I feel that most individuals, certainly most adults, wonder if anyone is out there.  Are there other planets with intelligent life and is that life humanoid or at least somewhat intelligent?  The first effort would be to define intelligent.  Don’t laugh but this does have some merit and has been considered by behavioral scientists for a significant length of time.  On Earth, human intelligence took nearly four (4) Billion years to develop. If living beings develop advanced technology, they can make their existence known to the Universe. A working definition of “intelligent” includes self-awareness, use of tools, and use of language. There are other defining traits, as follows:

  • Crude perceptive abilities: Like concept of a handshake (sending a message and acknowledging receipt of one sent by you)
  • Crude communication abilities: Some primitive language and vocabulary
  • Sentience: Should be able of original thought and motivation, some form of self -awareness
  • Retention: Ability to remember and recall information on will
  • Some form of mathematical ability like counting

Please feel free to apply your own definition to intelligence. You will probably come as close as anyone to a workable one.


NASA is looking and one manner in which the search occurs is with the new satellite TESS.

The Transiting Exoplanet Survey Satellite (TESS) is an Explorer-class planet finder.   TESS will pick up the search for exoplanets as the Kepler Space Telescope runs out of fuel.

Kepler, which has discovered more than 4,500 potential planets and confirmed exoplanets, launched in 2009. After mechanical failure in 2013, it entered a new phase of campaigns to survey other areas of the sky for exoplanets, called the K2 mission. This enabled researchers to discover even more exoplanets, understand the evolution of stars and gain insight about supernovae and black holes.

Soon, Kepler’s mission will end, and it will be abandoned in space, orbiting the sun, therefore:  never getting closer to Earth than the moon.

The spaceborne all-sky transit survey, TESS will identify planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and orbital distances. The principal goal of the TESS mission is to detect small planets with bright host stars in the solar neighborhood, so that detailed characterizations of the planets and their atmospheres can be performed. TESS is only one satellite used to determine if there are any “goldy-locks” planets in our solar system. TESS will survey an area four hundred (400) times larger than Kepler observed. This includes two hundred thousand (200,000) of the brightest nearby stars. Over the course of two years, the four wide-field cameras on board will stare at different sectors of the sky for days at a time.

TESS will begin by looking at the Southern Hemisphere sky for the first year and move to the Northern Hemisphere in the second year. It can accomplish this lofty goal by dividing the sky into thirteen (13) sections and looking at each one for twenty-seven (27) days before moving on to the next.

The various missions launched to discover exoplanets may be seen below.

As mentioned earlier, TESS will monitor the brightness of more than two hundred thousand (200,000) stars during a two-year mission, searching for temporary drops in brightness caused by planetary transits. Transits occur when a planet’s orbit carries it directly in front of its parent star as viewed from Earth. TESS is expected to catalog more than fifteen hundred (1,500) transiting exoplanet candidates, including a sample of approximately five hundred (500) Earth-sized and ‘Super Earth’ planets, with radii less than twice that of the Earth. TESS will detect small rock-and-ice planets orbiting a diverse range of stellar types and covering a wide span of orbital periods, including rocky worlds in the habitable zones of their host stars.  This is a major undertaking and you might suspect so joint-ventures are an absolute must.  With that being the case, the major parterners in this endeavor may be seen as follows:

The project overview is given by the next pictorial.

In summary:

TESS will tile the sky with 26 observation sectors:

  • At least 27 days staring at each 24° × 96° sector
  • Brightest 200,000 stars at 1-minute cadence
  • Full frame images with 30-minute cadence
  • Map Southern hemisphere in first year
  • Map Northern hemisphere in second year
  • Sectors overlap at ecliptic poles for sensitivity to smaller and longer period planets in JWST Continuous Viewing Zone (CVZ)

TESS observes from unique High Earth Orbit (HEO):

  • Unobstructed view for continuous light curves
  • Two 13.7-day orbits per observation sector
  • Stable 2:1 resonance with Moon’s orbit
  • Thermally stable and low-radiation

The physical hardware looks as follows:

You can’t tell much about the individual components from the digital picture above but suffice it to say that TESS is a significant improvement relative to Kepler as far as technology.  The search continues and I do not know what will happen if we ever discover ET.  Imagine the areas of life that would affect?




Astrophysics for People in a Hurry was written by Neil deGrasse Tyson.  I think the best place to start is with a brief bio of Dr. Tyson.

NEIL de GRASSE TYSON was borne October 5, 1968 in New York City. When he was nine years old, his interest in astronomy was sparked by a trip to the Hayden Planetarium at the American Museum of Natural History in New York. Tyson followed that passion and received a bachelor’s degree in physics from Harvard University in Cambridge, Massachusetts, in 1980 and a master’s degree in astronomy from the University of Texas at Austin in 1983. He began writing a question-and-answer column for the University of Texas’s popular astronomy magazine StarDate, and material from that column later appeared in his books Merlin’s Tour of the Universe (1989) and Just Visiting This Planet (1998).

Tyson then earned a master’s (1989) and a doctorate in astrophysics (1991) from Columbia University, New York City. He was a postdoctoral research associate at Princeton University from 1991 to 1994, when he joined the Hayden Planetarium as a staff scientist. His research dealt with problems relating to galactic structure and evolution. He became acting director of the Hayden Planetarium in 1995 and director in 1996. From 1995 to 2005 he wrote monthly essays for Natural History magazine, some of which were collected in Death by Black Hole: And Other Cosmic Quandaries (2007), and in 2000 he wrote an autobiography, The Sky Is Not the Limit: Adventures of an Urban Astrophysicist. His later books include Astrophysics for People in a Hurry (2017).

You can see from his biography Dr. Tyson is a “heavy hitter” and knows his subject in and out.  His newest book “Astrophysics for People in a Hurry” treats his readers with respect relative to their time.  During the summer of 2017, it was on the New York Times best seller list at number one for four (4) consecutive months and has never been unlisted from that list since its publication. The book is small and contains only two hundred and nine (209) pages, but please do not let this short book fool you.  It is extremely well written and “loaded” with facts relevant to the subject matter. Very concise and to the point.   I would like now to give you some idea as to the content by coping several passages from the book.  Short passages that will indicate what you will be dealing with as a reader.

  • In the beginning, nearly fourteen billion years ago, all the space and all the matter and all the energy of the knows universe was contained in a volume less than one-trillionth the size of the period that ends this sentence.
  • As the universe aged through 10^-55 seconds, it continued to expand, diluting all concentrations of energy, and what remained of the unified forces split into the “electroweak” and the “strong nuclear” forces.
  • As the cosmos continued to expand and cool, growing larger that the size of our solar system, the temperature dropped rapidly below a trillion degrees Kelvin.
  • After cooling, one electron for every proton has been “frozen” into existence. As the cosmos continues to cool-dropping below a hundred million degrees-protons fuse with other protons as well as with neutrons, forming atomic nuclei and hatching a universe in which ninety percent of these nuclei are hydrogen and ten percent are helium, along with trace amounts of deuterium (heavy hydrogen), tritium (even heavier than hydrogen), and lithium.
  • For the first billion years, the universe continued to expand and cool as matter gravitated into the massive concentrations we call galaxies. Nearly a hundred billion of them formed, each containing hundreds of billions of stars that undergo thermonuclear fusion in their cores.

Dr. Tyson also discusses, Dark Matter, Dark Energy, Invisible Light, the Exoplanet Earth and many other fascinating subjects that can be absorbed in “quick time”.  It is a GREAT read and one I can definitely recommend to you.

%d bloggers like this: