a problem, or the problem isn’t interesting or is too complex, then the developer is on their own.

REASON 7—INTEGRATION IS NEVER AS EASY AS IT SEEMS–The website was found; the demonstration video was awesome. This is the component to use. Look at how easy it is! The source is downloaded and the integration begins. Months later, integration is still going on. What appeared easy quickly turned complex because the same platform or toolchain wasn’t being used. “Minor” modifications had to be made. The rabbit hole just keeps getting deeper but after this much time has been sunk into the integration, it cannot be for naught.

CONCLUSIONS:

I personally am by no means completely against open source software. It’s been extremely helpful and beneficial in certain circumstances. I have used open source, namely JAVA, as embedded software for several programs I have written.   It’s important though not to just use software because it’s free.  Developers need to recognize their requirements, needs, and level of robustness that required for their product and appropriately develop or source software that meets those needs rather than blindly selecting software because it’s “free.”  IN OTHER WORDS—BE CAREFUL!

THEY GOT IT ALL WRONG

November 15, 2017


We all have heard that necessity is the mother of invention.  There have been wonderful advances in technology since the Industrial Revolution but some inventions haven’t really captured the imagination of many people, including several of the smartest people on the planet.

Consider, for example, this group: Thomas Edison, Lord Kelvin, Steve Ballmer, Robert Metcalfe, and Albert Augustus Pope. Despite backgrounds of amazing achievement and even brilliance, all share the dubious distinction of making some of the worst technological predictions in history and I mean the very worst.

Had they been right, history would be radically different and today, there would be no airplanes, moon landings, home computers, iPhones, or Internet. Fortunately, they were wrong.  And that should tell us something: Even those who shape the future can’t always get a handle on it.

Let’s take a look at several forecasts that were most publically, painfully, incorrect. From Edison to Kelvin to Ballmer, click through for 10 of the worst technological predictions in history.

“Heavier-than-air flying machines are impossible.” William Thomson (often referred to as Lord Kelvin), mathematical physicist and engineer, President, Royal Society, in 1895.

A prolific scientific scholar whose name is commonly associated with the history of math and science, Lord Kelvin was nevertheless skeptical about flight. In retrospect, it is often said that Kelvin was quoted out of context, but his aversion to flying machines was well known. At one point, he is said to have publically declared that he “had not the smallest molecule of faith in aerial navigation.” OK, go tell that to Wilber and Orville.

“Fooling around with alternating current is just a waste of time. No one will use it, ever. Thomas Edison, 1889.

Thomas Edison’s brilliance was unassailable. A prolific inventor, he earned 1,093 patents in areas ranging from electric power to sound recording to motion pictures and light bulbs. But he believed that alternating current (AC) was unworkable and its high voltages were dangerous.As a result, he battled those who supported the technology. His so-called “war of currents” came to an end, however, when AC grabbed a larger market share, and he was forced out of the control of his own company.

 

“Computers in the future may weigh no more than 1.5 tons.” Popular Mechanics Magazine, 1949.

The oft-repeated quotation, which has virtually taken on a life of its own over the years, is actually condensed. The original quote was: “Where a calculator like the ENIAC today is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps weigh only 1.5 tons.” Stated either way, though, the quotation delivers a clear message: Computers are mammoth machines, and always will be. Prior to the emergence of the transistor as a computing tool, no one, including Popular Mechanics, foresaw the incredible miniaturization that was about to begin.

 

“Television won’t be able to hold on to any market it captures after the first six months. People will soon get tired of staring at a plywood box every night.” Darryl Zanuck, 20th Century Fox, 1946.

Hollywood film producer Darryl Zanuck earned three Academy Awards for Best Picture, but proved he had little understanding of the tastes of Americans when it came to technology. Television provided an alternative to the big screen and a superior means of influencing public opinion, despite Zanuck’s dire predictions. Moreover, the technology didn’t wither after six months; it blossomed. By the 1950s, many homes had TVs. In 2013, 79% of the world’s households had them.

 

“I predict the Internet will go spectacularly supernova and in 1996 catastrophically collapse.” Robert Metcalfe, founder of 3Com, in 1995.

An MIT-educated electrical engineer who co-invented Ethernet and founded 3Com, Robert Metcalfe is a holder of the National Medal of Technology, as well as an IEEE Medal of Honor. Still, he apparently was one of many who failed to foresee the unbelievable potential of the Internet. Today, 47% of the 7.3 billion people on the planet use the Internet. Metcalfe is currently a professor of innovation and Murchison Fellow of Free Enterprise at the University of Texas at Austin.

“There’s no chance that the iPhone is going to get any significant market share.” Steve Ballmer, former CEO, Microsoft Corp., in 2007.

Some magna cum laude Harvard math graduate with an estimated $33 billion in personal wealth, Steve Ballmer had an amazing tenure at Microsoft. Under his leadership, Microsoft’s annual revenue surged from $25 billion to $70 billion, and its net income jumped 215%. Still, his insights failed him when it came to the iPhone. Apple sold 6.7 million iPhones in its first five quarters, and by end of fiscal year 2010, its sales had grown to 73.5 million.

 

 

“After the rocket quits our air and starts on its longer journey, its flight would be neither accelerated nor maintained by the explosion of the charges it then might have left.” The New York Times,1920.

The New York Times was sensationally wrong when it assessed the future of rocketry in 1920, but few people of the era were in a position to dispute their declaration. Forty-one years later, astronaut Alan Shepard was the first American to enter space and 49 years later, Neil Armstrong set foot on the moon, laying waste to the idea that rocketry wouldn’t work. When Apollo 11 was on its way to the moon in 1969, the Times finally acknowledged the famous quotation and amended its view on the subject.

“With over 15 types of foreign cars already on sale here, the Japanese auto industry isn’t likely to carve out a big share of the market for itself.” Business Week, August 2, 1968.

Business Week seemed to be on safe ground in 1968, when it predicted that Japanese market share in the auto industry would be miniscule. But the magazine’s editors underestimated the American consumer’s growing distaste for the domestic concept of planned obsolescence. By the 1970s, Americans were flocking to Japanese dealerships, in large part because Japanese manufacturers made inexpensive, reliable cars. That trend has continued over the past 40 years. In 2016, Japanese automakers built more cars in the US than Detroit did.

“You cannot get people to sit over an explosion.” Albert Augustus Pope, founder, Pope Manufacturing, in the early 1900s.

Albert Augustus Pope thought he saw the future when he launched production of electric cars in Hartford, CT, in 1897. Listening to the quiet performance of the electrics, he made his now-famous declaration about the future of the internal combustion engine. Despite his preference for electrics, however, Pope also built gasoline-burning cars, laying the groundwork for future generations of IC engines. In 2010, there were more than one billion vehicles in the world, the majority of which used internal combustion propulsion.

 

 

 

“I have traveled the length and breadth of this country and talked to the best people, and I can assure you that data processing is a fad that won’t last out the year.” Editor, Prentice Hall Books,1957.

The concept of data processing was a head-scratcher in 1957, especially for the unnamed Prentice Hall editor who uttered the oft-quoted prediction of its demise. The prediction has since been used in countless technical presentations, usually as an example of our inability to see the future. Amazingly, the editor’s forecast has recently begun to look even worse, as Internet of Things users search for ways to process the mountains of data coming from a new breed of connected devices. By 2020, experts predict there will be 30 to 50 billion such connected devices sending their data to computers for processing.

CONCLUSIONS:

Last but not least, Charles Holland Duell in 1898 was appointed as the United States Commissioner of Patents, and held that post until 1901.  In that role, he is famous for purportedly saying “Everything that can be invented has been invented.”  Well Charlie, maybe not.

%d bloggers like this: