THREE DAYS IN JANUARY

January 31, 2017


In looking at the political landscape over the last fifty (50) years I can truly say I have no real heroes.  Of course, ‘beauty is truly in the eye of the beholder’.  Most of our politicians are much too concerned about their base, their brand and their legacy to be bothered with discerning and carrying out the will of the people. There are two notable exceptions—Sir Winston Churchill and President Dwight David Eisenhower.  Let’s look at the achievements of President Eisenhower.

DOMESTIC ACCOMPLISHMENTS:

  • Launched the Interstate Highway System. Also known as the National Interstate and Defense Highways Act, this act came into effect on June 29, 1956, when President Dwight D. Eisenhower signed it. It authorized $25 billion for 41,000 miles of interstate highways to be constructed in the United States.
  • The National Aeronautics and Space Administration (NASA). On July 29, 1958, President Eisenhower signed the Act that created the National Aeronautics and Space Administration (NASA) which provided for the peaceful and collaborative exploration of space.
  • The Defense Advanced Research Project Agency. Launched the Defense Advanced Research Projects Agency, which ultimately led to the development of the Internet. (Cry your eyes out Al Gore!)
  • Established a strong science education via the National Defense Education Act
  • Sent federal troops to Little Rock, Arkansas for the first time since Reconstruction to enforce federal court orders to desegregate public schools
  • Signed civil rights legislation in 1957 and 1960 to protect the right to vote by African-Americans. After declaring that “There must be no second class citizens in this country,” PresidentDwight Eisenhower told the District of Columbia to use their schools as a model of integrating black and white public schools. He proposed the Civil Rights Acts of 1957 and 1960 to Congress, which he signed into law. The 1957 Act created a civil rights office within the U.S. Justice Department and the Civil Rights Commission; both departments had the authority to prosecute discriminatory cases and voting rights intrusions. They were the first significant civil rights laws since the late 19th Century.
  • Opposed Wisconsin Senator Joseph McCarthy and contributed to the end of McCarthyism by openly invoking the modern expanded version of executive privilege.
  • Desegregated the Armed Forces: Within his first two years as president, Eisenhower forced the desegregation of the military by reinforcing Executive Order #9981 issued by President Harry Truman in 1948.

FOREIGN POLICY ACCOMPLISHMENTS:

  • Deposed the leader of Iran in the 1953 Iranian coup d’̩tat .
  • Armistice that ended the Korean War: Eisenhower used his formidable military reputation to imply a threat of nuclear attacks if North Korea, China and South Korea didn’t sign an Armistice to end the three-year-old bloody war. It was signed on July 27, 1953.
  • Prioritized inexpensive nuclear weapons and a reduction of conventional military forces as a means of keeping pressure on the Soviet Union and reducing the federal deficit
  • First to articulate the domino theory of communist expansion in 1954
  • Established the US policy of defending Taiwan from Chinese communist aggression in the 1955 Formosa Resolution
  • Forced Israel, the UK, and France to end their invasion of Egypt during the Suez Crisis of 1956
  • Sent 15,000 U.S. troops to Lebanon to prevent the pro-Western government from falling to a Nasser-inspired revolution

ACCPMPLISHMENTS PRIOR TO BECOMING PRESIDENT:

  • Becoming a five-star general in the United States Army
  • Serving as Supreme Commander of the Allied Forces in Europe during World War II
  • Serving as the supervisor and planner of North Africa’s invasion in Operation Torch in 1942-43
  • Successfully invading France and Germany in 1944-45, attacking from the Western Front
  • Becoming the first Supreme Commander of NATO
  • Becoming the 34th President of the United States for two terms, 1953 until 1961

All of these accomplishments are celebrated in a new book by Bret Baier and Catherine Whitney. Bret Baier, the chief political anchor for Fox News and talented writer Catherine Whitney, have written a book that comes at a timely moment in American history. I found a great deal of similarities between the transition of Eisenhower and Kennedy relative to the transition of Obama and Trump.  Maybe I was just looking for them but in my opinion they are definitely there.  “Three Days in January” records the final days of the Eisenhower presidency and the transition of leadership to John F. Kennedy. Baier describes the three days leading up to Kennedy’s inauguration as the culmination of one of America’s greatest leaders who used this brief time to prepare both the country and the next president for upcoming challenges.

Eisenhower did not particularly like JFK.  Baier writes: “In most respects, Kennedy, a son of privilege following a dynastic pathway, was unknowable to Ike. He was as different from Eisenhower as he could be, as well as from Truman, who didn’t much care for him.” Times of transition are difficult under the very best of circumstances but from Eisenhower to Kennedy was a time, as described by Baier, as being a time of concern on Eisenhower’s part.  There were unknowns in Eisenhower’s mind as to whether Kennedy could do the job.  Couple that with Kennedy’s young age and inexperience in global affairs and you have a compelling story.  During those three days, though, Eisenhower warmed up to Kennedy.  There was a concerted effort to make the transition as smooth as possible and even though Kennedy and his staff seemed to be very cocky, the outgoing President was very instrumental in giving President-elect Kennedy information that would serve him very well during his first one hundred days and beyond.

On January 17, 1961, three days before inauguration ceremonies, Eisenhower gave a notable and now-prophetic farewell speech in which he looked into the future, warning Americans about the dangers of putting partisanship above national interest, the risks of deficit spending, the expansion of the military-industrial complex and the growing influence of special interest groups on government officials.  Eisenhower’s concerns have become reality in our modern day with technology outpacing legislation and common sense to oversee development of hardware that can destroy us all.  This book is about those three days and brief time-periods prior to and after that very meaningful speech.

If you are a historian, a news junkie, or someone who just likes to keep up, I can definitely recommend this book to you.  It is extremely well-written and wonderfully researched. Mr. Baier and Ms. Whitney have done their research with each reference noted, by chapter, in the back of the book.  It is very obvious that considerable time and effort was applied to each paragraph to bring about a coherent and compelling novel.  It, in my opinion, is not just a book but a slice of history.  A document to be read and enjoyed.

BUILD THAT WALL

January 30, 2017


Certain portion of the information for this post come from the article entitled “How to Build Trump’s Controversial Wall” by Mr. Chris Wiltz.  Chris is a writer for Design News Daily.

 

OK, President Donald Trump indicated during pre-nomination televised exercises that if elected President, he will authorize building a wall between Mexico and the United States AND get the Mexican government to pay for it.  Now as President, he seems to be living up to fulfilling that somewhat lofty campaign promise.  From an engineering standpoint, how do you do that?

A direct quote from President Trump:  “We are in the middle of a crisis on our southern border: The unprecedented surge of illegal migrants from Central American is harming both Mexico and the United States,” Trump said in remarks reported by Reuters. “And I believe the steps we will take starting right now will improve the safety in both of our countries. … A nation without borders is not a nation.”

An analysis done by Politico estimates to do just that would total at least $5.1 billion US (not including annual maintenance costs). According to Politico:  “Those estimates come from a 2009 report from the Government Accountability Office [GAO], which found that it costs an average of $3.9 million to build one mile of fencing. About 670 miles of fencing is already up along the 1,989-mile southern border, so finishing the fence that’s already there would cost about $5.1 billion.

But the actual cost is likely much higher, according to experts. The vast majority of the existing border fence is single-layer fencing near urban areas, which is considerably easier to build. Much of the remaining 1,300 miles runs through rough terrains and remote areas without roads, so it’s fair to assume the per-mile cost of finishing the fence would be on the higher end of the GAO’s estimates, which was $15.1 million per mile.”

This is obviously a huge amount of money and the time necessary appears to be years and not months or certainly weeks.  The construction time of the Ming Wall was well over 2,000 years Many imperial dynasties and kingdoms built, rebuilt, and extended walls many times.  This wall subsequently eroded due to environmental issues and the materials used. The latest imperial construction was performed by the Ming Dynasty (1368–1644), and the length was then over 6,000 kilometers (3,700 miles).

HOW WOULD WE DO IT:

In a September 2015 article for The National Memo , a structural engineer, writing under the pseudonym Ali F. Rhuzkan took on the challenge of mapping out the logistics of constructing Trump’s wall. I really do not know why Ali F. Rhuzkan was used but his article was very interesting.

Rhuzkan writes: “A successful border wall must be effective, cheap, and easily maintained. It should be built from readily available materials and should take advantage of the capabilities of the existing labor force. The wall should reach about five feet underground to deter tunneling, and should terminate about 20 feet above grade to deter climbing.”

A rendition of his design looks as follows:

diagram-of-the-wall

According to Rhuzkah, assuming the wall would be constructed using pre-cast concrete (cast in a factory, then shipped to the construction site) building a wall to the necessary specifications to meet the President’s demands for a roughly 2,000-mile border wall would require about 12,600,000 cubic yards of concrete. “In other words, this wall would contain over three times the amount of concrete used to build the Hoover Dam,” Rhuzkah writes, “Such a wall would be greater in volume than all six pyramids of the Giza Necropolis … That quantity of concrete could pave a one-lane road from New York to Los Angeles, going the long way around the Earth…”

And this is just the concrete. One also has to factor in the amount of steel needed to reinforce such a structure – about 5 billion pounds by Rhuzkah’s estimation – as well as the labor, production, and shipping costs of all the pieces. Not to mention the wall would have to be built and regularly maintained by workers that would ideally be paid and not slaves.

If you need a visual of what such a wall would look like, a group of interns at  Estudio 3.14 —a design firm based in Guadalajara, México have created a conceptual rendering that they’ve dubbed the Prison Wall . Estudio 3.14’s concept envisions a wall that crosses multiple terrains (hills, desert, a river, even the city of Tijuana) and also includes a built-in prison to detain those seeking to cross the border illegally, as well as a shopping mall and a viewpoint for tourists. By its renderings, the studio estimates the wall could employ up to 6 million people. As for why it’s pink, the studio said in a statement that, “Because the wall has to be beautiful, it has been inspired by Luis Barragán’s pink walls that are emblematic of Mexico.”

rendition

CONCLUSION:

I have a twenty (20) foot ladder in my workshop downstairs.  If I have one, the Mexican illegals probably can get one.  Here are my conclusions:

  1. A twenty (20) foot wall is much too short. Forty or even fifty (50) in some places will be necessary.
  2. Five (5) foot depth is much much too shallow. I could tunnel under a five-foot depth.  At least fifteen (15) in some places will be necessary.
  3. It would be wonderfully wise if someone could and would estimate the maintenance cost on an annual basis so we know what’s coming.
  4. It does not matter how high the wall; additional patrolling will be necessary by our Border Patrol. Please estimate the added costs for that.
  5. Please forget the government of Mexico paying for the wall. I WILL NOT HAPPEN. President Trump indicated he may assign added import taxes to pay for the wall.  Those will be passed on to the American people.  You know that.
  6. I hope it’s obvious that I do not know the complete answer to this one, but you have to give credit to President Trump. He is trying and, in my opinion, making progress is not waves.

As always, I welcome your comments.

HUBBLE CONSTANT

January 28, 2017


The following information was taken from SPACE.com and NASA.

Until just recently I did not know there was a Hubble Constant.  The term had never popped up on my radar.  For this reason, I thought it might be noteworthy to discuss the meaning and the implications.

THE HUBBLE CONSTANT:

The Hubble Constant is the unit of measurement used to describe the expansion of the universe. The Hubble Constant (Ho) is one of the most important numbers in cosmology because it is needed to estimate the size and age of the universe. This long-sought number indicates the rate at which the universe is expanding, from the primordial “Big Bang.”

The Hubble Constant can be used to determine the intrinsic brightness and masses of stars in nearby galaxies, examine those same properties in more distant galaxies and galaxy clusters, deduce the amount of dark matter present in the universe, obtain the scale size of faraway galaxy clusters, and serve as a test for theoretical cosmological models. The Hubble Constant can be stated as a simple mathematical expression, Ho = v/d, where v is the galaxy’s radial outward velocity (in other words, motion along our line-of-sight), d is the galaxy’s distance from earth, and Ho is the current value of the Hubble Constant.  However, obtaining a true value for Ho is very complicated. Astronomers need two measurements. First, spectroscopic observations reveal the galaxy’s redshift, indicating its radial velocity. The second measurement, the most difficult value to determine, is the galaxy’s precise distance from earth. Reliable “distance indicators,” such as variable stars and supernovae, must be found in galaxies. The value of Ho itself must be cautiously derived from a sample of galaxies that are far enough away that motions due to local gravitational influences are negligibly small.

The units of the Hubble Constant are “kilometers per second per megaparsec.” In other words, for each megaparsec of distance, the velocity of a distant object appears to increase by some value. (A megaparsec is 3.26 million light-years.) For example, if the Hubble Constant was determined to be 50 km/s/Mpc, a galaxy at 10 Mpc, would have a redshift corresponding to a radial velocity of 500 km/s.

The cosmos has been getting bigger since the Big Bang kick-started the growth about 13.82 billion years ago.  The universe, in fact, is getting faster in its acceleration as it gets bigger.  As of March 2013, NASA estimates the rate of expansion is about 70.4 kilometers per second per megaparsec. A megaparsec is a million parsecs, or about 3.3 million light-years, so this is almost unimaginably fast. Using data solely from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP), the rate is slightly faster, at about 71 km/s per megaparsec.

The constant was first proposed by Edwin Hubble (whose name is also used for the Hubble Space Telescope). Hubble was an American astronomer who studied galaxies, particularly those that are far away from us. In 1929 — based on a realization from astronomer Harlow Shapley that galaxies appear to be moving away from the Milky Way — Hubble found that the farther these galaxies are from Earth, the faster they appear to be moving, according to NASA.

While scientists then understood the phenomenon to be galaxies moving away from each other, today astronomers know that what is actually being observed is the expansion of the universe. No matter where you are located in the cosmos, you would see the same phenomenon happening at the same speed.

Hubble’s initial calculations have been refined over the years, as more and more sensitive telescopes have been used to make the measurements. These include the Hubble Space Telescope (which examined a kind of variable star called Cepheid variables) and WMAP, which extrapolated based on measurements of the cosmic microwave background — a constant background temperature in the universe that is sometimes called the “afterglow” of the Big Bang.

THE BIG BANG:

The Big Bang theory is an effort to explain what happened at the very beginning of our universe. Discoveries in astronomy and physics have shown beyond a reasonable doubt that our universe did in fact have a beginning. Prior to that moment there was nothing; during and after that moment there was something: our universe. The big bang theory is an effort to explain what happened during and after that moment.

According to the standard theory, our universe sprang into existence as “singularity” around 13.7 billion years ago. What is a “singularity” and where does it come from? Well, to be honest, that answer is unknown.  Astronomers simply don’t know for sure. Singularities are zones which defy our current understanding of physics. They are thought to exist at the core of “black holes.” Black holes are areas of intense gravitational pressure. The pressure is thought to be so intense that finite matter is actually squished into infinite density (a mathematical concept which truly boggles the mind). These zones of infinite density are called “singularities.” Our universe is thought to have begun as an infinitesimally small, infinitely hot, infinitely dense, something – a singularity. Where did it come from? We don’t know. Why did it appear? We don’t know.

After its initial appearance, it apparently inflated (the “Big Bang”), expanded and cooled, going from very, very small and very, very hot, to the size and temperature of our current universe. It continues to expand and cool to this day and we are inside of it: incredible creatures living on a unique planet, circling a beautiful star clustered together with several hundred billion other stars in a galaxy soaring through the cosmos, all of which is inside of an expanding universe that began as an infinitesimal singularity which appeared out of nowhere for reasons unknown. This is the Big Bang theory.

THREE STEPS IN MEASURING THE HUBBLE CONSTANT:

The illustration below shows the three steps astronomers used to measure the universe’s expansion rate to an unprecedented accuracy, reducing the total uncertainty to 2.4 percent.

Astronomers made the measurements by streamlining and strengthening the construction of the cosmic distance ladder, which is used to measure accurate distances to galaxies near and far from Earth.

Beginning at left, astronomers use Hubble to measure the distances to a class of pulsating stars called Cepheid Variables, employing a basic tool of geometry called parallax. This is the same technique that surveyors use to measure distances on Earth. Once astronomers calibrate the Cepheids’ true brightness, they can use them as cosmic yardsticks to measure distances to galaxies much farther away than they can with the parallax technique. The rate at which Cepheids pulsate provides an additional fine-tuning to the true brightness, with slower pulses for brighter Cepheids. The astronomers compare the calibrated true brightness values with the stars’ apparent brightness, as seen from Earth, to determine accurate distances.

Once the Cepheids are calibrated, astronomers move beyond our Milky Way to nearby galaxies [shown at center]. They look for galaxies that contain Cepheid stars and another reliable yardstick, Type Ia supernovae, exploding stars that flare with the same amount of brightness. The astronomers use the Cepheids to measure the true brightness of the supernovae in each host galaxy. From these measurements, the astronomers determine the galaxies’ distances.

They then look for supernovae in galaxies located even farther away from Earth. Unlike Cepheids, Type Ia supernovae are brilliant enough to be seen from relatively longer distances. The astronomers compare the true and apparent brightness of distant supernovae to measure out to the distance where the expansion of the universe can be seen [shown at right]. They compare those distance measurements with how the light from the supernovae is stretched to longer wavelengths by the expansion of space. They use these two values to calculate how fast the universe expands with time, called the Hubble constant.

three-steps-to-measuring-the-hubble-constant

Now, that’s simple, isn’t it?  OK, not really.   It’s actually somewhat painstaking and as you can see extremely detailed.  To our credit, the constant can be measured.

CONCLUSIONS:

This is a rather, off the wall, post but one I certainly hope you can enjoy.  Technology is a marvelous thing working to clarify and define where we come from and how we got there.


Two years ago, I wrote a post about THE universal language.  Can you guess what language that is?  Well, there are approximately six thousand-five hundred (6,500) spoken languages in the world today.  However, approximately two thousand (2,000) of those languages have fewer than one thousand (1,000) speakers. The most popular language in the world is Mandarin Chinese. There are 1,213,000,000 people in the world speaking Mandarin. The following list will indicate the top ten (10) languages spoken.

  • FRENCH: Number of speakers: 129 million
  • MALAY-INDONESIAN: Number of speakers: 159 million
  • PORTUGUESE: Number of speakers: 191 million
  • BENGALI: Number of speakers: 211 million
  • ARABIC:     Number of speakers: 246 million
  • RUSSIAN:  Number of speakers: 277 million
  • SPANISH:     Number of speakers: 392 million
  • HINDSTANI:     Number of speakers: 497 million
  • ENGLISH: Number of speakers: 508 million
  • MANDARIN:      Number of speakers: 1 billion+

An old-world language tree looks something like the following:

old-world-language-tree

As you can see, language is very very complicated– but fascinating.

With this being the case, how on Earth could there be one UNIVERSAL language and what is it?  MATHEMATICS is a language recognized and used by all people on our very small “blue dot”.  I know this sounds very strange but that definitely is the case.  So—do we celebrate accomplished mathematicians and if so how?  YES, starting with the INTERNATIONAL MATHEMATICAL OLYMPAID (IM0) for pre-college.  Let’s take a look.

IMO:

The International Mathematical Olympiad (IMO) is the World Championship Mathematics Competition for High School students and is held annually in a different country. The first IMO was held in 1959 in Romania, with 7 countries participating. It has gradually expanded to over 100 countries from 5 continents. The IMO Advisory Board ensures that the competition takes place each year and that each host country observes the regulations and traditions of the IMO.   The IMO Foundation is a charity which supports the IMO. The IMO Foundation website is the public face of the IMO. This is a particularly valuable resource for people who are not necessarily mathematical specialists, but who want to understand the International Mathematical Olympiad.

The symbol for the IMO is given below.

symbol

ORIGIN:

The International Mathematical Olympiad (IMO) is an annual six-problem mathematical Olympiad for pre-college students, and is the oldest of the International Science Olympiads.   Please note the phrase pre-college, although almost all of the students taking the test are high school age.  This is due to the questions being asked.  The first IMO was held in Romania in 1959. It has since been held annually, except for 1980. Approximately one hundred (100) countries send teams of up to six students, plus one team leader, one deputy leader, and observers to the Olympiad.

The content ranges from extremely difficult algebra and pre-calculus problems to problems involving branches of mathematics not conventionally covered at school nor university level,  These are  such problems as projective and complex geometryfunctional equations and well-grounded number theory, of which extensive knowledge of theorems is required. Calculus, though allowed in solutions, is never required, as there is a principle that anyone with a basic understanding of mathematics should understand the problems, even if the solutions require a great deal more knowledge. Supporters of this principle claim that this allows more universality and creates an incentive to find elegant, deceptively simple-looking problems which nevertheless require a certain level of ingenuity.

The selection process differs by country, but it often consists of a series of tests which admit fewer students at each progressing test. Awards are given to approximately the top-scoring fifty percent (50%) of the individual contestants. Teams are not officially recognized—all scores are given only to individual contestants, but team scoring is unofficially compared more than individual scores.  Contestants must be under the age of twenty (20) and must not be registered at any tertiary institution. Subject to these conditions, an individual may participate any number of times in the IMO.

SCORING AND FORMAT:

The examination consists of six problems. Each problem is worth seven points, so the maximum total score is forty-two (42) points. No calculators are allowed. The examination is held over two consecutive days; each day the contestants have four-and-a-half hours to solve three problems. The problems chosen are from various areas of secondary school mathematics, broadly classifiable as geometrynumber theoryalgebra, and combinatorics. They require no knowledge of higher mathematics such as calculus and analysis, and solutions are often short and elementary. However, they are usually disguised so as to make the solutions difficult. Prominently featured are algebraic inequalitiescomplex numbers, and construction-oriented geometrical problems, though in recent years the latter has not been as popular as before.

Each participating country, other than the host country, may submit suggested problems to a Problem Selection Committee provided by the host country, which reduces the submitted problems to a shortlist. The team leaders arrive at the IMO a few days in advance of the contestants and form the IMO Jury which is responsible for all the formal decisions relating to the contest, starting with selecting the six problems from the shortlist. The Jury aims to order the problems so that the order in increasing difficulty is Q1, Q4, Q2, Q5, Q3 and Q6. As the leaders know the problems in advance of the contestants, they are kept strictly separated and observed.

Each country’s marks are agreed between that country’s leader and deputy leader and coordinators provided by the host country (the leader of the team whose country submitted the problem in the case of the marks of the host country), subject to the decisions of the chief coordinator and ultimately a jury if any disputes cannot be resolved.

RECENT AND FUTURE IMOS:

The two-day event is truly global in nature with the following locations having been selected.

The only countries to have their entire team score perfectly in the IMO were the United States in 1994 (they were coached by Paul Zeitz); and Luxembourg, whose one-member team had a perfect score in 1981. The US’s success earned a mention in TIME Magazine. Hungary won IMO 1975 in an unorthodox way when none of the eight team members received a gold medal (five silver, three bronze). Second place team East Germany also did not have a single gold medal winner (four silver, four bronze).

The top 10 countries with the best all-time results are as follows:

countries

CONSLUSIONS:

I think a competition such as this is one of the best events sponsored because it gives recognition to those who excel within a specific discipline.  After all, we have the Oscars, the Grammys, the People’s Choice Awards, the Country Music Awards. Pro Bowl, Super Bowl.  Why not celebrate the talents of those around the world who “march to the beat of a different drummer”?  Just a thought.

THE BONE YARD

January 24, 2017


I entered the Air Force in 1966 and served until 1970.  I had the great fortune of working for the Air Force Logistics Command (AFLC) headquartered out of Write Patterson Air Force Base in Cleveland, Ohio.  Our biggest “customer” was the Strategic Air Force Commend or SAC.  SAC was responsible for all  ICBMs our country had in its inventory.  My job was project engineer in a section that supported the Titan II Missile, specifically the thrust chamber and turbopumps.  I interfaced with Martian, Aerojet General, Raytheon, and many other great vendors supporting the weapons system.   Weapons were located at the following sites:

  • 308 Missile Wing—Little Rock Air Force Base
  • 381 Missile Wing—McConnel Air Force Base
  • 390 Missile Wing—Davis-Monthan Air Force Base
  • 395 Strategic Missile Squadron—Vandenberg Air Force Base.

Little Rock, McConnel, and Davis-Monthan each had two squadrons or eighteen (18) per site.  There were fifty-five (55) operational Titan II missiles in the SAC inventory, each having atomic war heads.  This, by the way, was also the missile that launched the Gemini astronauts.

During my four years in AFLC, I had an opportunity to visit Little Rock AFB and Davis-Monthan AFB for brief TDY (temporary duty assignments). Each time the “mission” was to oversee re-assembly of turbopumps that had been repaired or updated. The seals between the turbopumps and the thrust chamber were absolutely critical and had to be perfectly flat to avoid leakage during liftoff.  Metrology equipment was employed to insure the flatness needed prior to installation.  It was a real process with page after page of instruction.

An underground missile silo is a remarkable piece of engineering.  A city underground—living quarters, kitchen, adequate medical facilities, communication section, elevators, etc.  You get the picture.   All of the Titan II sites were decommissioned as a result of the SALT (Strategic Arms Limitation Treaty) during the mid 1980s.

OK, with that being said, one remarkable area located at Davis-Monthan AFB is the “resting place” for many, if not most aircraft that are no longer in the operational inventory.  This is where they go to retire.  While at Davis-Monthan, I had an opportunity to visit the boneyard and it was a real “trip”.

THE BONEYARD:

Davis-Monthan AFB’s role in the storage of military aircraft began after World War II, and continues today. It has evolved into “the largest aircraft boneyard in the world”.

With the area’s low humidity– ten to twenty percent (10%-20%) range, meager rainfall of eleven inches (11″) annually, hard alkaline soil, and high altitude of 2,550 feet, Davis-Monthan is the logical choice for a major storage facility.  Aircraft are there for cannibalization of parts or storage for further use.

In 1965, the Department of Defense decided to close its Litchfield Park storage facility in Phoenix, and consolidate the Navy’s surplus air fleet into Davis-Monthan. Along with this move, the name of the 2704th Air Force Storage and Disposition Group was changed to Military Aircraft Storage and Disposition Center (MASDC) to better reflect its joint services mission.

In early 1965, aircraft from Litchfield Park began the move from Phoenix to Tucson, mostly moved by truck, a cheaper alternative than removing planes from their protective coverings, flying them, and protecting them again.

The last Air Force B-47 jet bomber was retired at the end of 1969 and the entire fleet was dismantled at D-M except for thirty (30) Stratojets, which were saved for display in air museums.  In 1085, the facilities’ name was changed again, from MASDC to the Aerospace Maintenance and Regeneration Center (AMARC) as outdated ICBM missiles also entered storage at Davis-Monthan.  In the 1990s, 365 surplus B-52 bombers were dismantled at the facility.

AMARG:

The 309th Aerospace Maintenance and Regeneration Group (AMARG), or Boneyard, is a United States Air Force aircraft and missile storage and maintenance facility in Tucson, Arizona, located on Davis-Monthan Air Force Base. AMARG was previously Aerospace Maintenance and Regeneration Center, AMARC, the Military Aircraft Storage and Disposition Center, MASDC, and was established after World War II as the 3040th Aircraft Storage Group.

AMARG takes care of more than 4,400 aircraft, which makes it the largest aircraft storage and preservation facility in the world. An Air Force Materiel Command unit, the group is under the command of the 309th Maintenance Wing at Hill Air Force BaseUtah. (NOTE:  My time in AFLC was spent at Hill Air Force Base.  I was specifically assigned to the Ogden Air Material Area or OAMA.)  AMARG was originally meant to store excess Department of Defense and Coast Guard aircraft, but has in recent years been designated the sole repository of out-of-service aircraft from all branches of the US government.

In the 1980s, the center began processing ICBMs for dismantling or reuse in satellite launches, and was renamed the Aerospace Maintenance and Regeneration Center (AMARC) to reflect the expanded focus on all aerospace assets.  A map of the boneyard may be seen below.  The surface area is acres in size.

map

As you can see from the following digital pictures, aircraft of all types are stored in the desert at Davis-Monthan AFB.

bone-yard

The aircraft below are F-4 Phantom fighters that served in Vietnam.

f-4-phantom

The view below shows you just how many acres the boneyard requires.

bone-yard-2

 

AIRCRAFT INVENTORY USED BY AMARG:

AMARG uses the following official “Type” categories for aircraft in storage:

  • Type 1000 – aircraft at AMARG for long-term storage, to be maintained until recalled to active service. These aircraft are “inviolate” – have a high potential to return to flying status and no parts may be removed from them. These aircraft are “represerved” every four years.
  • Type 2000 – aircraft available for parts reclamation, as “aircraft storage bins” for parts, to keep other aircraft flying.
  • Type 3000 – “flying hold” aircraft kept in near flyable condition in short-term, temporary storage; waiting for transfer to another unit, sale to another country, or reclassification to the other three types.
  • Type 4000 – aircraft in excess of DoD needs – these have been gutted and every useable part has been reclaimed. They will be sold, broken down into scrap, smelted into ingots, and recycled.

STORAGE PROCEDURES:

There are four categories of storage for aircraft at AMARG:

  • Long Term – Aircraft are kept intact for future use
  • Parts Reclamation – Aircraft are kept, picked apartand used for spare parts
  • Flying Hold – Aircraft are kept intact for shorter stays than Long Term
  • Excess of DoDneeds – Aircraft are sold off whole or in parts

AMARG employs 550 people, almost all civilians. The 2,600 acres (11 km2) facility is adjacent to the base. For every one dollar ($1) the federal government spends operating the facility, it saves or produces eleven dollars ($11) from harvesting spare parts and selling off inventory. Congressional oversight determines what equipment may be sold to which customer.

An aircraft going into storage undergoes the following treatments:

  • All guns, ejection seat charges, and classified hardware are removed.
  • All Navy aircraft are carefully washed with fresh water, to remove salty water environment residue, and then completely dried.
  • The fuel system is protected by draining it, refilling it with lightweight oil, and then draining it again. This leaves a protective oil film.
  • The aircraft is sealed from dust, sunlight, and high temperatures. This is done using a variety of materials, including a high-tech vinyl plastic compound that is sprayed on the aircraft. This compound is called spraylatafter its producer the Spraylat Corporation, and is applied in two coats, a black coat that seals the aircraft and a white coat that reflects the sun and helps to keep internal temperatures low.  The plane is then towed by a tug to its designated “storage” position.

The Group annually in-processes an undisclosed number of aircraft for storage and out-processes a number of aircraft for return to the active service, either repainted and sold to friendly foreign governments, recycled as target or remotely controlled drones or rebuilt as civilian cargo, transport, and/or utility aircraft.  There is much scrutiny over who (civilians, companies, foreign governments) can buy what kinds of parts. At times, these sales are canceled. The Air Force for example reclaimed several F-16s from AMARG for the Strike Fighter Tactics Instructor Courses which were originally meant to be sold to Pakistan, but never delivered due to an early-90’s embargo.

CONCLUSIONS:

I have absolutely no idea as to how much money in inventory is located at D-M but as you might expect, it’s in the billions of USD. As always, I welcome your comments.

INAGURATION 2017

January 20, 2017


Unless you live under a rock, you know by now we have a new President and a new Vice President.  Here is the way I look at this.  I don’t know if you have ever done any computer programming but programmers have to plan for stored data.  Data goes into a “place-holder”.  Each place-holder is given an appropriate name that is descriptive of the information going into and being removed from that digital location in the program.  Let’s say we have a place-holder named POTUS or President of the United States.  The data we wish to move into or remove from the place-holder is the name of each individual President starting with President George Washington and going to President Donald J. Trump.   Data is moved into POTUS every four (4) years as elections are won or lost.  This remarkable transition of power is accomplished without a shot being fired. Even in very difficult elections, such as the one we have just experienced, outgoing and incoming Presidents recognize they exist in the “continuum”.  Each living President is a member of a very very exclusive minority.  They have been there—been tested—done that—got the “T” shirt.

We have six (6) living presidents as follows:

In my opinion, and it is my opinion, the President of the United States of American is the second most difficult job on the planet.  OK, who’s first—a continuously loving, caring, supportive, time-giving, education-loving parent.   Also, in my opinion, our very best Presidents grow into the job.  I feel no one, and I mean no one is prepared for the “slings and arrows of outrageous fortune” that befall the most experienced individual in a four or eight-year term in office.

In looking quickly at several decisions made by our Presidents, we see the following remarkable challenges they encountered on the way to the Oval Office:

  • Thomas Jefferson—The Embargo Act of 1807
  • Abraham Lincoln—The Civil War
  • Franklin Delano Roosevelt—Executing success after the attack at Pearl Harbor
  • Harry Truman—Decision to drop the atomic bomb
  • John F. Kennedy—Cuban Missile Crisis
  • Jimmy Carter—The Iran Hostage Crisis
  • George Bush—Decision to invade Iraq knowing American lives would be lost

I could probably go on and on but you get the picture. How would you handle the decision to drop the Atomic Bomb?  Could you make it?   It certainly helps if each President surrounds himself with competent and capable cabinet members and advisors.  Sharing the burden is an absolute MUST for successful accomplishment of each task presented each day.   For this reason, I wish President Donald Trump God’s speed in executing duties associated with the office.  No matter how you voted, you have to admit our country definitely needs to come together and rally around our leadership. Let’s get this done.

As always, I welcome your comments.


Forbes Magazine recently published what they consider to be the top ten (10) trends in technology.  It’s a very interesting list and I could not argue with any item. The writer of the Forbes article is David W. Cearley.  Mr. Cearley is the vice president and Gartner Fellow at Gartner.  He specializes in analyzing emerging and strategic business and technology trends and explores how these trends shape the way individuals and companies derive value from technology.   Let’s take a quick look.

  • DEVICE MESH—This trend takes us far beyond our desktop PC, Tablet or even our cell phone.  The trend encompasses the full range of endpoints with which humans might interact. In other words, just about anything you interact with could possibly be linked to the internet for instant access.  This could mean individual devices interacting with each other in a fashion desired by user programming.  Machine to machine, M2M.
  • AMBIENT USER EXPERIENCE–All of our digital interactions can become synchronized into a continuous and ambient digital experience that preserves our experience across traditional boundaries of devices, time and space. The experience blends physical, virtual and electronic environments, and uses real-time contextual information as the ambient environment changes or as the user moves from one place to another.
  • 3-D PRINTING MATERIALS—If you are not familiar with “additive manufacturing” you are really missing a fabulous technology. Right now, 3-D Printing is somewhat in its infancy but progress is not just weekly or monthly but daily.  The range of materials that can be used for the printing process improves in a remarkable manner. You really need to look into this.
  • INFORMATION OF EVERYTHING— Everything surrounding us in the digital mesh is producing, using and communicating with virtually unmeasurable amounts of information. Organizations must learn how to identify what information provides strategic value, how to access data from different sources, and explore how algorithms leverage Information of Everything to fuel new business designs. I’m sure by now you have heard of “big data”.  Information of everything will provide mountains of data that must be sifted through so usable “stuff” results.  This will continue to be an ever-increasing task for programmers.
  • ADVANCED MACHINE LEARNING– Rise of the Machines.  Machines talking to each other and learning from each other.  (Maybe a little more frightening that it should be.) Advanced machine learning gives rise to a spectrum of smart machine implementations — including robots, autonomous vehicles, virtual personal assistants (VPAs) and smart advisors — that act in an autonomous (or at least semiautonomous) manner. This feeds into the ambient user experience in which an autonomous agent becomes the main user interface. Instead of interacting with menus, forms and buttons on a smartphone, the user speaks to an app, which is really an intelligent agent.
  • ADAPTIVE SECURITY ARCHITECTURE— The complexities of digital business and the algorithmic economy, combined with an emerging “hacker industry,” significantly increase the threat surface for an organization. IT leaders must focus on detecting and responding to threats, as well as more traditional blocking and other measures to prevent attacks. I don’t know if you have ever had your identity stolen but it is NOT fun.  Corrections are definitely time-consuming.
  • ADVANCED SYSTEM ARCHITECTURE–The digital mesh and smart machines require intense computing architecture demands to make them viable for organizations. They’ll get this added boost from ultra-efficient-neuromorphic architectures. Systems built on graphics processing units (GPUs) and field-programmable gate-arrays (FPGAs) will function more like human brains that are particularly suited to be applied to deep learning and other pattern-matching algorithms that smart machines use. FPGA-based architecture will allow distribution with less power into the tiniest Internet of Things (IoT) endpoints, such as homes, cars, wristwatches and even human beings.
  • Mesh App and Service ArchitectureThe mesh app and service architecture are what enable delivery of apps and services to the flexible and dynamic environment of the digital mesh. This architecture will serve users’ requirements as they vary over time. It brings together the many information sources, devices, apps, services and microservices into a flexible architecture in which apps extend across multiple endpoint devices and can coordinate with one another to produce a continuous digital experience.
  • INTERNET OF THINGS (IoT) and ARCHITECTURE PLATFORMS– IoT platforms exist behind the mesh app and service architecture. The technologies and standards in the IoT platform form a base set of capabilities for communicating, controlling, managing and securing endpoints in the IoT. The platforms aggregate data from endpoints behind the scenes from an architectural and a technology standpoint to make the IoT a reality.
  • Autonomous Agents and ThingsAdvanced machine learning gives rise to a spectrum of smart machine implementations — including robots, autonomous vehicles, virtual personal assistants (VPAs) and smart advisors — that act in an autonomous (or at least semiautonomous) manner. This feeds into the ambient user experience in which an autonomous agent becomes the main user interface. Instead of interacting with menus, forms and buttons on a smartphone, the user speaks to an app, which is really an intelligent agent.

CONCLUSIONS:  You have certainly noticed by now that ALL of the trends, with the exception of 3-D Printing are rooted in Internet access and Internet protocols.  We are headed towards a totally connected world in which our every move is traceable.  Traceable unless we choose to fly under the radar.

%d bloggers like this: