OUR SHRINKING WORLD

March 16, 2019


We sometimes do not realize how miniaturization has affected our every-day lives.  Electromechanical products have become smaller and smaller with one great example being the cell phone we carry and use every day.  Before we look at several examples, let’s get a definition of miniaturization.

Miniaturization is the trend to manufacture ever smaller mechanical, optical and electronic products and devices. Examples include miniaturization of mobile phones, computers and vehicle engine downsizing. In electronics, Moore’s Law predicted that the number of transistors on an integrated circuit for minimum component cost doubles every eighteen (18) months. This enables processors to be built in smaller sizes. We can tell that miniaturization refers to the evolution of primarily electronic devices as they become smaller, faster and more efficient. Miniaturization also includes mechanical components although it sometimes is very difficult to reduce the size of a functioning part.

The revolution of electronic miniaturization began during World War II and is continuing to change the world till now. Miniaturization of computer technology has been the source of a seemingly endless battle between technology giants over the world. The market has become so competitive that the companies developing microprocessors are constantly working towards erecting a smaller microchip than that of their competitor, and as a result, computers become obsolete almost as soon as they are commercialized.  The concept that underlies technological miniaturization is “the smaller the better”; smaller is faster, smaller is cheaper, smaller is more profitable. It is not just companies that profit from miniaturization advances, but entire nations reap rewards through the capitalization of new developments. Devices such as personal computers, cellular telephones, portable radios, and camcorders have created massive markets through miniaturization, and brought billions of dollars to the countries where they were designed and built. In the 21st century, almost every electronic device has a computer chip inside. The goal of miniaturization is to make these devices smaller and more powerful, and thus made available everywhere. It has been said, however, that the time for continued miniaturization is limited – the smaller the computer chip gets, the more difficult it becomes to shrink the components that fit on the chip.  I personally do not think this is the case but I am a mechanical engineer and not an electronic or electrical engineer.  I use the products but I do not develop the products.

The world of miniaturization would not be possible at all if it were not for semiconductor technology.  Devices made of semiconductors, notably silicon, are essential components of most electronic circuits.  A process of lithography is used to create circuitry layered over a silicon substrate. A transistor is a semiconductor device with three connections capable of amplification in addition to rectification. Miniaturization entails increasing the number of transistors that can hold on a single chip, while shrinking the size of the chip. As the surface area of a chip decreases, the task of designing newer and faster circuit designs becomes more difficult, as there is less room left for the components that make the computer run faster and store more data.

There is no better example of miniaturization than cell phone development.  The digital picture you see below will give some indication as to the development of the cell phone and how the physical size has decreased over the years.  The cell phone to the far left is where it all started.  To the right, where we are today.  If you look at the modern-day cell phone you see a remarkable difference in size AND ability to communicate.  This is all possible due to shrinking computer chips.

One of the most striking changes due to miniaturization is the application of digital equipment into a modern-day aircraft cockpit.  The JPEG below is a mockup of an actual Convair 880.  With analog gauges, an engineering panel and an exterior shell, this cockpit reads 1960/1970 style design and fabrication.  In fact, this is the actual cockpit mock up that was used in the classic comedy film “Airplane”.

Now, let us take a look at a digital cockpit.  Notice any differences?  Cleaner and fewer.  The GUI or graphical user interface can take the place of numerous dials and gauges that clutter and possibly confuse a pilot’s vision.

I think you have the picture so I would challenge you to take a look this upcoming week to discover those electromechanical items, we take for granted, to discover how they have been reduced in size.  You just may be surprised.

 

TELECOMMUTING

March 13, 2019


Our two oldest granddaughters have new jobs.  Both, believe it or not, telecommute.  That’s right, they do NOT drive to work.  They work from home—every day of the week and sometimes on Saturday.  Both ladies work for companies not remotely close to their homes in Atlanta.  The headquarters for these companies are hundreds of miles away and in other states.

Even the word is fairly new!  A few years ago, there was no such “animal” as telecommuting and today it’s considered by progressive companies as “kosher”.   Companies such as AT&T, Blue Cross-Blue Shield, Southwest Airlines, The Home Shopping Network, Amazon and even Home Depot allow selected employees to “mail it in”.  The interesting thing; efficiency and productivity are not lessened and, in most cases, improve.   Let’s look at several very interesting facts regarding this trend in conducting business.  This information comes from a website called “Flexjobs.com”.

  1. Three point three (3.3) million full-time professionals, excluding volunteers and the self-employed, consider their home as their primary workplace.
  2. Telecommuting saves between six hundred ($600) and one thousand ($1,000)  on annual dry-cleaning expenses, more than eight hundred ($800) on coffee and lunch expenses, enjoy a tax break of about seven hundred and fifty ($750), save five hundred and ninety ($590) on their professional wardrobe, save one thousand one hundred and twenty ($1,120) on gas, and avoid over three hundred ( $300 ) dollars in car maintenance costs.
  3. Telecommuters save two hundred and sixty (260) hours by not commuting on a daily basis.
  4. Work from home programs help businesses save about two thousand ($2,000) per year help businesses save two thousand ($2,000) per person per year and reduce turnover by fifty (50%) percent.
  5. Typical telecommuter are college graduates of about forty-nine (49) years old and work with a company with fewer than one hundred (100) employees.
  6. Seventy-three percent (73%) of remote workers are satisfied with the company they work for and feel that their managers are concerned about their well-being and morale.
  7. For every one real work-from-home job, there are sixty job scams.
  8. Most telecommuters (53 percent) work more than forty (40) hours per week.
  9. Telecommuters work harder to create a friendly, cooperative, and positive work environment for themselves and their teams.
  10. Work-from-home professionals (82 percent) were able to lower their stress levels by working remotely. Eighty (80) percent have improved morale, seventy (70) percent increase productivity, and sixty-nine (69) percent miss fewer days from work.
  11. Half of the U.S. workforce have jobs that are compatible with remote work.
  12. Remote workers enjoy more sleep, eat healthier, and get more physical exercise
  13. Telecommuters are fifty (50) percent less likely to quit their jobs.
  14. When looking at in-office workers and telecommuters, forty-five (45) percent of telecommuters love their job, while twenty-four (24) percent of in-office workers love their jobs.
  15. Four in ten (10) freelancers have completed projects completely from home.

OK, what are the individual and company benefits resulting from this activity.  These might be as follows:

  • Significant reduction in energy usage by company.
  •  Reduction in individual carbon footprint. (It has been estimated that 9,500 pounds of CO 2 per year per person could be avoided if the employee works from home.  Most of this is avoidance of cranking up the “tin lezzy”.)
  • Reduction in office expenses in the form of space, desk, chair, tables, lighting, telephone equipment, and computer connections, etc.
  • Reduction in the number of sick days taken due to illnesses from communicable diseases.
  • Fewer “in-office” distractions allowing for greater focus on work.  These might include: 1.) Monday morning congregation at the water cooler to discuss the game on Saturday, 2.) Birthday parties, 3.) Mary Kay meetings, etc etc.  You get the picture!

In the state where I live (Tennessee), the number of telecommuters has risen eighteen (18) percent relative to 2011.  489,000 adults across Tennessee work from home on a regular basis.  Most of these employees do NOT work for themselves in family-owned businesses but for large companies that allow the activity.  Also, many of these employees work for out-of-state concerns thus creating ideal situations for both worker and employer.   At Blue Cross of Tennessee, one in six individuals go to work by staying at home.   Working at home definitely does not always mean there is no personal communication with supervisors and peers.    These meetings are factored into each work week, some required at least on a monthly basis.

Four point three (4.3) million employees (3.2% of the workforce) now work from home at least half the time.  Regular work-at-home, among the non-self-employed population, has grown by 140% since 2005, nearly 10x faster than the rest of the workforce or the self-employed.  Of course, this marvelous transition has only been made possible by internet connections and in most cases; the computer technology at home equals or surpasses that found at “work”.   We all know this trend will continue as well it should.

 

I welcome your comments and love to know your “telecommuting” stories.  Please send responses to: bobjengr@comcast.net.

ARTIFICIAL INTELLIGENCE

February 12, 2019


Just what do we know about Artificial Intelligence or AI?  Portions of this post were taken from Forbes Magazine.

John McCarthy first coined the term artificial intelligence in 1956 when he invited a group of researchers from a variety of disciplines including language simulation, neuron nets, complexity theory and more to a summer workshop called the Dartmouth Summer Research Project on Artificial Intelligence to discuss what would ultimately become the field of AI. At that time, the researchers came together to clarify and develop the concepts around “thinking machines” which up to this point had been quite divergent. McCarthy is said to have picked the name artificial intelligence for its neutrality; to avoid highlighting one of the tracks being pursued at the time for the field of “thinking machines” that included cybernetics, automation theory and complex information processing. The proposal for the conference said, “The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.”

Today, modern dictionary definitions focus on AI being a sub-field of computer science and how machines can imitate human intelligence (being human-like rather than becoming human). The English Oxford Living Dictionary gives this definition: “The theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.”

Merriam-Webster defines artificial intelligence this way:

  1. A branch of computer science dealing with the simulation of intelligent behavior in computers.
  2. The capability of a machine to imitate intelligent human behavior.

About thirty (30) year ago, a professor at the Harvard Business School (Dr. Shoshana Zuboff) articulated three laws based on research into the consequences that widespread computing would have on society. Dr. Zuboff had degrees in philosophy and social psychology so she was definitely ahead of her time relative to the unknown field of AI.  Her document “In the Age of the Smart Machine: The Future of Work and Power”, she postulated the following three laws:

  • Everything that can be automated will be automated
  • Everything that can be informated will be informated. (NOTE: Informated was coined by Zuboff to describe the process of turning descriptions and measurements of activities, events and objects into information.)
  • In the absence of countervailing restrictions and sanctions, every digital application that can be sued for surveillance and control will be used for surveillance and control, irrespective of its originating intention.

At that time there was definitely a significant lack of computing power.  That ship has sailed and is no longer a great hinderance to AI advancement that it certainly once was.

 

WHERE ARE WE?

In recent speech, Russian president Vladimir Putin made an incredibly prescient statement: “Artificial intelligence is the future, not only for Russia, but for all of humankind.” He went on to highlight both the risks and rewards of AI and concluded by declaring that whatever country comes to dominate this technology will be the “ruler of the world.”

As someone who closely monitors global events and studies emerging technologies, I think Putin’s lofty rhetoric is entirely appropriate. Funding for global AI startups has grown at a sixty percent (60%) compound annual growth rate since 2010. More significantly, the international community is actively discussing the influence AI will exert over both global cooperation and national strength. In fact, the United Arab Emirates just recently appointed its first state minister responsible for AI.

Automation and digitalization have already had a radical effect on international systems and structures. And considering that this technology is still in its infancy, every new development will only deepen the effects. The question is: Which countries will lead the way, and which ones will follow behind?

If we look at criteria necessary for advancement, there are the seven countries in the best position to rule the world with the help of AI.  These countries are as follows:

  • Russia
  • The United States of America
  • China
  • Japan
  • Estonia
  • Israel
  • Canada

The United States and China are currently in the best position to reap the rewards of AI. These countries have the infrastructure, innovations and initiative necessary to evolve AI into something with broadly shared benefits. In fact, China expects to dominate AI globally by 2030. The United States could still maintain its lead if it makes AI a top priority and charges necessary investments while also pulling together all required government and private sector resources.

Ultimately, however, winning and losing will not be determined by which country gains the most growth through AI. It will be determined by how the entire global community chooses to leverage AI — as a tool of war or as a tool of progress.

Ideally, the country that uses AI to rule the world will do it through leadership and cooperation rather than automated domination.

CONCLUSIONS:  We dare not neglect this disruptive technology.  We cannot afford to lose this battle.

WORDS OF WISDOM

January 28, 2019


If you are like me, you would hope that elected “public servants” at the federal level are as smart if not smarter than the average American.  Is that not too much to ask?  Coming home just now I listened to an XM Radio broadcast from the White House Media Room.  Questions and answerers, or the lack thereof, addressing difficulties with our immigration laws and what the Dems and Pubs will do in the next eighteen (18) days to fix it. If no fix results, we are shut down for another period of time—an expensive period of time.   Members of the media, Congress and the Oval Office always address the “broken immigration” problem and promise to fix it although they have not done so for decades.  The Oval Office tells us a border wall, a fence, a barrier, etc. will solve this problem.  I have no real idea. All I know is we have a back and forth that is very detrimental to our country and gets nothing accomplished.  In the southern part of our country we call this a pissing contest. Ego vs Ego.

I long for words of wisdom from our dumb-ass politicians realizing they are merely politicians and not statesmen. With this in mind, I sought out others noted for their wisdom.  Here is a small portion of what I found:

  • Accept challenges so that you can feel the exhilaration of victory—George S. Patton.
  • If you must speak ill of another, do not speak it, write it in the sand near the water’s edge—Napoleon Hill.
  • The best way to make your dreams come true is to wake up—Paul Valery.
  • Nothing is so frightening as ignorance in action—Johann Wolfgang von Goethe.
  • Two men working as a team will produce more than three men working as individuals—Charles P. McCormick.
  • Darkness cannot drive out darkness: only light can do that. Hate cannot drive out hate, only love can do that—Dr. Martin Luther King Jr.
  • Nothing is more dangerous than an idea, when you only have one idea—Emile-Auguste Chartier.
  • An ambitions man can never know peace—J. Krishnamurti.
  • Never leave well enough alone—Raymond Loewy.
  • You may be disappointed if you fail, but you are doomed if you don’t try—Beverly Sills.
  • Where would the gardener be if there were no weeds? —Chuang Tsu.
  • Success is not final, failure is not fatal: it is the courage to continue that counts—Winston Churchill.
  • We see things not as they are but as we are—H. M. Tomlinson.
  • Getting along with others is the essence of getting ahead, success being linked with cooperation—William Feather
  • Ability may get you to the top, but it takes character to keep you there—John Wooden.
  • I’m not one of those whom expressing opinion confine themselves to facts—Mark Twain.
  • In great matters, men show themselves as they wish to be seen; in small matters, as they are—Gamaliel Bradford.
  • Work like you don’t need the money; love like you’ve never been hurt; dance like nobody’s watching—Satchel Paige.
  • The only true wisdom is in knowing you know nothing—Socrates.
  • If what you did yesterday seems big; you haven’t done anything today—Lou Holtz.
  • To conquer without risk is to triumph without glory—Pierre Corneille.
  • The trouble with having an open mind, of course, is that people will insist on coming along and trying to put things in it—Terry Pratchett.
  • The strength of a nation derives from the integrity of the home—Confucius.

As you can see, we are a long way from wisdom relative to our three branches of government.


My posts are not necessarily aimed to provide public service announcements but I just could not pass this one up.  Take a look.

On November first of 2018, Honeywell released a study founding that forty-four percent (44%) of the USB drives scanned by their software at fifty (50) customer locations contained at least one unsecured file.  In twenty-six percent (26%) of those cases, the detected fire was capable of causing what company officials called “a serious disruption by causing individuals to lose visibility or control of their operations”.  Honeywell began talking up its SMX (Secure Media Exchange) technology at its North American user group meeting in 2016, when removable media like flash drives were already a top pathway for attackers to gain access to a network. SMX, launched officially in 2018  is designed to manage USB security by giving users a place to plug in and check devices for approved use. The SMX Intelligence Gateway is used to analyze files in conjunction with the Advanced Threat Intelligence Exchange ( Exchange (ATIX), Honeywell’s threat intelligence cloud. Not only has SMX made USB use safer, but Honeywell has gained access to a significant amount of information about the methodology of attacks being attempted through these devices.

“The data showed much more serious threats than we expected,” said Eric Knapp, director of strategic innovation for Honeywell Industrial Cyber Security. “And taken together, the results indicate that a number of these threats were targeted and intentional.” Though Honeywell has long suspected the very real USB threats for industrial operators, the data confirmed a surprising scope and severity of threats, Knapp said, adding. “Many of which can lead to serious and dangerous situations at sites that handle industrial processes.”

The threats targeted a range of industrial sites, including refineries, chemical plants and pulp and paper facilities around the world. About one in six of the threats specifically targeted industrial control systems (ICSs) or Internet of Things (IoT) devices. (DEFINITION OF IoT: The Internet of Things (IoT) refers to the use of intelligently connected devices and systems to leverage data gathered by embedded sensors and actuators in machines and other physical objects. In other words, the IoT (Internet of Things) can be called to any of the physical objects connected with network.)

Among the threats detected, fifteen percent (15%) were high-profile, well-known issues such as Triton, Mirai and WannaCry, as well as variants of Stuxnet. Though these threats have been known to be in the wild, what the Honeywell Industry Cyber Security team considered worrisome was the fact that these threats were trying to get into industrial control facilities through removable storage devices in a relatively high density.

“That high-potency threats were at all prevalent on USB drives bound for industrial control facility use is the first concern. As ICS security experts are well aware, it only takes one instance of malware bypassing security defenses to rapidly execute a successful, widespread attack,” Honeywell’s report noted. “Second, the findings also confirm that such threats do exist in the wild, as the high-potency malware was detected among day-to-day routine traffic, not pure research labs or test environments. Finally, as historical trends have shown, newly emerging threat techniques such as Triton, which target safety instrumented systems, can provoke copycat attackers. Although more difficult and sophisticated to accomplish, such newer threat approaches can indicate the beginnings of a new wave of derivative or copycat attacks.”

In comparative tests, up to eleven percent (11%) of the threats discovered were not reliably detected by more traditional anti-malware technology. Although the type and behavior of the malware detected varied considerably, trojans—which can be spread very effectively through USB devices—accounted for fifty-five percent (55%) of the malicious files. Other malware types discovered included bots (eleven percent), hack-tools (six percent) and potentially unwanted applications (five percent).

“Customers already know these threats exist, but many believe they aren’t the targets of these high-profile attacks,” Knapp said. “This data shows otherwise and underscores the need for advanced systems to detect these threats.”

CONCLUSION:  Some companies and organizations have outlawed USB drives entirely for obvious reasons.  Also, there is some indication that companies, generally off-shore, have purposely embedded malware within USB drives to access information on a random level.  It becomes imperative that we take great care in choosing vendors providing USB drives and other external means of capturing data.  You can never be too safe.

DECISION PARALYSIS

January 5, 2019


The idea for this post came from “Plant Engineering Magazine”, December 2018.

OK, now what do I do?  Have you ever heard yourself muttering those words?  Well, I’ve been there—done that—got the “Tee shirt”.  We all have at one time been placed or have placed ourselves in the decision-making process with a certain degree of paralysis.  If you have P and L responsibilities, own a house, contemplate the purchase of any item that will impact your checkbook or finances, you’ve been there. Let’s take a look at eight (8) factors that may cause decision paralysis.

  1. RAPID CHANGE: The manner in which we conduct our daily lives has changed dramatically over the past few years. Digitalization is sweeping across the domestic and commercial world changing the way we do just about everything. The way we shop, bank, and travel can be accomplished on-line with delivery systems reacting accordingly.  Everyone, including the
    “ baby-boomers” need to get on-board with the changes.
  2. COMPLEX PROCESSES: Old-school processes are inadequate for managing today’s very complex issues. Our three sons and all of our grandchildren have probably never purchased a stamp.  Everything is accomplished on line including paying the bills.  There will come a time when every acquisition will start online.  One of the most fascinating web sites if U-tube.com.  I have never been faced with a “fix-it” problem that is not described on U-tube. It is a valuable resource.  Get ready for digitization now—its coming.
  3. DEMANDING CUSTOMERS: Today’s consumers have high expectations for attentive service, high value, and timely communication. It is no longer enough to be content with trusting the process will deliver value for the customer.  My greatest complaint with COMCAST is customer service.  The product itself is adequate but their customer service is one of the most pitiful on the planet.
  4. PHYSICAL THREATS: I do NOT mean burglars and home invasion.  Aging infrastructure systems, including our power grid, air traffic control, bridges, railways, pose significant threats to reliable communication, transportation and safety in general.  In-house and in-store equipment may not be sophisticated enough to handle growing demands brought on by our “digital world”.  Upgrades to physical equipment and programs driving that equipment become more frequent as we try to make decisions and choices.
  5. TOO MANY CHOICES: While choices are really nice, too many options can present a real burden for the decision maker.  We should and must prioritize the growing list of choices and choose the most viable options.  This includes possible vendors and companies offering choices.
  6. CYBER THREATS: We MUST incorporate systems to protect digital infrastructure.   If you read the literature, you find we are losing that battle. It’s almost to the point that every household needs an IT guy.
  7. DATA OVERLOAD: “Big data” is swamping us with information at an ever-growing rate due to an endless list of features and functionality relative to digital devices. As you well know, CDs and DVDs can now be purchased with terabyte capabilities.  Necessity is the mother of invention and this need will only grow.
  8. TIGHT BUDGETS AND FINANCES: In most cases, making the proper and correct decision will require some cost. Once again, this can cause delays in trying to choose the best options with the maximum payback in time, money and effort.

There may be others factors depending upon the situation or the decision you must make on a personal basis.    Let us now consider steps that just might ease the pain of decision-making.

  • EARLY DETECTION OF A PROBLEM: There probably are early warning signs that a problem is coming necessitating a solution. It is a great help if you can stay attuned to warnings that present themselves.  It gives you time to consider a possible solution.
  • SCHEDULE AND CONSIDER YOUR “FIX” EARLY: If at all possible, solve the problem before it becomes a panic situation. Have a solution or solutions ready to incorporate by becoming pro-active.
  • MONITOR THE FIX: Make sure you are solving the problem and not a manifestation of the problem.  We call this “root-cause-analysis”.
  • TRACK YOUR COSTS: Know what it costs to resolve the problem.
  • MAINTAIN RECORDS AND CREATE A PAPER TRAIL: Some times the only way you know where you are is to look back to see where you have been!

HOW MUCH IS TOO MUCH?

December 15, 2018


How many “screen-time” hours do you spend each day?  Any idea? Now, let’s face facts, an adult working a full-time job requiring daily hour-long screen time may be a necessity.  We all know that but how about our children and grandchildren?

I’m old enough to remember when television was a laboratory novelty and telephones were “ringer-types” affixed to the cleanest wall in the house.  No laptops, no desktops, no cell phones, no Gameboys, etc etc.  You get the picture.  That, as we all know, is a far cry from where we are today.

Today’s children have grown up with a vast array of electronic devices at their fingertips. They can’t imagine a world without smartphones, tablets, and the internet.  If you do not believe this just ask them. One of my younger grandkids asked me what we did before the internet.  ANSWER: we played outside, did our chores, called our friends and family members.

The advances in technology mean today’s parents are the first generation who have to figure out how to limit screen-time for children.  This is a growing requirement for reasons we will discuss later.  While digital devices can provide endless hours of entertainment and they can offer educational content, unlimited screen time can be harmful. The American Academy of Pediatrics recommends parents place a reasonable limit on entertainment media. Despite those recommendations, children between the ages of eight (8) and eighteen (18) average seven and one-half (7 ½) hours of entertainment media per day, according to a 2010 study by the Henry J. Kaiser Family Foundation.  Can you imagine over seven (7) hours per day?  When I read this it just blew my mind.

But it’s not just kids who are getting too much screen time. Many parents struggle to impose healthy limits on themselves too. The average adult spends over eleven (11) hours per day behind a screen, according to the Kaiser Family Foundation.  I’m very sure that most of this is job related but most people do not work eleven hours behind their desk each day.

Let’s now look at what the experts say:

  • Childrenunder age two (2) spend about forty-two (42) minutes, children ages two (2) to four (4) spend two (2) hours and forty (40) minutes, and kids ages five (5) to eight (8) spend nearly three (3) hours (2:58) with screen media daily. About thirty-five (35) percent of children’s screen time is spent with a mobile device, compared to four (4) percent in 2011. Oct 19, 2017
  • Children aged eighteen (18) monthsto two (2) years can watch or use high-quality programs or apps if adults watch or play with them to help them understand what they’re seeing. children aged two to five (2-5) years should have no more than one hour a day of screen time with adults watching or playing with them.
  • The American Academy of Pediatrics released new guidelines on how much screen timeis appropriate for children. … Excessive screen time can also lead to “Computer Vision Syndrome” which is a combination of headaches, eye strain, fatigue, blurry vision for distance, and excessive dry eyes. August 21, 2017
  • Pediatricians: No More than two (2) HoursScreen Time Daily for Kids. Children should be limited to less than two hours of entertainment-based screen time per day, and shouldn’t have TVs or Internet access in their bedrooms, according to new guidelines from pediatricians. October 28, 2013

OK, why?

  • Obesity: Too much time engaging in sedentary activity, such as watching TV and playing video games, can be a risk factor for becoming overweight.
  • Sleep Problems:  Although many parents use TV to wind down before bed, screen time before bed can backfire. The light emitted from screens interferes with the sleep cycle in the brain and can lead to insomnia.
  • Behavioral Problems: Elementary school-age children who watch TV or use a computer more than two hours per day are more likely to have emotional, social, and attention problems. Excessive TV viewing has even been linked to increased bullying behavior.
  • Educational problems: Elementary school-age children who have televisions in their bedrooms do worse on academic testing.  This is an established fact—established.  At this time in our history we need educated adults that can get the job done.  We do not need dummies.
  • Violence: Exposure to violent TV shows, movies, music, and video games can cause children to become desensitized to it. Eventually, they may use violence to solve problems and may imitate what they see on TV, according to the American Academy of Child and Adolescent Psychiatry.

When very small children get hooked on tablets and smartphones, says Dr. Aric Sigman, an associate fellow of the British Psychological Society and a Fellow of Britain’s Royal Society of Medicine, they can unintentionally cause permanent damage to their still-developing brains. Too much screen time too soon, he says, “is the very thing impeding the development of the abilities that parents are so eager to foster through the tablets. The ability to focus, to concentrate, to lend attention, to sense other people’s attitudes and communicate with them, to build a large vocabulary—all those abilities are harmed.”

Between birth and age three, for example, our brains develop quickly and are particularly sensitive to the environment around us. In medical circles, this is called the critical period, because the changes that happen in the brain during these first tender years become the permanent foundation upon which all later brain function is built. In order for the brain’s neural networks to develop normally during the critical period, a child needs specific stimuli from the outside environment. These are rules that have evolved over centuries of human evolution, but—not surprisingly—these essential stimuli are not found on today’s tablet screens. When a young child spends too much time in front of a screen and not enough getting required stimuli from the real world, her development becomes stunted.

CONCLUSION: This digital age is wonderful if used properly and recognized as having hazards that may create lasting negative effects.  Use wisely.

%d bloggers like this: