GOTTA GET IT OFF

January 6, 2018


OKAY, how many of you have said already this year?  “MAN, I have to lose some weight.”  I have a dear friend who put on a little weight over a couple of years and he commented: “Twenty or twenty-five pounds every year and pretty soon it adds up.”  It does add up.  Let’s look at several numbers from the CDC and other sources.

  • The CDC organization estimates that three-quarters (3/4of the American population will likely be overweight or obese by 2020. The latest figures, as of 2014, show that more than one-third (36.5%) of U.S. adults age twenty (20) and older and seventeen percent (17%) of children and adolescents aged two through nineteen (2–19) years were obese.
  • American ObesityRates are on the Rise, Gallup Poll Finds. Americans have become even fatter than before, with nearly twenty-eight (28%) percent saying they are clinically obese, a new survey finds. … At 180 pounds this person has a BMI of thirty (30) and is considered obese.

Now, you might say—we are in good company:  According to the World Health Organization, the following countries have the highest rates of obesity.

  • Republic of Nauru. Formerly known as Pleasant Island, this tiny island country in the South Pacific only has a population of 9,300. …
  • American Samoa. …
  • Tokelau
  • Tonga
  • French Polynesia. …
  • Republic of Kiribati. …
  • Saudi Arabia. …
  • Panama.

There is absolutely no doubt that more and more Americans are over weight even surpassing the magic BMI number of 30.  We all know what reduction in weight can do for us on an individual basis, but have you ever considered what reduction in weight can do for “other items”—namely hardware?

  • Using light-weight components, (composite materials) and high-efficiency engines enabled by advanced materials for internal-combustion engines in one-quarter of U.S. fleet trucks and automobiles could possibly save more than five (5) billion gallons of fuel annually by 2030. This is according to the US Energy Department Vehicle Technologies Office.
  • This is possible because, according to the Oak Ridge National Laboratory, The Department of Energy’s Carbon Fiber Technology Facility has a capacity to produce up to twenty-five (25) tons of carbon fiber per year.
  • Replacing heavy steel with high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by ten to sixty percent (10-60 %). Longer term, materials such as magnesium and carbon fiber-reinforced composites could reduce the weight of some components by fifty to seventy-five percent (50-75%).
  • It costs $10,000 per pound to put one pound of payload into Earth orbit. NASA’s goal is to reduce the cost of getting to space down to hundreds of dollars per pound within twenty-five (25) years and tens of dollars per pound within forty (40) years.
  • Space-X Falcon Heavy rocket will be the first ever rocket to break the $1,000 per pound per orbit barrier—less than a tenth as much as the Shuttle. ( SpaceX press release, July 13, 2017.)
  • The Solar Impulse 2 flew 40,000 Km without fuel. The 3,257-pound solar plane used sandwiched carbon fiber and honey-combed alveolate foam for the fuselage, cockpit and wing spars.

So you see, reduction in weight can have lasting affects for just about every person and some pieces of hardware.   Let’s you and I get it off.

Advertisements

Information for this post is taken from the following companies:

  • Wholers Associates
  • Gartner
  • Oerlikon
  • SmartTech Publishing

3-D ADDITIVE MANUFACTURING:

I think before we get up and running let us define “additive manufacturing”.

Additive Manufacturing or AM is an appropriate name to describe the technologies that build 3D objects by adding layer-upon-layer of material, whether the material is plastic, metal, concrete human tissue. Believe it or not, additive manufacturing is now, on a limited basis, able to construct objects from human tissue to repair body parts that have been damaged and/or absent.

Common to AM technologies is the use of a computer, 3D modeling software (Computer Aided Design or CAD), machine equipment and layering material.  Once a CAD sketch is produced, the AM equipment reads in data from the CAD file and lays downs or adds successive layers of liquid, powder, sheet material or other, in a layer-upon-layer fashion to fabricate a 3D object.

The term AM encompasses many technologies including subsets like 3D Printing, Rapid Prototyping (RP), Direct Digital Manufacturing (DDM), layered manufacturing and additive fabrication.

AM application is limitless. Early use of AM in the form of Rapid Prototyping focused on preproduction visualization models. More recently, AM is being used to fabricate end-use products in aircraft, dental restorations, medical implants, automobiles, and even fashion products.

RAPID PROTOTYPING & MANUFACTURING (RP&M) TECHNOLOGIES:

There are several viable options available today that take advantage of rapid prototyping technologies.   All of the methods shown below are considered to be rapid prototyping and manufacturing technologies.

  • (SLA) Stereolithography
  • (SLS) Selective Laser Sintering
  • (FDM) Fused Deposition Modeling
  • (3DP) Three-Dimensional Printing
  • (Pjet) Poly-Jet
  • Laminated Object Manufacturing

PRODUCT POSSIBILITIES:

Frankly, if it the configuration can be programmed, it can be printed.  The possibilities are absolutely endless.

Assortment of components: flange mount and external gear.

Bone fragment depicting a fractured bone.  This printed product will aid the efforts of a surgeon to make the necessary repair.

More and more, 3D printing is used to model teeth and jaw lines prior to extensive dental work.  It gives the dental surgeon a better look at a patients mouth prior to surgery.

You can see the intricate detail of the Eiffel Tower and the show sole in the JPEGs above.  3D printing can provide an enormous amount of detail to the end user.

THE MARKET:

3D printing is a disruptive technology that is definitely on the rise.  Let’s take a look at future possibilities and current practices.

GROWTH:

Wohlers Associates has been tracking the market for machines that produce metal parts for fourteen (14) years.  The Wohlers Report 2014 marks only the second time for the company to publish detailed information on metal based AM machine unit sales by year. The following chart shows that 348 of 3D machines were sold in 2013, compared to 198 in 2012—growth of an impressive 75.8%.

Additive manufacturing industry grew by 17.4% in worldwide revenues in 2016, reaching $6.063 billion.

MATERIALS USED:

Nearly one-half of the 3D printing/additive manufacturing service providers surveyed in 2016 offered metal printing.

GLOBAL MARKETS:

NUMBER OF VENDORS OFFERING EQUIPMENT:

The number of companies producing and selling additive manufacturing equipment

  • 2014—49
  • 2015—62
  • 2016—97

USERS:

World-wide shipments of 3D printers were projected to reach 455,772 units in 2016. 6.7 million units are expected to be shipped by 2020

More than 278,000 desktop 3D printers (under $5,000) were sold worldwide last year, according to Wohlers Associates. The report has a chart to illustrate and it looks like the proverbial hockey stick that you hear venture capitalists talk about: Growth that moves rapidly from horizontal to vertical (from 2010 to 2015 for desktop).

According to Wohlers Report 2016, the additive manufacturing (AM) industry grew 25.9% (CAGR – Corporate Annual Growth Rate) to $5.165 billion in 2015. Frequently called 3D printing by those outside of manufacturing circles, the industry growth consists of all AM products and services worldwide. The CAGR for the previous three years was 33.8%. Over the past 27 years, the CAGR for the industry is an impressive 26.2%. Clearly, this is not a market segment that is declining as you might otherwise read.

THE MARKET:

  • About 20 to 25% of the $26.5 billion market forecast for 2021 is expected to be the result of metal additive manufacturing.
  • The market for polymers and plastics for 3D printing will reach $3.2 billion by 2022
  • The primary market for metal additive manufacturing, including systems and power materials, will grow to over $6.6 billion by 2026.

CONCLUSIONS:

We see more and more products and components manufactured by 3D Printing processes.  Additive manufacturing just now enjoying acceptance from larger and more established companies whose products are in effect “mission critical”.  As material choices continue to grow, a greater number of applications will emerge.  For the foreseeable future, additive manufacturing is one of the technologies to be associated with.


One of the items on my bucket list has been to attend the Consumer Electronics Show in Las Vegas.  (I probably need to put a rush on this one because the clock is ticking.)  For 50 years, CES has been the launching pad for innovation and new technology.  Much of this technology has changed the world. Held in Las Vegas every year, it is the world’s gathering place for all who thrive on the business of consumer technologies and where next-generation innovations are introduced to the commercial marketplace.   The International Consumer Electronics Show (International CES) showcases more than 3,800 exhibiting companies, including manufacturers, developers and suppliers of consumer technology hardware, content, technology delivery systems and more; a conference program with more than three hundred (300) conference sessions and more than one-hundred and sixty-five thousand attendees from one hundred1 (50) countries.  Because it is owned and produced by the Consumer Technology Association (CTA)™ — formerly the Consumer Electronics Association (CEA)® — the technology trade association representing the $287 billion U.S. consumer technology industry, and it attracts the world’s business leaders and pioneering thinkers to a forum where the industry’s most relevant issues are addressed.  The range of products is immense as seen from the listing of product categories below.

PRODUCT CATEGORIES:

  • 3D Printing
  • Accessories
  • Augmented Reality
  • Audio
  • Communications Infrastructure
  • Computer Hardware/Software/Services
  • Content Creation & Distribution
  • Digital/Online Media
  • Digital Imaging/Photography
  • Drones
  • Electronic Gaming
  • Fitness and Sports
  • Health and Biotech
  • Internet Services
  • Personal Privacy & Cyber Security
  • Robotics
  • Sensors
  • Smart Home
  • Startups
  • Vehicle Technology
  • Video
  • Wearables
  • Wireless Devices & Services

If we look at world-changing revolution and evolution coming from CES over the years, we may see the following advances in technology, most of which now commercialized:

  • Videocassette Recorder (VCR), 1970
  • Laserdisc Player, 1974
  • Camcorder and Compact Disc Player, 1981
  • Digital Audio Technology, 1990
  • Compact Disc – Interactive, 1991
  • Digital Satellite System (DSS), 1994
  • Digital Versatile Disk (DVD), 1996
  • High Definition Television (HDTV), 1998
  • Hard-disc VCR (PVR), 1999
  • Satellite Radio, 2000
  • Microsoft Xbox and Plasma TV, 2001
  • Home Media Server, 2002
  • Blu-Ray DVD and HDTV PVR, 2003
  • HD Radio, 2004
  • IP TV, 2005
  • Convergence of content and technology, 2007
  • OLED TV, 2008
  • 3D HDTV, 2009
  • Tablets, Netbooks and Android Devices, 2010
  • Connected TV, Smart Appliances, Android Honeycomb, Ford’s Electric Focus, Motorola Atrix, Microsoft Avatar Kinect, 2011
  • Ultrabooks, 3D OLED, Android 4.0 Tablets, 2012
  • Ultra HDTV, Flexible OLED, Driverless Car Technology, 2013
  • 3D Printers, Sensor Technology, Curved UHD, Wearable Technologies, 2014
  • 4K UHD, Virtual Reality, Unmanned Systems, 2015

Why don’t we do this, let’s now take a very brief look at several exhibits to get a feel for the products.  Here we go.

Augmented Reality (AR):

Through specially designed hardware and software full of cameras, sensors, algorithms and more, your perception of reality can be instantly altered in context with your environment. Applications include sports scores showing on TV during a match, the path of trajectory overlaying an image, gaming, construction plans and more.  VR (virtual reality) equipment is becoming extremely popular, not only with consumers, but with the Department of Defense, Department of Motor Vehicles, and companies venturing out to technology for training purposes.

augmented-reality

Cyber Security:

The Cyber & Personal Security Marketplace will feature innovations ranging from smart wallets and safe payment apps to secure messaging and private Internet access.  If you have never been hacked, you are one in a million.  I really don’t think there are many people who have remained unaffected by digital fraud.  One entire section of the CES is devoted to cyber security.

cyber-security

E-Commerce:

Enterprise solutions are integral for business. From analytics, consulting, integration and cyber security to e-commerce and mobile payment, the options are ever-evolving.  As you well know, each year the number of online shoppers increases and will eventually outpace the number of shoppers visiting “brick-and-motor stores.  Some feel this may see the demise of shopping centers altogether.

e-commerce

Self-Driving Autonomous Automobiles:

Some say if you are five years old or under you may never need a driver’s license.  I personally think this is a little far-fetched but who knows.  Self-driving automobiles are featured prominently at the CES.

self-driving-automobiles

Virtual Reality (VR):

Whether it will be the launch of the next wave of immersive multimedia for virtual reality systems and environments or gaming hardware, software and accessories designed for mobile, PCs or consoles, these exhibitors are sure to energize, empower and excite at CES 2017.

vr

i-Products:

From electronic plug-ins to fashionable cases, speakers, headphones and exciting new games and applications, the product Marketplace will feature the latest third-party accessories and software for your Apple iPod®, iPhone® and iPad® devices.

i-products

3-D Printing:

Most 3D printers are used for building prototypes for the medical, aerospace, engineering and automotive industries. But with the advancement of the digital technology supporting it, these machines are moving toward more compact units with affordable price points for today’s consumer.

30-d-printing

Robotic Systems:

The Robotics Marketplace will showcase intelligent, autonomous machines that are changing the way we live at work, at school, at the doctor’s office and at home.

robotics

Healthcare and Wellness:

Digital health continues to grow at an astonishing pace, with innovative solutions for diagnosing, monitoring and treating illnesses, to advancements in health care delivery and smarter lifestyles.

health-and-wellness

Sports Technology:

In a world where an athlete’s success hinges on milliseconds or millimeters, high-performance improvement and feedback are critical.

sports-technology

CONCLUSIONS:

I think it’s amazing and to our credit as a country that CES exists and presents, on an annual basis, designs and visions from the best and brightest.  A great show-place for ideas the world over from established companies and companies who wish to make their mark on technology.  Can’t wait to go—maybe next year.  As always, I welcome your comments.


I want us to consider a “what-if” scenario.  You are thirty-two years old, out of school, and have finally landed a job you really enjoy AND you are actually making money at that job. You have your expenses covered with “traveling money” left over for a little fun.  You recently discovered the possibility that Social Security (SS), when you are ready to retire, will be greatly reduced if not completely eliminated. You MUST start saving for retirement and consider SS to be the icing on the cake if available at all.  QUESTION: Where do you start?  As you investigate the stock markets you find stocks seem to be the best possibility for future income.  Stocks, bonds, “T” bills, etc. all are possibilities but stocks are at the top of the list.

People pay plenty of money for consulting giants to help them figure out which technology trends are fads and which will stick. You could go that route, or get the same thing from the McKinsey Global Institute’s in-house think-tank for the cost of a new book. No Ordinary Disruption: The Four Global Forces Breaking All the Trends, was written by McKinsey directors Richard Dobbs, James Manyika, and Jonathan Woetzel, and offers insight into which developments will have the greatest impact on the business world in coming decades. If you chose stocks, you definitely want to look at technology sectors AND consider companies contributing products to those sectors.  The following list from that book may help.  Let’s take a look.

Below, we’re recapping their list of the “Disruptive Dozen”—the technologies the group believes have the greatest potential to remake today’s business landscape.

Batteries

energy-storage

The book’s authors predict that the price of lithium-ion battery packs could fall by a third in the next 10 years, which will have a big impact on not only electric cars, but renewable energy storage. There will be major repercussions for the transportation, power generation, and the oil and gas industries as batteries grow cheaper and more efficient.  Battery technology will remain with us and will contribute to ever-increasing product offerings as time goes by.  Companies supplying this market sector will only increase in importance.

Genomics

genomics

As super computers make the enormously complicated process of genetic analysis much simpler, the authors foresee a world in which “genomic-based diagnoses and treatments will extend patients’ lives by between six months and two years in 2025.” Sequencing systems could eventually become so commonplace that doctors will have them on their desktops.  This is a rapidly growing field and one that has and will save lives.

Material Science

advanced-materials

The ability to manipulate existing materials on a molecular level has already enabled advances in products like sunglasses, bike frames, and medical equipment. Scientists have greater control than ever over nanomaterials in a variety of substances, and their understanding is growing. Health concerns recently prompted Dunkin’ Donuts to remove nanomaterials from their food. But certain advanced nanomaterials show promise for improving health, and even treating cancer. Coming soon: materials that are self-healing, self-cleaning, and that remember their original shape even if they’re bent.

Self-Driving or Autonomous Automobiles

self-driving-vehicles

Autonomous cars are coming, and fast. By 2025, the “driverless revolution” could already be “well underway,” the authors write. All the more so if laws and regulations in the U.S. can adapt to keep up. Case in point: Some BMW cars already park themselves. You will not catch me in a self-driving automobile unless the FED and the auto maker can assure me they are safe.  Continuous effort is being expended to do just that.  These driverless automobiles are coming and we all may just as well get used to it.

Alternate Energy Solutions

reneuable-energy

Wind and solar have never really been competitive with fossil fuels, but McKinsey predicts that status quo will change thanks to technology that enables wider use and better energy storage. In the last decade, the cost of solar energy has already fallen by a factor of 10, and the International Energy Agency predicts that the sun could surpass fossil fuels to become the world’s largest source of electricity by 2050.  I might include with wind and solar, methane recovery from landfills, biodiesel, compressed natural gas, and other environmentally friendly alternatives.

Robotic Systems

advanced-robotics

The robots are coming! “Sales of industrial robots grew by 170% in just two years between 2009 and 2011,” the authors write, adding that the industry’s annual revenues are expected to exceed $40 billion by 2020. As robots get cheaper, more dexterous, and safer to use, they’ll continue to grow as an appealing substitute for human labor in fields like manufacturing, maintenance, cleaning, and surgery.

3-D Printing

3-d-printing

Much-hyped additive manufacturing has yet to replace traditional manufacturing technologies, but that could change as systems get cheaper and smarter. “In the future, 3D printing could redefine the sale and distribution of physical goods,” the authors say. Think buying an electric blueprint of a shoe, then going home and printing it out. The book notes that “the manufacturing process will ‘democratize’ as consumers and entrepreneurs start to print their own products.”

Mobile Devices

mobile-internet

The explosion of mobile apps has dramatically changed our personal experiences (goodbye hookup bars, hello Tinder), as well as our professional lives. More than two thirds of people on earth have access to a mobile phone, and another two or three billion people are likely to gain access over the coming decade. The result: internet-related expenditures outpace even agriculture and energy, and will only continue to grow.

Artificial Intelligence

automation-of-knowledge

It’s not just manufacturing jobs that will be largely replaced by robots and 3D printers. Dobbs, Manyika, and Woetzel report that by 2025, computers could do the work of 140 million knowledge workers. If Watson can win at “Jeopardy!” there’s nothing stopping computers from excelling at other knowledge work, ranging from legal discovery to sports coverage.

 

The Internet of Things (IoT)

iot

Right now, 99% of physical objects are unconnected to the “internet of things.” It won’t last. Going forward, more products and tools will be controlled via the internet, the McKinsey directors say, and all kinds of data will be generated as a result. Expect sensors to collect information on the health of machinery, the structural integrity of bridges, and even the temperatures in ovens.

Cloud Technology

cloud-technology

The growth of cloud technology will change just how much small businesses and startups can accomplish. Small companies will get “IT capabilities and back-office services that were previously available only to larger firms—and cheaply, too,” the authors write. “Indeed, large companies in almost every field are vulnerable, as start-ups become better equipped, more competitive, and able to reach customers and users everywhere.”

Oil Production

advanced-oil-technology

The International Energy Agency predicts the U.S. will be the world’s largest producer of oil by 2020, thanks to advances in fracking and other technologies, which improved to the point where removing oil from hard-to-reach spots finally made economic sense. McKinsey directors expect increasing ease of fuel extraction to further shift global markets.  This was a real surprise to me but our country has abundant oil supplies and we are already fairly self-sufficient.

Big Data

big-data

There is an ever-increasing accumulation of data from all sources.  At no time in our global history has there been a greater thirst for information.  We count and measure everything now days with the recent election being one example of that very fact.  Those who can control and manage big data are definitely ahead of the game.

CONCLUSION:  It’s a brave new world and a world that accommodates educated individuals.  STAY IN SCHOOL.  Get ready for what’s coming.  The world as we know it will continue to change with greater opportunities as time advances.  Be there.  Also, I would recommend investing in those technology sectors that feed the changes.  I personally don’t think a young investor will go wrong.

BMW I NEXT

November 3, 2016


I think we are all aware that automotive trends point towards autonomous vehicles; i.e. “self-driving” cars.  Personally, I’m not too thrilled about the prospects and feel the reality of one in my driveway is down the road, if ever.   With that being the case, BMW, INTEL, and Mobileye have teamed up to bring autonomous vehicles to the BMW product line.  I must admit, this appears to be one “mean ride”.  Let’s take a very quick at the styling to date.

i-next

i-next2

As you can see, the styling is truly beautiful. Each company represents leadership in automotive technology, computer vision, and machine learning and share the opinion that automated driving technologies will make travel safer and easier.  No doubt, easier is a given but I have yet to be convinced safer is right around the corner.  There are significant challenges to overcome before road-worthy vehicles such as the i NEXT receives certification and goes into production for the buying public.

The goal of collaborative effort is to develop future-proofed solutions that will enable drivers to reach the so called “eyes-off”, or level 3, and ultimately the “mind-off” or level 4 by 2021. This would transform “getting there” to leisure and/or work time. BMW said the new i NEXT model will be the basis for future fleets of fully autonomous vehicles that will drive on both highways and in urban environments, which are far more challenging. A BMW spokesman said it expects a steering wheel and pedals to remain in the fully self-driving vehicle, in case the driver wants to be in control. I personally feel even these will be removed if the concept proves itself with greatly improved safety. By doing so, cost savings may be accomplished and reduction in system complexity.

While BMW lends its automotive expertise to the collaboration, INTEL is providing computing power ranging from its INTEL Atom to INTEL Xenon processors, which deliver up to one hundred (100) teraflops of power-efficient performance without having to rewrite code. Mobileye is developing software algorithms, system-on-chips, and customer applications based upon processing visual information for driver assistance systems.

BMW is actively revamping company concepts to assure direct competition with the likes of new OEM Tesla, along with the usual suspects, Audi and Mercedes-Benz. In March, the company showed its future ideas regarding vehicle autonomy via its Vision Next 100 concept cars. This was likely an overly obvious foreshadowing of the iNext platform.

Harald Krueger, BMW CEO told annual shareholders in Munich that the upcoming vehicle with “cutting-edge” electric drive-train and all new interior will be able to drive itself. The new release, along with BMW’s current “i” line are all efforts to compete in the luxury car electric vehicle market. This will be an addition to the line which already includes the i8 PHEV and the i3 BEV/REx. Krueger said:

i Next is set to be “our new innovation driver, with autonomous driving, digital connectivity, intelligent lightweight design, a totally new interior and ultimately bringing the next generation of electro-mobility to the road.”

In addition to this, as companies are realizing that car ownership is continually diminishing in “big city” environments, BMW has announced its jump onto the bandwagon of car-sharing and ride-sharing ventures. Its first delve into the scene is a car-sharing situation in Seattle, with the possibility of more such services to come.

The numbers are showing that Tesla is dominating the European market and lighting a fire under established automakers. Mercedes has been luckier than BMW with being ahead of the game, launching new product lineups and a multiplex of new models. BMW’s sales in the first quarter of 2016 only gained marginal success compared to that of Mercedes.

In an attempt to try to regain momentum and push ahead, BMW has cut prices by approximately six percent (5.9%) across the board. This is partly since the company’s available models are all “older” models, in direct comparison to the competitors. Nevertheless, BMW is reportedly still on par with 2016 projections.

Krueger, in his stockholder’s address, assured that for the seventh consecutive year, his company is on target. While, unfortunately, above target needs to be the goal when factoring in the accelerated growth of the dominant competition.

Krueger concluded:

“After our first quarter, we are on track for the full year. We have always stressed that our centenary is a springboard to the future.”

CONCLUSION:   I marvel at the technology.  There is absolutely no way any company or companies could have developed a vehicle such as this as far back as five (5) years ago.  The technology was just not there.  Hopefully, BMW is successful, but as I mentioned earlier, there are tremendous hurdles and challenges before the rubber hits the road.  I certainly wish them success.

PAYCHECK 2016

August 28, 2016


The following post is taken from information furnished by Mr. Rob Spiegel of Design News Daily.

We all are interested in how we stack up pay-wise relative to our peers.  Most companies have policies prohibiting discussions about individual pay because every paycheck is somewhat different due to deductible amounts.   The number of dependents, health care options, saving options all play a role in representations of the bottom line—take-home pay.  That’s the reason it is very important to have a representative baseline for average working salaries for professional disciplines.  That is what this post is about.  Just how much should an engineering graduate expect upon graduation in the year 2016?  Let’s take a very quick look.

The average salaries for engineering grads entering the job market range from $62,000 to $64,000 — except for one notable standout. According to the 2016 Salary Survey from The National Association of Colleges and Employers, petroleum engineering majors are expected to enter their field making around $98,000/year. Clearly, petroleum engineering majors are projected to earn the top salaries among engineering graduates this year.

Petroleum Engineers

Actually, I can understand this high salary for Petroleum engineers.  Petroleum is a non-renewable resource with diminishing availability.  Apparently, the “easy” deposits have been discovered—the tough ones, not so much.  The locations for undiscovered petroleum deposits represent some of the most difficult conditions on Earth.  They deserve the pay they get.

Chemical Engineering

Dupont at one time had the slogan, “Better living through chemistry.”  That fact remains true to this day.  Chemical engineers provide value-added products from medical to material.  From the drugs we take to the materials we use, chemistry plays a vital role in kicking the can down the road.

Electrical Engineering

When I was a graduate, back in the dark ages, electrical engineers garnered the highest paying salaries.   Transistors, relays, optical devices were new and gaining acceptance in diverse markets.  Electrical engineers were on the cutting edge of this revolution.  I still remember changing tubes in radios and even TV sets when their useful life was over.  Transistor technology was absolutely earth-shattering and EEs were riding the crest of that technology wave.

Computer Engineering

Computer and software engineering are here to stay because computers have changed our lives in a remarkably dramatic fashion.  We will NEVER go back to performing even the least tedious task with pencil and paper.  We often talk about disruptive technology—game changers.  Computer science is just that

Mechanical Engineering

I am a mechanical engineer and have enjoyed the benefits of ME technology since graduation fifty years ago.  Now, we see a great combination of mechanical and electrical with the advent of mechatronics.  This is a very specialized field providing the best of both worlds.

Software Engineering

Materials Engineering

Material engineering is a fascinating field for a rising freshman and should be considered as a future path.  Composite materials and additive manufacturing have broadened this field in a remarkable fashion.  If I had to do it over again, I would certainly consider materials engineering.

Systems Engineering

Systems engineering involves putting it all together.  A critical task considering “big data”, the cloud, internet exchanges, broadband developments, etc.  Someone has to make sense of it all and that’s the job of the systems engineer.

Hope you enjoyed this one. I look forward to your comments.


A web site called “The Best Schools” recently published a list of the top twenty (20) professions they feel are the most viable and stable for the next decade.   They have identified twenty (20) jobs representing a variety of industries that are not only thriving now, but are expected to grow throughout the next ten (10) years. Numbers were taken from projections by the Bureau of Labor Statistics (BLS) for 2010 to 2020.  I would like to list those jobs for you now as the BLS sees them.  Please note, these are in alphabetical order.

  • Accountant/Auditor
  • Biomedical Engineer
  • Brick mason, Block mason, and Stone mason
  • Civil Engineer
  • Computer Systems Analyst
  • Dental Hygienist
  • Financial Examiner
  • Health Educator
  • Home Health Aide
  • Human Resources Specialist
  • Interpreter/Translator
  • Management Analyst
  • Market Research Analyst
  • Meeting/Event Planner
  • Mental Health Counselor and Family Therapist
  • Physical Therapist and Occupational Therapist
  • Physician and Surgeon
  • Registered Nurse
  • Software Developer
  • Veterinarian

I would like now to present what the BLS indicates will be job growth for the engineering disciplines.  Job prospects for engineers over the next ten (10) years are very positive and according to them, most engineering disciplines will experience growth over the coming decade.

Professions such as biomedical engineering will see stellar growth of twenty-three percent (23%) over the next ten (10) years, while nuclear engineering will actually see a four percent (4%) decline in jobs over the coming decade.

The engineering profession is expected to follow the range of average job growth — about five percent (5%) — through 2024. Engineers, however, are expected to earn more, beginning right after graduation.  Two smart moves that will help engineering job prospects, according to the latest stats, include post-graduate education and the willingness to move into management. This is no different than it has always been.  I would also recommend taking a look at an MBA, after you receive your MS degree in your specific field of endeavor.

Mechanical Engineer

Petroleum

Materials Engineer

Aeorspace

Civil

Biomedical

Neuclear


Chemical

Computer Hardware

Industrial

Electrical

Mining

Computer Programmers

Environmental

Health and Safety

CONCLUSIONS:

I think it can be said that any profession in the fields of engineering and health services will be somewhat insulated from fluxations in the economy over the next ten years.  We are getting older and apparently fatter.   Both “conditions” require healthcare specialists.  Older medical and engineering practitioners are retiring at a very fast rate and many of the positions available are due those retirements.  At the present time, companies in the United States cannot find enough engineers and engineering technicians to fill available jobs.  There is a huge skills gap in our country left unfilled due to lack of training and lack of motivation on the part of well-bodied individuals.  It’s a great problem that must be solved as we progress into the twenty-first century.  My recommendation—BE AN ENGINEER. The jobs for the next twenty years are out there.  Just a thought.

%d bloggers like this: