COMPUTER SIMULATION

January 20, 2019


More and more engineers, systems analysist, biochemists, city planners, medical practitioners, individuals in entertainment fields are moving towards computer simulation.  Let’s take a quick look at simulation then we will discover several examples of how very powerful this technology can be.

WHAT IS COMPUTER SIMULATION?

Simulation modelling is an excellent tool for analyzing and optimizing dynamic processes. Specifically, when mathematical optimization of complex systems becomes infeasible, and when conducting experiments within real systems is too expensive, time consuming, or dangerous, simulation becomes a powerful tool. The aim of simulation is to support objective decision making by means of dynamic analysis, to enable managers to safely plan their operations, and to save costs.

A computer simulation or a computer model is a computer program that attempts to simulate an abstract model of a particular system. … Computer simulations build on and are useful adjuncts to purely mathematical models in science, technology and entertainment.

Computer simulations have become a useful part of mathematical modelling of many natural systems in physics, chemistry and biology, human systems in economics, psychology, and social science and in the process of engineering new technology, to gain insight into the operation of those systems. They are also widely used in the entertainment fields.

Traditionally, the formal modeling of systems has been possible using mathematical models, which attempts to find analytical solutions to problems enabling the prediction of behavior of the system from a set of parameters and initial conditions.  The word prediction is a very important word in the overall process. One very critical part of the predictive process is designating the parameters properly.  Not only the upper and lower specifications but parameters that define intermediate processes.

The reliability and the trust people put in computer simulations depends on the validity of the simulation model.  The degree of trust is directly related to the software itself and the reputation of the company producing the software. There will considerably more in this course regarding vendors providing software to companies wishing to simulate processes and solve complex problems.

Computer simulations find use in the study of dynamic behavior in an environment that may be difficult or dangerous to implement in real life. Say, a nuclear blast may be represented with a mathematical model that takes into consideration various elements such as velocity, heat and radioactive emissions. Additionally, one may implement changes to the equation by changing certain other variables, like the amount of fissionable material used in the blast.  Another application involves predictive efforts relative to weather systems.  Mathematics involving these determinations are significantly complex and usually involve a branch of math called “chaos theory”.

Simulations largely help in determining behaviors when individual components of a system are altered. Simulations can also be used in engineering to determine potential effects, such as that of river systems for the construction of dams.  Some companies call these behaviors “what-if” scenarios because they allow the engineer or scientist to apply differing parameters to discern cause-effect interaction.

One great advantage a computer simulation has over a mathematical model is allowing a visual representation of events and time line. You can actually see the action and chain of events with simulation and investigate the parameters for acceptance.  You can examine the limits of acceptability using simulation.   All components and assemblies have upper and lower specification limits a and must perform within those limits.

Computer simulation is the discipline of designing a model of an actual or theoretical physical system, executing the model on a digital computer, and analyzing the execution output. Simulation embodies the principle of “learning by doing” — to learn about the system we must first build a model of some sort and then operate the model. The use of simulation is an activity that is as natural as a child who role plays. Children understand the world around them by simulating (with toys and figurines) most of their interactions with other people, animals and objects. As adults, we lose some of this childlike behavior but recapture it later on through computer simulation. To understand reality and all of its complexity, we must build artificial objects and dynamically act out roles with them. Computer simulation is the electronic equivalent of this type of role playing and it serves to drive synthetic environments and virtual worlds. Within the overall task of simulation, there are three primary sub-fields: model design, model execution and model analysis.

REAL-WORLD SIMULATION:

The following examples are taken from computer screen representing real-world situations and/or problems that need solutions.  As mentioned earlier, “what-ifs” may be realized by animating the computer model providing cause-effect and responses to desired inputs. Let’s take a look.

A great host of mechanical and structural problems may be solved by using computer simulation. The example above shows how the diameter of two matching holes may be affected by applying heat to the bracket

 

The Newtonian and non-Newtonian flow of fluids, i.e. liquids and gases, has always been a subject of concern within piping systems.  Flow related to pressure and temperature may be approximated by simulation.

 

The Newtonian and non-Newtonian flow of fluids, i.e. liquids and gases, has always been a subject of concern within piping systems.  Flow related to pressure and temperature may be approximated by simulation.

Electromagnetics is an extremely complex field. The digital above strives to show how a magnetic field reacts to applied voltage.

Chemical engineers are very concerned with reaction time when chemicals are mixed.  One example might be the ignition time when an oxidizer comes in contact with fuel.

Acoustics or how sound propagates through a physical device or structure.

The transfer of heat from a colder surface to a warmer surface has always come into question. Simulation programs are extremely valuable in visualizing this transfer.

 

Equation-based modeling can be simulated showing how a structure, in this case a metal plate, can be affected when forces are applied.

In addition to computer simulation, we have AR or augmented reality and VR virtual reality.  Those subjects are fascinating but will require another post for another day.  Hope you enjoy this one.

 

 

Advertisements

WEARABLE TECHNOLOGY

January 12, 2019


Wearable technology’s evolution is not about the gadget on the wrist or the arm but what is done with the data these devices collect, say most computational biologist. I think before we go on, let’s define wearable technology as:

“Wearable technology (also called wearable gadgets) is a category of technology devices that can be worn by a consumer and often include tracking information related to health and fitness. Other wearable tech gadgets include devices that have small motion sensors to take photos and sync with your mobile devices.”

Several examples of wearable technology may be seen by the following digital photographs.

You can all recognize the “watches” shown above. I have one on right now.  For Christmas this year, my wife gave me a Fitbit Charge 3.  I can monitor: 1.) Number of steps per day, 2.) Pulse rate, 3.) Calories burned during the day, 4.) Time of day, 5.) Number of stairs climbed per day, 6.) Miles walked or run per day, and 7.) Several items I can program in from the app on my digital phone.  It is truly a marvelous device.

Other wearables provide very different information and accomplish data of much greater import.

The device above is manufactured by a company called Lumus.  This company focusses on products that provide new dimensions for the human visual experience. It offers cutting-edge eyewear displays that can be used in various applications including gaming, movie watching, text reading, web browsing, and interaction with the interface of wearable computers. Lumus does not aim to produce self-branded products. Instead, the company wants to work with various original equipment manufacturers (OEMs) to enable the wider use of its technologies.  This is truly ground-breaking technology being used today on a limited basis.

Wearable technology is aiding individuals of decreasing eyesight to see as most people see.  The methodology is explained with the following digital.

Glucose levels may be monitored by the device shown above. No longer is it necessary to prick your finger to draw a small droplet of blood to determine glucose levels.  The device below can do that on a continuous basis and without a cumbersome test device.

There are many over the world suffering from “A-fib”.  Periodic monitoring becomes a necessity and one of the best methods of accomplishing that is shown by the devices below. A watch monitors pulse rate and sends that information via blue tooth to an app downloaded on your cell phone.

Four Benefits of Wearable Health Technology are as follows:

  • Real Time Data collection. Wearables can already collect an array of data like activity levels, sleep and heart rate, among others. …
  • Continuous Monitoring. …
  • Predict and alerting. …
  • Empowering patients.

Major advances in sensor and micro-electromechanical systems (MEMS) technologies are allowing much more accurate measurements and facilitating believable data that can be used to track movements and health conditions on any one given day.  In many cases, the data captured can be downloaded into a computer and transmitted to a medical practitioner for documentation.

Sensor miniaturization is a key driver for space-constrained wearable design.  Motion sensors are now available in tiny packages measuring 2 x 2 millimeters.  As mentioned, specific medical sensors can be used to track 1.) Heart rate variability, 2.) Oxygen levels, 3.) Cardiac health, 4.) Blood pressure, 5.) Hemoglobin, 6.) Glucose levels and 7.) Body temperature.  These medical devices represent a growing market due to their higher accuracy and greater performance.  These facts make them less prone to price pressures that designers commonly face with designing consumer wearables.

One great advantage for these devices now is the ability to hold a charge for a much longer period of time.  My Fitbit has a battery life of seven (7) days.  That’s really unheard of relative to times past.

CONCLUSION:  Wearable designs are building a whole new industry one gadget at a time.  MEMS sensors represent an intrinsic part of this design movement. Wearable designs have come a long way from counting steps in fitness trackers, and they are already applying machine-learning algorithms to classify and analyze data.


My posts are not necessarily aimed to provide public service announcements but I just could not pass this one up.  Take a look.

On November first of 2018, Honeywell released a study founding that forty-four percent (44%) of the USB drives scanned by their software at fifty (50) customer locations contained at least one unsecured file.  In twenty-six percent (26%) of those cases, the detected fire was capable of causing what company officials called “a serious disruption by causing individuals to lose visibility or control of their operations”.  Honeywell began talking up its SMX (Secure Media Exchange) technology at its North American user group meeting in 2016, when removable media like flash drives were already a top pathway for attackers to gain access to a network. SMX, launched officially in 2018  is designed to manage USB security by giving users a place to plug in and check devices for approved use. The SMX Intelligence Gateway is used to analyze files in conjunction with the Advanced Threat Intelligence Exchange ( Exchange (ATIX), Honeywell’s threat intelligence cloud. Not only has SMX made USB use safer, but Honeywell has gained access to a significant amount of information about the methodology of attacks being attempted through these devices.

“The data showed much more serious threats than we expected,” said Eric Knapp, director of strategic innovation for Honeywell Industrial Cyber Security. “And taken together, the results indicate that a number of these threats were targeted and intentional.” Though Honeywell has long suspected the very real USB threats for industrial operators, the data confirmed a surprising scope and severity of threats, Knapp said, adding. “Many of which can lead to serious and dangerous situations at sites that handle industrial processes.”

The threats targeted a range of industrial sites, including refineries, chemical plants and pulp and paper facilities around the world. About one in six of the threats specifically targeted industrial control systems (ICSs) or Internet of Things (IoT) devices. (DEFINITION OF IoT: The Internet of Things (IoT) refers to the use of intelligently connected devices and systems to leverage data gathered by embedded sensors and actuators in machines and other physical objects. In other words, the IoT (Internet of Things) can be called to any of the physical objects connected with network.)

Among the threats detected, fifteen percent (15%) were high-profile, well-known issues such as Triton, Mirai and WannaCry, as well as variants of Stuxnet. Though these threats have been known to be in the wild, what the Honeywell Industry Cyber Security team considered worrisome was the fact that these threats were trying to get into industrial control facilities through removable storage devices in a relatively high density.

“That high-potency threats were at all prevalent on USB drives bound for industrial control facility use is the first concern. As ICS security experts are well aware, it only takes one instance of malware bypassing security defenses to rapidly execute a successful, widespread attack,” Honeywell’s report noted. “Second, the findings also confirm that such threats do exist in the wild, as the high-potency malware was detected among day-to-day routine traffic, not pure research labs or test environments. Finally, as historical trends have shown, newly emerging threat techniques such as Triton, which target safety instrumented systems, can provoke copycat attackers. Although more difficult and sophisticated to accomplish, such newer threat approaches can indicate the beginnings of a new wave of derivative or copycat attacks.”

In comparative tests, up to eleven percent (11%) of the threats discovered were not reliably detected by more traditional anti-malware technology. Although the type and behavior of the malware detected varied considerably, trojans—which can be spread very effectively through USB devices—accounted for fifty-five percent (55%) of the malicious files. Other malware types discovered included bots (eleven percent), hack-tools (six percent) and potentially unwanted applications (five percent).

“Customers already know these threats exist, but many believe they aren’t the targets of these high-profile attacks,” Knapp said. “This data shows otherwise and underscores the need for advanced systems to detect these threats.”

CONCLUSION:  Some companies and organizations have outlawed USB drives entirely for obvious reasons.  Also, there is some indication that companies, generally off-shore, have purposely embedded malware within USB drives to access information on a random level.  It becomes imperative that we take great care in choosing vendors providing USB drives and other external means of capturing data.  You can never be too safe.

HOW MUCH IS TOO MUCH?

December 15, 2018


How many “screen-time” hours do you spend each day?  Any idea? Now, let’s face facts, an adult working a full-time job requiring daily hour-long screen time may be a necessity.  We all know that but how about our children and grandchildren?

I’m old enough to remember when television was a laboratory novelty and telephones were “ringer-types” affixed to the cleanest wall in the house.  No laptops, no desktops, no cell phones, no Gameboys, etc etc.  You get the picture.  That, as we all know, is a far cry from where we are today.

Today’s children have grown up with a vast array of electronic devices at their fingertips. They can’t imagine a world without smartphones, tablets, and the internet.  If you do not believe this just ask them. One of my younger grandkids asked me what we did before the internet.  ANSWER: we played outside, did our chores, called our friends and family members.

The advances in technology mean today’s parents are the first generation who have to figure out how to limit screen-time for children.  This is a growing requirement for reasons we will discuss later.  While digital devices can provide endless hours of entertainment and they can offer educational content, unlimited screen time can be harmful. The American Academy of Pediatrics recommends parents place a reasonable limit on entertainment media. Despite those recommendations, children between the ages of eight (8) and eighteen (18) average seven and one-half (7 ½) hours of entertainment media per day, according to a 2010 study by the Henry J. Kaiser Family Foundation.  Can you imagine over seven (7) hours per day?  When I read this it just blew my mind.

But it’s not just kids who are getting too much screen time. Many parents struggle to impose healthy limits on themselves too. The average adult spends over eleven (11) hours per day behind a screen, according to the Kaiser Family Foundation.  I’m very sure that most of this is job related but most people do not work eleven hours behind their desk each day.

Let’s now look at what the experts say:

  • Childrenunder age two (2) spend about forty-two (42) minutes, children ages two (2) to four (4) spend two (2) hours and forty (40) minutes, and kids ages five (5) to eight (8) spend nearly three (3) hours (2:58) with screen media daily. About thirty-five (35) percent of children’s screen time is spent with a mobile device, compared to four (4) percent in 2011. Oct 19, 2017
  • Children aged eighteen (18) monthsto two (2) years can watch or use high-quality programs or apps if adults watch or play with them to help them understand what they’re seeing. children aged two to five (2-5) years should have no more than one hour a day of screen time with adults watching or playing with them.
  • The American Academy of Pediatrics released new guidelines on how much screen timeis appropriate for children. … Excessive screen time can also lead to “Computer Vision Syndrome” which is a combination of headaches, eye strain, fatigue, blurry vision for distance, and excessive dry eyes. August 21, 2017
  • Pediatricians: No More than two (2) HoursScreen Time Daily for Kids. Children should be limited to less than two hours of entertainment-based screen time per day, and shouldn’t have TVs or Internet access in their bedrooms, according to new guidelines from pediatricians. October 28, 2013

OK, why?

  • Obesity: Too much time engaging in sedentary activity, such as watching TV and playing video games, can be a risk factor for becoming overweight.
  • Sleep Problems:  Although many parents use TV to wind down before bed, screen time before bed can backfire. The light emitted from screens interferes with the sleep cycle in the brain and can lead to insomnia.
  • Behavioral Problems: Elementary school-age children who watch TV or use a computer more than two hours per day are more likely to have emotional, social, and attention problems. Excessive TV viewing has even been linked to increased bullying behavior.
  • Educational problems: Elementary school-age children who have televisions in their bedrooms do worse on academic testing.  This is an established fact—established.  At this time in our history we need educated adults that can get the job done.  We do not need dummies.
  • Violence: Exposure to violent TV shows, movies, music, and video games can cause children to become desensitized to it. Eventually, they may use violence to solve problems and may imitate what they see on TV, according to the American Academy of Child and Adolescent Psychiatry.

When very small children get hooked on tablets and smartphones, says Dr. Aric Sigman, an associate fellow of the British Psychological Society and a Fellow of Britain’s Royal Society of Medicine, they can unintentionally cause permanent damage to their still-developing brains. Too much screen time too soon, he says, “is the very thing impeding the development of the abilities that parents are so eager to foster through the tablets. The ability to focus, to concentrate, to lend attention, to sense other people’s attitudes and communicate with them, to build a large vocabulary—all those abilities are harmed.”

Between birth and age three, for example, our brains develop quickly and are particularly sensitive to the environment around us. In medical circles, this is called the critical period, because the changes that happen in the brain during these first tender years become the permanent foundation upon which all later brain function is built. In order for the brain’s neural networks to develop normally during the critical period, a child needs specific stimuli from the outside environment. These are rules that have evolved over centuries of human evolution, but—not surprisingly—these essential stimuli are not found on today’s tablet screens. When a young child spends too much time in front of a screen and not enough getting required stimuli from the real world, her development becomes stunted.

CONCLUSION: This digital age is wonderful if used properly and recognized as having hazards that may create lasting negative effects.  Use wisely.

THE MOST UNRELIABLE

November 7, 2018


One of the things I like to do with my posts is deliver information you can use in your daily life. “Stuff” that just mike make a difference.  I certainly hope this one does.    Some of the information you will read is taken from Consumer Reports Magazine and Design News Daily Magazine.

Consumer Reports recently published information regarding the reliability of automobiles offered for sale in the United States.  They drew their conclusions from owner surveys of more than five hundred thousand (500,000) people. The surveys look at numerous problem areas including engine, transmission, suspension, cooling, electrical, climate, brakes, exhaust, paint, trim, noises, leaks, power equipment, and in-car electronics, among others.  We will highlight now those automobiles considered to be the most unreliable.  This list may surprise you as it did me.

I would say that if you are looking for new wheels you heed the information given by Consumer Magazine.  They accept no advertisements and generally conduct their research by interviewing consumers and actually testing the products they report on.


Some information for this post is taken from the Concord Coalition

Business, corporate, government or individual fiscal year calendars and planners for the US fiscal year 2018 as defined by the US Federal Government, starting on October 1, 2017 and ending on September 30, 2018. The calendars cover a twelve-month period and are divided into four quarters. With that being the case, once again the clock begins ticking elevating our national debt.  As of 2 October 2018, at 0900 hours our national debt was about $21.5 trillion dollars.

As you can see, a trillion is a one with twelve (12) zeros behind it.  We have twenty-one of these to deal with.  The chart below was “shot” at sixteen (16) hundred hours (4:00 for you civilians) on 2 October 2018.  If that debt is allocated for each citizen and each taxpayer, the debt becomes $65,447 or $176,475 respectively. We all had better have a really really good year.

Right now, our debt is approximately ninety-four percent (%) of our gross domestic product (GDP).  In 2050 that debt is estimated to be one hundred and fifty percent (150%) our GDP, which is considered to be unsustainable.   The chart below will give you some idea as to how quickly our debt has risen.

Well, if misery loves company, we are not alone with issues of national debt.  The following chart give debt of the top twenty (20) countries with significant debt.  Not a pretty picture.

WHAT IS THE CURE FOR US NATIONAL DEBT?

Entitlement Programs – When social security was first enacted the life expectancy in the country was sixty-three (63) years old.  Today that life expectancy is in the late seventies (70’s).  If we’re to get our entitlement programs back into line, we should think about changing the eligibility age for social security and Medicare to at least the early seventies (70’s).

We should also change social security disability and loosen the eligibility for those who are over sixty-two (62) years old.  Those who can’t continue to do hard labor (construction) type of jobs would be eligible to collect earlier.  We would also have to make sure that medical insurance companies use community rating so those older Americans could get medical insurance at a “reasonable” price until they reached the age of eligibility for Medicare.

The Military – It makes no sense that the United States should spend more than the next ten countries combined for national defense.  We have significantly more firepower than we need and as a result we tend to trot this ability out to other parts of the world and work towards “nation building”.  It’s time that we go back to the levels of military spending we had under previous administrations and even make larger cuts.  We just can’t afford the size military we have and the interventionists policies that we’ve developed.  We really cannot protect the entire world endlessly.

Tax policy – It’s not only the rich.  We do need to change tax policy on the richest Americans.  They do need to pay more, but so does everyone else.  Right now, we have close to fifty percent (50%) of Americans not paying any income taxes.  This just isn’t fair.  If we’re all to participate in the good things that our country has to offer, then we all need to participate in paying a “fair” level of taxes to support those activities.  Everyone should have “skin in the game”.

Public workers compensation packages – Thirty years ago people went to work for the government knowing they were going to make less money, but their job security was going to be very strong.  Today according to John Mauldin, we have a situation where government workers are paid on average forth percent (40%) more than their private sector counterparts.  This is more than unsustainable.  There is no reason government workers should have this sort of bonus and it needs to be brought under control if we’re to reign in our government debt issues

CONCLUSIONS:

The above suggestions and possible solutions are only the tip of the ice burg.  The problem is: WE NEED TO DO SOMETHING and do it quickly—like this year, right now.

 

 

 

THE RUSSIANS ARE COMING

August 18, 2018


Are we as Americans a little paranoid—or maybe a lot paranoid when it comes to trusting the Russians?  In light of the stories involving Russian collusion during the recent presidential election, maybe we should put trust on the shelf in all areas of involvement with Putin and the “mother-land”.  Do recent news releases through “pop” media muddy the waters or really do justice to a very interesting occurrence noted just this week? Let’s take a look.

The following is taken from a UPI News release on 16 August 2018:

“Aug. 16 (UPI) — Just days after the Trump administration proposed a Space Force as a new branch of the military, U.S. officials say they’re concerned about “very abnormal behavior” involving a Russian satellite.  The satellite, launched in October, is displaying behavior “inconsistent” with the kind of satellite Russia says it is, said Yleem D.S. Poblete, assistant secretary of state for the Bureau of Arms Control, Verification and Compliance . “Poblete suggested the satellite could be a weapon. “We don’t know for certain what it is, and there is no way to verify it,” he said Wednesday at a disarmament conference in Switzerland.

An artist’s rendition of that satellite is given below:

“Our Russian colleagues will deny that its systems are meant to be hostile,” Poblete continued. “But it is difficult to determine an object’s true purpose simply by observing it on orbit. “So that leads to the question: is this, again, enough information to verify and assess whether a weapon has or has not been tested in orbit? The United States does not believe it is.”

This release is basically saying that if we do not know what the Russian satellite is supposed to do, then it must be a weapon.  One of my favorite online publications is SPACE.com.  This group does a commendable job at assessing breaking stories and giving us the straight “poop” relative to all things in the cosmos.  Let’s take a look at what they say.

SPACE.com:

“This gets a bit confusing, so bear with me: Russia launched the Cosmos 2519 satellite in June 2017. This spacecraft popped out a subsatellite known as Cosmos 2521 in August of that year. On Oct. 30, a second subsat, Cosmos 2523, deployed from one of these two other craft.

“I can’t tell from the data whether the parent [of 2523] was 2519 or 2521, and indeed, I can’t be sure that U.S. tracking didn’t swap the IDs of 2519 and 2521 at some point,” McDowell said.  (NOTE: Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics who monitors many of the spacecraft circling our planet using publicly available U.S. tracking data.)

These three spacecraft performed a variety of maneuvers over the ensuing months, according to McDowell and Brian Weeden, director of program planning at the nonprofit Secure World Foundation. For example, Cosmos 2521 conducted some “proximity operations” around 2519 and may have docked with the mothership in October, Weeden said via Twitter today (Aug. 16).

Cosmos 2521 adjusted its orbit slightly in February 2018, then performed two big engine burns in April to significantly lower its slightly elliptical path around Earth, from about 400 miles (650 kilometers) to roughly 220 miles (360 km), McDowell said. The satellite fired its engines again on July 20, reshaping its orbit to a more elliptical path with a perigee (close-approach point) of 181 miles (292 km) and an apogee (most-distant point) of 216 miles (348 km).

And Cosmos 2519 conducted a series of small burns between late June and mid-July of this year, shifting its orbit from a nearly circular one (again, with an altitude of about 400 miles) to a highly elliptical path with a perigee of 197 miles (317 km) and an apogee of 413 miles (664 km), McDowell calculated.

These big maneuvers are consistent with a technology demonstration of some kind, he said.

Perhaps the Russians “are checking out the [spacecraft] bus and its capability to deliver multiple subsatellites to different orbits — something like that,” McDowell said. “From the information that’s available in the public domain, that would be an entirely plausible interpretation.”

“What are they complaining about?” McDowell said, referring to American officials. Weeden voiced similar sentiments. Cosmos 2523’s “deployment was unusual, but hard to see at this point why the US is making it a big deal,” he said via Twitter today. “There are a lot of facts and not a lot of pattern,” McDowell said. “So, partly I take the U.S. statement as saying, ‘Russia, how dare you do something confusing?'” It’s possible, of course, that American satellites or sensors have spotted Cosmos 2523 (or Cosmos 2519, or Cosmos 2521) doing something suspicious — some activity that can’t be detected just by analyzing publicly available tracking data. “But they need to say a little more for us to take that seriously,” McDowell said.

CONCLUSIONS:

We just do not know and we do not trust the Russians to let us know the purpose behind their newest satellite.  Then again, why should they?    We live in a world where our own media tells us “the public has the right to know”.  That’s really garbage.  The public and others have a right to know what we choose to tell them.  No more—no less.

%d bloggers like this: