FAST

November 19, 2016


If you keep up with my posts you know that I try to bring my wonderful readers STEM (science, technology, engineering and mathematics) news from all over the world.  The United States remains the global leader in technology, disruptive and otherwise but there are fascinating developments occurring in all parts of our small “blue dot”.

It has always been interesting to me the absolute need we have to find out where we come from.  One of the most successful web sites accessed today is Ancestry.com.  Americans are obsessed with genealogy and this desire has spawned a billion-dollar cottage industry. Alex Haley, author of the hugely popular 1976 book Roots, once said that black Americans needed their own version of Plymouth Rock, a genesis story that didn’t begin — or end — at slavery. His nine-hundred-page American family saga, which reached back to 18th century Gambia, certainly delivered on that. But it also shared with all Americans the emotional and intellectual rewards that can come with discovering the identity of our ancestors.

That need not only deals with individual ancestry but the need to find out just how we got here.  What mechanism or mechanisms created our species?  In finding out, we look back—back in time to see the origins of our planet and our universe.  That effort was furthered by FAST.  Let’s take a look.

The world’s largest radio telescope, according to China’s official Xinhua News, began searching for signals from stars and galaxies and, perhaps, extraterrestrial life this past Sunday in a project demonstrating China’s rising ambitions in space and its pursuit of international scientific prestige.  “The ultimate goal of FAST is to discover the laws of the development of the universe,” Qian Lei, an associate researcher with the National Astronomical Observatories of the Chinese Academy of Sciences, told state broadcaster CCTV. “In theory, if there is civilization in outer space, the radio signal it sends will be similar to the signal we can receive when a pulsar (spinning neutron star) is approaching us,” Qian said.  Installation of the 4,450-panel structure, nicknamed Tianyan, or the Eye of Heaven, started in 2011 and was completed in July.  The Five-hundred-meter Aperture Spherical Telescope, or FAST, is named after its diameter, which, at five hundred meters (500), is 195 meters wider than the second-largest telescope of its kind, the Arecibo Observatory in Puerto Rico.   Xinhua News reports the telescope cost $180 million and came to past with eight hundred thousand (8,000) people being displaced from their homes.  This displacement created the necessary three-mile radius of radio silence around the facility. The facility itself will be used for “observation of pulsars as well as exploration of interstellar molecules and interstellar communication signals.”   FAST is built in the Dawodang depression in Guizhou Province. The natural landscape provides the perfect size and shape for the construction of the telescope. The ground also provides enough support for the gigantic telescope.  The porous soil forms an underground drainage system that protects the telescope. With only one town in the twelve (12) miles radius, the Dawodang depression is extremely isolated from magnetic disruptions. The remoteness of the location also protects the surrounding landscape from any damage.

Like radio telescopes in other parts of the world, FAST will study interstellar molecules related to how galaxies evolve. For example, this summer a team using data from the Very Large Array, a collection of radio antennas in the New Mexico desert, picked up what scientists describe as “faint radio emission from atomic hydrogen … in a galaxy nearly five (5) billion light-years from Earth.” In the paper describing their findings, the team writes that the “next generation of radio telescopes,” like FAST, will build on their findings about how gases behave in galaxies.

Digital photographs of the completed structure and construction may be seen below.  As you can see, it is monstrous.

fast-2

The initial construction represented a huge effort with detailed planning extending over a five year period of time.

initial-construction

construction

construction2

construction-3

CONCLUSIONS:

This structure proves that for people all over the world—we are searching.  Personally, I think this is truly healthy.  My only wish is, one discovered, that news is shared with all humanity.   As always, I welcome your comments.

ROBONAUGHTS

September 4, 2016


OK, if you are like me, your sitting there asking yourself just what on Earth is a robonaught?  A robot is an electromechanical device used primarily to take the labor and sometimes danger from human activity.  As you well know, robotic systems have been in use for many years with each year providing systems of increasing sophistication.  An astronaut is an individual operating in outer space.  Let’s take a proper definition for ROBONAUGHT as provided by NASA.

“A Robonaut is a dexterous humanoid robot built and designed at NASA Johnson Space Center in Houston, Texas. Our challenge is to build machines that can help humans work and explore in space. Working side by side with humans, or going where the risks are too great for people, Robonauts will expand our ability for construction and discovery. Central to that effort is a capability we call dexterous manipulation, embodied by an ability to use one’s hand to do work, and our challenge has been to build machines with dexterity that exceeds that of a suited astronaut.”

My information is derived from “NASA Tech Briefs”, Vol 40, No 7, July 2016 publication.

If you had your own personal robotic system, what would you ask that system to do?  Several options surface in my world as follows: 1.) Mow the lawn, 2.) Trim hedges, 3.) Wash my cars, 4.) Clean the gutters, 5.) Vacuum floors in our house, 6.) Wash windows, and 7.) Do the laundry.   (As you can see, I’m not really into yard work or even house work.)  Just about all of the tasks I do on a regular basis are home-grown, outdoor jobs and time-consuming.

For NASA, the International Space Station (ISS) has become a marvelous test-bed for developing the world’s most advanced robotic technology—technology that definitely represents the cutting-edge in space exploration and ground research.  The ISS now hosts a significant array of state-of-the are robotic projects including human-scale dexterous robots and free-flying robots.  (NOTE:  The vendor is Astrobee and they have developed for NASA a free-flyer robotic system consists of structure, propulsion, power, guidance, navigation and control (GN&C), command and data handling (C&DH), avionics, communications, dock mechanism, and perching arm subsystems. The Astrobee element is designed to be self-contained and capable of autonomous localization, orientation, navigation and holonomic motion as well as autonomous resupply of consumables while operating inside the USOS.)  These robotic systems are not only enabling the future of human-robot space exploration but promising extraordinary benefits for Earth-bound applications.

The initial purpose for exploring the design and fabrication of a human robotic system was to assist astronauts in completing tasks in which an additional pair or pairs of hands would be very helpful or to perform jobs either too hazardous or too mundane for crewmembers.  For this reason, the  Robonaut 2, was NASA’s first humanoid robot in space and was selected as the NASA Government Invention of the Year for 2014. Many outstanding inventions were considered for this award but Robonaut 2 was chosen after a challenging review by the NASA selection committee that evaluated the robot in the following areas: 1.) Aerospace Significance, 2.) Industry Significance, 3.) Humanitarian Significance, 4.) Technology Readiness Level, 5.) NASA Use, and 6.) Industry Use and Creativity. Robonaut 2 technologies have resulted in thirty-nine (39) issued patents, with several more under review. The NASA Invention of the Year is a first for a humanoid robot and with another in a series of firsts for Robonaut 2 that include: first robot inside a human space vehicle operating without a cage, and first robot to work with human-rated tools in space.  The R2 system developed by NASA is shown in the following JPEGs:

R2 Robotic System

R2 Robotic System(2)

R2 Robotic System(3)

 

Robonaut 2, NASA’s first humanoid robot in space, was selected as the NASA Government Invention of the Year for 2014. Many outstanding inventions were considered for this award, and Robonaut 2 was chosen after a challenging review by the NASA selection committee that evaluated the robot in the following areas: Aerospace Significance, Industry Significance, Humanitarian Significance, Technology Readiness Level, NASA Use, Industry Use and Creativity. Robonaut 2 technologies have resulted in thirty-nine (39) issued patents, with several more under review. The NASA Invention of the Year is a first for a humanoid robot and another in a series of firsts for Robonaut 2 that include: first robot inside a human space vehicle operating without a cage, and first robot to work with human-rated tools in space.

R2 first powered up for the first time in August 2011. Since that time, robotics engineers have tested R2 on ISS, completing tasks ranging from velocity air measurements to handrail cleaning—simple but necessary tasks that require a great deal of crew time.   R2 also has an on-board task of flipping switches and pushing buttons, each time controlled by space station crew members through the use of virtual reality gear. According to Steve Gaddis, “we are currently working on teaching him how to look for handrails and avoid obstacles.”

The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012.  Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators (“legs”), more capable processors, and new sensors. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions.

One advantage of a humanoid design is that Robonaut can take over simple, repetitive, or especially dangerous tasks on places such as the International Space Station. Because R2 is approaching human dexterity, tasks such as changing out an air filter can be performed without modifications to the existing design.

More and more we are seeing robotic systems do the work of humans.  It is just a matter of time before we see their usage here on terra-ferma.  I mean human-type robotic systems used to serve man.  Let’s just hope we do not evolve into the “age of the machines”.  I think I may take another look at the movie Terminator.

JUNO SPACECRAFT

July 21, 2016


The following information was taken from the NASA web site and the Machine Design Magazine.

BACKGROUND:

After an almost five-year journey to the solar system’s largest planet, NASA’s Juno spacecraft successfully entered Jupiter’s orbit during a thirty-five (35) minute engine burn. Confirmation the burn was successful was received on Earth at 8:53 p.m. PDT (11:53 p.m. EDT) Monday, July 4. A message from NASA is as follows:

“Independence Day always is something to celebrate, but today we can add to America’s birthday another reason to cheer — Juno is at Jupiter,” said NASA administrator Charlie Bolden. “And what is more American than a NASA mission going boldly where no spacecraft has gone before? With Juno, we will investigate the unknowns of Jupiter’s massive radiation belts to delve deep into not only the planet’s interior, but into how Jupiter was born and how our entire solar system evolved.”

Confirmation of a successful orbit insertion was received from Juno tracking data monitored at the navigation facility at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, as well as at the Lockheed Martin Juno operations center in Littleton, Colorado. The telemetry and tracking data were received by NASA’s Deep Space Network antennas in Goldstone, California, and Canberra, Australia.

“This is the one time I don’t mind being stuck in a windowless room on the night of the 4th of July,” said Scott Bolton, principal investigator of Juno from Southwest Research Institute in San Antonio. “The mission team did great. The spacecraft did great. We are looking great. It’s a great day.”

Preplanned events leading up to the orbital insertion engine burn included changing the spacecraft’s attitude to point the main engine in the desired direction and then increasing the spacecraft’s rotation rate from 2 to 5 revolutions per minute (RPM) to help stabilize it..

The burn of Juno’s 645-Newton Leros-1b main engine began on time at 8:18 p.m. PDT (11:18 p.m. EDT), decreasing the spacecraft’s velocity by 1,212 miles per hour (542 meters per second) and allowing Juno to be captured in orbit around Jupiter. Soon after the burn was completed, Juno turned so that the sun’s rays could once again reach the 18,698 individual solar cells that give Juno its energy.

“The spacecraft worked perfectly, which is always nice when you’re driving a vehicle with 1.7 billion miles on the odometer,” said Rick Nybakken, Juno project manager from JPL. “Jupiter orbit insertion was a big step and the most challenging remaining in our mission plan, but there are others that have to occur before we can give the science team the mission they are looking for.”

Can you imagine a 1.7 billion (yes that’s with a “B”) mile journey AND the ability to monitor the process?  This is truly an engineering feat that should make history.   (Too bad our politicians are busy getting themselves elected and reelected.)

Over the next few months, Juno’s mission and science teams will perform final testing on the spacecraft’s subsystems, final calibration of science instruments and some science collection.

“Our official science collection phase begins in October, but we’ve figured out a way to collect data a lot earlier than that,” said Bolton. “Which when you’re talking about the single biggest planetary body in the solar system is a really good thing. There is a lot to see and do here.”

Juno’s principal goal is to understand the origin and evolution of Jupiter. With its suite of nine science instruments, Juno will investigate the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras. The mission also will let us take a giant step forward in our understanding of how giant planets form and the role these titans played in putting together the rest of the solar system. As our primary example of a giant planet, Jupiter also can provide critical knowledge for understanding the planetary systems being discovered around other stars.

The Juno spacecraft launched on Aug. 5, 2011 from Cape Canaveral Air Force Station in Florida. JPL manages the Juno mission for NASA. Juno is part of NASA’s New Frontiers Program, managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate. Lockheed Martin Space Systems in Denver built the spacecraft. The California Institute of Technology in Pasadena manages JPL for NASA.

SYSTEMS:

Before we list the systems, let’s take a look at the physical “machine”.

Juno Configuration

As you can see, the design is truly remarkable and includes the following modules:

  • SOLAR PANELS—Juno requires 18,000 solar cells to gather enough energy for it’s journey, 508 million miles from our sun.  In January, Juno broke the record as the first solar-powered spacecraft to fly further than 493 million miles from the sun.
  • RADIATION VAULT—During its polar orbit, Juno will repeatedly pass through the intense radiation belt that surrounds Jupiter’s equator, charged by ions and particles from Jupiter’s atmosphere and moons suspended in Juno’s colossal magnetic field. The magnetic belt, which measures 1,000 times the human toxicity level, has a radio frequency that can be detected from Earth and extends into earth’s orbit.
  • GRAVITY SCIENCE EXPERIMENT—Using advanced gravity science tools; Juno will create a detailed map of Jupiter’s gravitational field to infer Jupiter’s mass distribution and internal structure.
  • VECTOR MAGNETOMETER (MAG)—Juno’s next mission is to map Jupiter’s massive magnetic field, which extends approximately two (2) million miles toward the sun, shielding Jupiter from solar flares.  It also tails out for more than six hundred (600) million miles in solar orbit.  The dynamo is more than 20,000 times greater than that of the Earth.
  • MICROWAVE RADIOMETERS–Microwave radiomometers (MWR) will detect six (6) microwave and radio frequencies generated by the atmosphere’s thermal emissions.  This will aid in determining the depths of various cloud forms.
  • DETAILED MAPPING OF AURORA BOREALIS AND PLASMA CONTENT—As Juno passes Jupiter’s poles, cameral will capture high-resolution images of aurora borealis, and particle detectors will analyze the plasmas responsible for them.  Not only are Jupiter’s auroras much larger than those of Earth, they are also much more frequent because they are created by atmospheric plasma rather than solar flares.
  • JEDI MEASURES HIGH-ENERGY PARTICLES–Three Jupiter energetic particle detector instruments (JEDIs) will measure the angular distribution of high-energy particles as they interact with Jupiter’s upper atmospheres and inner magnetospheres to contribute to Jupiter’s northern and southern lights.
  • JADE MEASURE OF LOW-ENERGY PARTICLES—JADE, the Jovian Aurora Distributions Experiment, works in conjunction with DEDI to measure the angular distribution of lower-energy electrons and ions ranging from zero (0) to thirty (30) electron volts.
  • WAVES MEASURES PLASMA MOVEMENT—The radio/plasma wave experiment, called WAVES, will be used to measure radio frequencies  (50 Hz to 40 MHz) generated by the plasma in the magnetospheres.
  • UVS,JIRAM CAPTURE NORTHERN/SOUTHERN LIGHTS—By capturing wavelength of seventy (70) to two hundred and five (205) nm, an ultraviolet imager/spectrometer (UVS) will generate images of the auroras UV spectrum to view the auroras during the Jovian day.
  • HIGH-RESOLUTION CAMERA—JunoCam, a high-resolution color camera, will capture red, green and blue wavelengths photos of Jupiter’s atmosphere and aurora.  The NASA team expects the camera to last about seven orbits before being destroyed by radiation.

CONCLUSION:

This technology is truly amazing to me.  Think of the planning, the engineering design, the testing, the computer programming needed to bring this program to fruition.  Amazing!

 

WHAT’S AFTER HUBBLE

January 30, 2016


HUBBLE:

It is very difficult to believe that the Hubble Telescope is twenty-five (25) years in orbit. The launch date for Hubble was April 24, 1990 and remains in operation. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to take extremely high-resolution images with negligible background light.  It rotates approximately 345 miles above our Earth.   It has recorded some of the most detailed visible-light images ever, allowing a deep view into space and time. Many Hubble observations have led to breakthroughs in astrophysics, such as accurately determining the rate of expansion of the universe. A digital photograph of the Hubble Telescope is given as follows:

HUBBLE

Every 97 minutes, Hubble completes a spin around Earth, moving at the speed of about five miles per second (8 km per second) — fast enough to travel across the United States in about 10 minutes. As it travels, Hubble’s mirror captures light and directs it into its several scientific instruments.

Hubble is a type of telescope known as a Cassegrain reflector. Light hits the telescope’s main mirror, or primary mirror. It bounces off the primary mirror and encounters a secondary mirror. The secondary mirror focuses the light through a hole in the center of the primary mirror that leads to the telescope’s science instruments.

People often mistakenly believe that a telescope’s power lies in its ability to magnify objects. Telescopes actually work by collecting more light than the human eye can capture on its own. The larger a telescope’s mirror, the more light it can collect, and the better its vision. Hubble’s primary mirror is 94.5 inches (2.4 m) in diameter. This mirror is small compared with those of current ground-based telescopes, which can be 400 inches (1,000 cm) and up, but Hubble’s location beyond the atmosphere gives it remarkable clarity.

As you might suspect, the marvelous Hubble Telescope is using technology that is considered outdated relative to what is available today.  Still working and still providing remarkable photographs and data, the scientists and engineers at NASA recognized a newer device would ultimately be needed to push the boundaries of astronomy. Hence the James Webb Telescope.  OK, just who is James Webb?

JAMES WEBB:

The man whose name NASA has chosen to bestow upon the successor to the Hubble Space Telescope is most commonly linked to the Apollo moon program, not to science.

Yet, many believe that James E. Webb, who ran the fledgling space agency from February 1961 to October 1968, did more for science than perhaps any other government official, and that it is only fitting that the Next Generation Space Telescope would be named after him.

Webb’s record of support for space science would support those views. Although President John Kennedy had committed the nation to landing a man on the moon before the end of the decade, Webb believed that the space program was more than a political race. He believed that NASA had to strike a balance between human space flight and science because such a combination would serve as a catalyst for strengthening the nation’s universities and aerospace industry.

By the time Webb retired just a few months before the first moon landing in July 1969, NASA had launched more than 75 space science missions to study the stars and galaxies, our own Sun and the as-yet-unknown environment of space above the Earth’s atmosphere. Missions such as the Orbiting Solar Observatory and the Explorer series of astronomical satellites built the foundation for the most successful period of astronomical discovery in history, which continues today.  It is absolutely fitting that the next generation telescope be named after Mr. Webb.

JAMES WEBB VS HUBBLE:

The graphic below shows an excellent comparison between Hubble and James Webb relative capabilities.

Hubble vs James Webb

JAMES WEBB TELESCOPE:

JWST is an international collaboration between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate JWST after launch.

Several innovative technologies have been developed for JWST. These include a primary mirror made of 18 separate segments that unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. JWST’s biggest feature is a tennis court-sized five-layer sunshield that attenuates heat from the Sun more than a million times. The telescope’s four instruments – cameras and spectrometers – have detectors that are able to record extremely faint signals. One instrument (NIRSpec) has programmable micro-shutters, which enable observation up to 100 objects simultaneously. JWST also has a cryo-cooler for cooling the mid-infrared detectors of another instrument (MIRI) to a very cold 7 K so they can work.  The JPEG below will show the instrumentation assembled into the platform and give a very brief summary of purpose.

JAMES WEBB SPECIFICS

The telescope will be “parked” 932,000 miles above Earth into space; obviously, beyond our moon.  With the ability to collect much more light than Hubble, the Webb Telescope will be able to see distant objects as they existed much earlier in time, specifically 13.5 billion years earlier.  This number is only 200,000 years after the “big bang”.

Other JPEGs of the telescope are given as follows:

James Webb in Orbit

(ABOVE) The Webb Telescope in Orbit.

Given below:  The James Webb Telescope Team.

TEAM

On 6 July 2011, the United States House of Representatives’ appropriations committee on Commerce, Justice, and Science moved to cancel the James Webb project by proposing an FY2012 budget that removed $1.9bn from NASA’s overall budget, of which roughly one quarter was for JWST.  This budget proposal was approved by subcommittee vote the following day; however, in November 2011, Congress reversed plans to cancel the JWST and instead capped additional funding to complete the project at $8 billion.

The committee charged that the project was “billions of dollars over budget and plagued by poor management”. The telescope was originally estimated to cost $1.6bn but the cost estimate grew throughout the early development reaching about $5bn by the time the mission was formally confirmed for construction start in 2008. In summer 2010, the mission passed its Critical Design Review with excellent grades on all technical matters, but schedule and cost slips at that time prompted US Senator Barbara Mikulski to call for an independent review of the project. The Independent Comprehensive Review Panel (ICRP) chaired by J. Casani (JPL) found that the earliest launch date was in late 2015 at an extra cost of $1.5bn (for a total of $6.5bn). They also pointed out that this would have required extra funding in FY2011 and FY2012 and that any later launch date would lead to a higher total cost. Because the runaway budget diverted funding from other research, the science journal Nature described the James Webb as “the telescope that ate astronomy”. However, termination of the project as proposed by the House appropriation committee would not have provided funding to other missions, as the JWST line would have been terminated with the funding leaving astrophysics (and the NASA budget) entirely. You can see from the following digital, Congress was certainly within their right to cancel the program.

ESTIMATED COSTS

It is not an inexpensive program.  The House of Representatives, as mentioned above, did not kill the program. Launch is still scheduled for 20 October, 2018. I personally believe this was the proper move for them to make.

As always, I welcome your comments.

 


I remain absolutely amazed at the engineering effort involving the space probe NASA calls “NEW HORIZONS”.  The technology, hardware, software and communication package allowing the flyby is truly phenomenal—truly.  One thing that strikes me is the predictability of planetary movements so the proper trajectory may be accomplished.   Even though we live in an expanding universe, the physics and mathematics describing planetary motion is solid.  Let us take a very quick look at several specifics.

THE MISSION:

PROJECT

SPECIFICS:

  • LAUNCH:  January 19, 2006
  • Launch Vehicle:  Atlas V 551, first stage: Centaur Rocket, second stage: STAR 48B solid rocket third stage
  • Launch Location:  Cape Canaveral Air Force Station, Florida
  • Trajectory:  To Pluto via Jupiter Gravity Assist
  • The teams had to hone the New Horizons spacecraft’s 3 billion plus-mile flight trajectory to fit inside a rectangular flyby delivery zone measuring only 300 kilometers by 150 kilometers. This level of accuracy and control truly blows my mind.
  • New Horizon used both radio and optical navigation for the journey to Pluto.  Pluto is only about half the size of our Moon and circles our Sun roughly every 248 years. (I mentioned predictability earlier.  Now you see what I mean. )
  • The New Horizon craft is traveling 36,373 miles per hour and has traversed 4.67 billion miles in nine (9) years.
  • New Horizon will come as close as 7,800 miles from the surface of Pluto.
  • Using LORRI (Long Range Reconnaissance Imager) — the most crucial instrument for optical navigation on the spacecraft; the New Horizon team took short 100 to 150 millisecond exposures to minimize image smear. Such images helped give the teams an estimate of the direction from the spacecraft to Pluto.
  •  The photographs from the flyby are sensational and very detailed relative to what was expected.
  • The spacecraft flew by the Pluto–Charon system on July 14, 2015, and has now completed the science of its closest approach phase. New Horizons has signaled the event by a “phone home” with telemetry reporting that the spacecraft was healthy, its flight path was within the margins, and science data of the Pluto–Charon system had been recorded.

HARDWARE:

The hardware for the mission is given with the graphic below.  From this pictorial we see the following sub-systems:

  • PEPSSI
  • SWAP
  • LORRI
  • SDC
  • RALPH
  • ALICE
  • REX(HGA)

The explanation for each sub-system is given with the graphic.   As you can see:  an extremely complex piece of equipment representing many hours of engineering design and overall effort.

 

HARDWARE

GOALS FOR THE MISSION:

The goal of the mission is to understand the formation of the Pluto system, the Kuiper belt, and the transformation of the early Solar System.  This understanding will greatly aid our efforts in understanding how our own planet evolved over the centuries.  New Horizon will study the atmospheres, surfaces, interiors and environments of Pluto and its moons.  It will also study other objects in the Kuiper belt.  By way of comparison, New Horizons will gather 5,000 times as much data at Pluto as Mariner did at Mars.  Combine the data from New Horizons with the data from the Mariner mission and you have complementary pieces of a fascinating puzzle.

Some of the questions the mission will attempt to answer are: What is Pluto’s atmosphere made of and how does it behave?  What does its surface look like? Are there large geological structures? How do solar wind particles interact with Pluto’s atmosphere?

Specifically, the mission’s science objectives are to:

  • map the surface composition of Pluto and Charon
  • characterize the geology and morphology of Pluto and Charon
  • characterize the neutral atmosphere of Pluto and its escape rate
  • search for an atmosphere around Charon
  • map surface temperatures on Pluto and Charon
  • search for rings and additional satellites around Pluto
  • conduct similar investigations of one or more Kuiper belt objects

NOTE:  Charon is also called (134340) Pluto I and is the largest of the five known moons of Pluto.  It was discovered in 1978 at the United States Naval Observatory in Washington, D.C., using photographic plates taken at the United States Naval Observatory Flagstaff Station (NOFS). It is a very large moon in comparison to its parent body, Pluto. Its gravitational influence is such that the center of the Pluto–Charon system lies outside Pluto.

HISTORY:

When it was first discovered, Pluto was the coolest planet in the solar system. Before it was even named, TIME that “the New Planet,” 50 times farther from the sun than Earth, “gets so little heat from the sun that most substances of Earth would be frozen solid or into thick jellies.”

The astronomer Clyde W. Tombaugh, then a 24-year-old research assistant at the Lowell Observatory in Flagstaff, Ariz., was the first to find photographic evidence of a ninth planet on this day, February 18, 85 years ago.  His discovery launched a worldwide scramble to name the frozen, farthest-away planet. Since the astronomer Percival Lowell had predicted its presence fifteen (15) years earlier, per TIME, and even calculated its approximate position based on the irregularity of Neptune’s orbit, the team at Lowell Observatory considered his widow’s suggestion of “Percival,” but found it not quite planetary enough. The director of the Harvard Observatory suggested “Cronos,” the sickle-wielding son of Uranus in Greek myth.  But the team opted instead for “Pluto,” the Roman god of the Underworld — the suggestion of an 11-year-old British schoolgirl who told the BBC she was enthralled with Greek and Roman mythology. Her grandfather had read to her from the newspaper about the planet’s discovery, and when she proposed the name, he was so taken with it that he brought it to the attention of a friend who happened to be an astronomy professor at Oxford University. The Lowell team went for Pluto partly because it began with Percival Lowell’s initials.

Pluto the Disney dog, it should be noted, had nothing to do with the girl’s choice. Although the cartoon character also made its first appearance in 1930, it did so shortly after the planet was named, as the BBC noted. While Pluto was downgraded to “dwarf planet” status in 2006, it remains a popular subject for astronomers. They began discovering similar small, icy bodies during the 1990s in the same region of the solar system, which has become known as the Kuiper Belt. Just because Pluto’s not alone doesn’t make it any less fascinating, according to Alan Stern, director of a NASA mission, New Horizons that will explore and photograph Pluto in an unprecedented spacecraft flyby on July 14 of this year.

“This epic journey is very much the Everest of planetary exploration,” Stern wrote in TIME last month. “Pluto was the first of many small planets discovered out there, and it is still both the brightest and the largest one known.”

NASA released its first images of Pluto from the New Horizons mission earlier this month, although the probe was still 126 million miles away from its subject; the release was timed to coincide with Tombaugh’s birthday. Stern wrote, when the pictures were released, “These images of Pluto, clearly brighter and closer than those New Horizons took last July from twice as far away, represent our first steps at turning the pinpoint of light Clyde saw in the telescopes at Lowell Observatory eighty-five (85) years ago, into a planet before the eyes of the world this summer.”

CONCLUSION:

AMAZING ENGINEERING ACCOMPLISHMENT!

FERMI’S PARADOX

May 30, 2015


The sources for this post are as follows: 1.) waitbutwhy.com, 2.) SETI Institute, and 3.) Wikipedia.

“Some people stick with the traditional, feeling struck by the epic beauty or blown away by the scale of the universe.  Personally, I go for the old existential meltdown followed by acting next half hour. But everyone feels something”.  Physicist Enrico Fermi felt something too and asked—“Where is everybody?”

QUESTION:  Our Galaxy Should Be Teeming With Civilizations, But Where Are They?

The remark came while Fermi was discussing with his mealtime mates the possibility that many sophisticated societies populate the Galaxy.  In 1950, while working at Los Alamos National Laboratory, Fermi had a casual conversation while walking to lunch with colleagues Emil KonopinskiEdward Teller and Herbert York.    The men discussed recent sightings of UFOs and an Alan Dunn cartoon facetiously blaming the disappearance of municipal trashcans on marauding aliens. They then had a more serious discussion regarding the chances of humans observing faster-than-light travel by some material object within the next ten years. Teller thinks Fermi directed the question at him, asking “Edward, what do you think? How probable is it that within the next ten years we shall have clear evidence of a material object moving faster than light?” Teller answered one in a million. Teller remembers Fermi said, “This is much too low. The probability is more like ten percent” [the probability of a ‘Fermi miracle’]. Konopinski did not remember the exact numbers “except that they changed rapidly as Teller and Fermi bounced arguments off each other.”  They thought it reasonable to assume that we have a lot of cosmic company. But somewhere between one sentence and the next, Fermi’s supple brain realized that if this was true, it implied something profound. If there are really a lot of alien societies, then some of them might have spread out.

A really starry sky seems vast—but all we’re looking at is our very local neighborhood. On the very best nights, we can see up to about 2,500 stars or roughly one hundred-millionth of the stars in our galaxy. Almost all of them are less than 1,000 light years away from us (or 1% of the diameter of the Milky Way).  It is very hard to imagine the magnitude of this very fact but our universe is IMMENSE. So what we’re really looking at is this:

Milky Way Galaxy

Let us take a look at just how grandiose our universe is.

  • As many stars as there are in our galaxy (100 – 400 billion), there are roughly an equal number of galaxies in the observable universe so, for every star in the colossal Milky Way, there is a whole galaxy out there. All together, that equates to a range of between 1022 and 1024 total stars.   This means that for every grain of sand on every beach on Earth, there are 10,000 stars out there.  Numbers very hard for anyone to deal with.
  • There is not total agreement concerning what percentage of those stars are “sun-like” (similar in size, temperature, and luminosity).  Opinions typically range from five (5%) to twenty (20%). Going with the most conservative side of that five percent (5%), and the lower end for the number of total stars (1022), gives us 500 quintillion, or 500 billion billion sun-like stars.
  • There’s also a debate over what percentage of those sun-like stars might be orbited by an Earth-like planet (one with similar temperature conditions that could have liquid water and potentially support life similar to that on Earth). Some say it’s as high as fifty percent (50%) but let’s go with the more conservative twenty-two percent (22%) that came out of a recent PNAS study. That suggests that there’s a potentially-habitable Earth-like planet orbiting at least one percent (1%) of the total stars in the universe—a total of 100 billion billion Earth-like planets.  So there are 100 Earth-like planets for every grain of sand in the world. Think about that next time you’re on the beach.
  • Moving forward, we have no choice but to get completely speculative. Let’s imagine that after billions of years in existence, one percent (1%) of Earth-like planets develop life.  If that’s true, every grain of sand would represent one planet with life on it.  Imagine that on one percent (1%) of those planets, the life advances to an intelligent level like it did here on Earth. That would mean there were 10 quadrillion or 10 million billion intelligent civilizations in the observable universe.
  • Just for our galaxy, and doing the same math on the lowest estimate for stars in the Milky Way (100 billion), we’d estimate that there are 1 billion Earth-like planets and 100,000 intelligent civilizations in our galaxy.
  •  Our sun is relatively young in the lifespan of the universe. There are far older stars with far older Earth-like planets, which should in theory mean civilizations far more advanced than our own. As an example, let’s compare our 4.54 billion-year-old Earth to a hypothetical 8 billion-year-old Planet X.

(I told you this was big.)  The technology and knowledge of a civilization only 1,000 years ahead of us could be as shocking to us as our world would be to a medieval person. A civilization 1 million years ahead of us might be as incomprehensible to us as human culture is to chimpanzees. And Planet X is 3.4 billion years ahead of us.  You, of course, can see where we are going here.

If Planet X has a similar story to Earth, let’s look at where their civilization would be today (using the orange time-span as a reference to show how huge the green time-span is):

TIME-SPAN

Scientific endeavor has categorized three distinct possibilities relative to possible civilizations. These are as follows:

  • Type I Civilization has the ability to use all of the energy on their planet. We’re not quite a Type I Civilization, but we’re close (Carl Sagan created a formula for this scale which puts us at a Type 0.7 Civilization).
  • Type II Civilization can harness all of the energy of their host star. Our feeble Type I brains can hardly imagine how someone would do this.
  • AType III Civilization blows the other two away, accessing powers comparable to that of the entire Milky Way galaxy.  If this level of advancement sounds hard to believe, remember Planet X above and their 3.4 billion years of further development. If a civilization on Planet X was similar to ours and was able to survive all the way to Type III level, the natural thought is that they’d probably have mastered inter-stellar travel by now, possibly even colonizing the entire galaxy.

There is no answer to Fermi’s Paradox.  But there may be several theories.

  • Explanation Group 1: There are no signs of higher (Type II and III) civilizations because there are no higher civilizations in existence.  We are Rare!
  • We are the very FIRST intelligent civilization in our universe.  (This sounds somewhat impossible given the age of the universe.)
  • Type II and III intelligent civilizations are out there and there are logical reasons why we might not have heard from them.
    • Super-intelligent life could very well have already visited Earth, but before we were here.
    • The galaxy has been colonized, but we just live in some desolate rural area of the galaxy.
    • The entire concept of physical colonization is a hilariously backward concept to a more advanced species.
    • There are scary predator civilizations out there, and most intelligent life knows better than to broadcast any outgoing signals and advertise their location.
    • There’s only one instance of higher-intelligent life—a “super-predator” civilization (like humans are here on Earth)—who is far more advanced than everyone else and keeps it that way by exterminating any intelligent civilization once they get past a certain level.
    • There’s plenty of activity and noise out there, but our technology is too primitive and we’re listening for the wrong things. (I personally like this theory.)
    • We are receiving contact from other intelligent life, but the government is hiding it. (Our government is so big and so inept they could not keep this secret.)
    • Higher civilizations are aware of us and observing us (AKA the “Zoo Hypothesis”).
    • Higher civilizations are here, all around us. But we’re too primitive to perceive them.
    • We’re completely wrong about our reality.

I truly think this is fascinating and I do believe there is life in the universe.  Intelligent life—we can only hope.

THE TRUTH IS OUT THERE

February 6, 2015


In John 18:38 we read the following from the King James Version of the Bible: “Pilate saith unto him, What is truth? And when he had said this, he went out again unto the Jews, and saith unto them, I find in him no fault at all.”  Pilate did not stay for an answer.

One of my favorite television programs was the “X”-Files.  It’s been off the air for some years now but we are told will return as a “mini-series” sometime in the very near future.  The original cast; i.e. Fox Mulder and Dana Skully will again remind us—THE TRUTH IS OUT THERE.  The truth is definitely out there as indicated by the men and women comprising the Large Synoptic Survey Telescope team.  They are definitely staying for answers.  The team members posed for a group photograph as seen below.

LSST Team

THE MISSION:

The Large Synoptic Survey Telescope (LSST) structure is a revolutionary facility which will produce an unprecedented wide-field astronomical survey of our universe using an 8.4-meter ground-based telescope. The LSST leverages innovative technology in all subsystems: 1.) the camera (3200 Megapixels, the world’s largest digital camera), 2.) telescope (simultaneous casting of the primary and tertiary mirrors; 3.) two aspherical optical surfaces on one substrate), and 4.)  data management (30 Terabytes of data nightly.)  There will be almost instant alerts issued for objects that change in position or brightness.

The known forms of matter and types of energy experienced here on Earth account for only four percent (4%) of the universe. The remaining ninety-six percent ( 96 % ), though central to the history and future of the cosmos, remains shrouded in mystery. Two tremendous unknowns present one of the most tantalizing and essential questions in physics: What are dark energy and dark matter? LSST aims to expose both.

DARK ENERGY:

Something is driving the universe apart, accelerating the expansion begun by the Big Bang. This force accounts for seventy percent (70%) of the cosmos, yet is invisible and can only be “seen” by its effects on space. Because LSST is able to track cosmic movements over time, its images will provide some of the most precise measurements ever of our universe’s inflation. Light appears to stretch at the distant edges of space, a phenomenon known as red shift, and LSST may offer the key to understanding the cosmic anti-gravity behind it.

DARK MATTER:

Einstein deduced that massive objects in the universe bend the path of light passing nearby, proving the curvature of space. One way of observing the invisible presence of dark matter is examining the way its heavy mass bends the light from distant stars. This technique is known as gravitational lensing. The extreme sensitivity of the LSST, as well as its wide field of view, will help assemble comprehensive data on these gravitational lenses, offering key clues to the presence of dark matter. The dense and mysterious substance acts as a kind of galactic glue, and it accounts for twenty-five percent (25 %) of the universe.

From its mountaintop site, LSST will image the entire visible sky every few nights, capturing changes over time from seconds to years. Ultimately, after 10 years of observation, a stunning time-lapse movie of the universe will be created.

As the LSST stitches together thousands of images of billions of galaxies, it will process and upload that information for applications beyond pure research. Frequent and real time updates – 100 thousand a night – announcing the drift of a planet or the flicker of a dying star will be made available to both research institutions and interested astronomers.

In conjunction with platforms such as Google Earth, LSST will build a 3D virtual map of the cosmos, allowing the public to fly through space from the comfort of home.  ALLOWING THE PUBLIC is the operative phrase.. For the very first time, the public will have access to information, as it is presented, relative to the cosmos.  LSST educational materials will clearly specify National and State science, math and technology standards that are met by the activity. Our materials will enhance 21st century workforce skills, incorporate inquiry and problem solving, and ensure continual assessment embedded in instruction.

THE LOCATION:

The decision to place LSST on Cerro Pachón in Chile was made by an international site selection committee based on a competitive process.  In short, modern telescopes are located in sparsely populated areas (to avoid light pollution), at high altitudes and in dry climates (to avoid cloud cover). In addition to those physical concerns, there are infrastructure issues. The ten best candidate sites in both hemispheres were studied by the site selection committee. Cerro Pachón was the overall winner in terms of quality of the site for astronomical imaging and available infrastructure. The result will be superb deep images from the ultraviolet to near infrared over the vast panorama of the entire southern sky.

The location is shown by the following digital:

Construction Site

The actual site location, as you can see below, is a very rugged outcropping of rock now used by farmers needing food for their sheep.

The Mountain Location

The Observatory will be located about 500km (310.6856  miles )north of Santiago, Chile, about 52km (32.3113 miles) or 80km (49.7097  miles) by road from La Serena, at an altitude of 2200 meters (7217.848 feet).  It lies on a 34,491Ha (85,227 acres.) site known as “Estancia El Tortoral” which was purchased by AURA on the open market in 1967 for use as an astronomical observatory.

When purchased, the land supported a number of subsistence farmers and goat herders. They were allowed to continue to live on the reserve after it was purchased by AURA and have gradually been leaving voluntarily for more lucrative jobs in the nearby towns.

As a result of departure of most of its human inhabitants and a policy combining environmental protection with “benign neglect” on the part of the Observatory, the property sees little human activity except for the roads and relatively small areas on the tops of Cerro Tololo and Cerro Pachon. As a result, much of the reserve is gradually returning to its natural state. Many native species of plants and animals, long thought in danger of extinction, are now returning. The last half of the trip to Tololo is an excellent opportunity to see a reasonably intact Chilean desert ecosystem.

THE FACILITY:

LSST construction is underway, with the NSF funding authorized as of 1 August 2014.

Early development was funded by a number of small grants, with major contributions in January 2008 by software billionaire Charles Simonyi and Bill Gates of $20 and $10 million respectively.  $7.5 million is included in the U.S. President’s FY2013 NSF budget request. The Department of Energy is expected to fund construction of the digital camera component by the SLAC National Accelerator Laboratory, as part of its mission to understand dark energy.

Construction of the primary mirror at the University of Arizona‘s Steward Observatory Mirror Lab, the most critical and time-consuming part of a large telescope’s construction, is almost complete. Construction of the mold began in November 2007, mirror casting was begun in March 2008, and the mirror blank was declared “perfect” at the beginning of September 2008.  In January 2011, both M1 and M3 figures had completed generation and fine grinding, and polishing had begun on M3.

As of December 2014, the primary mirror is completed awaiting final approval, and the mirror transport box is ready to receive it for storage until it is shipped to Chile.

The secondary mirror was manufactured by Corning of ultra low expansion glass and coarse-ground to within 40 μm of the desired shape. In November 2009, the blank was shipped to Harvard University for storage until funding to complete it was available. On October 21, 2014, the secondary mirror blank was delivered from Harvard to Exelis for fine grinding.

Site excavation began in earnest March 8, 2011, and the site had been leveled by the end of 2011. Also during that time, the design continued to evolve, with significant improvements to the mirror support system, stray-light baffles, wind screen, and calibration screen.

In November 2014, the LSST camera project, which is separately funded by the United States Department of Energy , passed its “critical decision 2” design review and is progressing toward full funding.

When completed, the facility will look as follows with the mirror mounted as given by the second JPEG:


Artist Rendition of Building(2)

 

Telescope Relative to Building

MIRROR DESIGN:

The assembled mirror structure is given below.

Telescope

In the LSST optical design, the primary (M1) and tertiary (M3) mirrors form a continuous surface without any vertical discontinuities. Because the two surfaces have different radii of curvature, a slight cusp is formed where the two surfaces meet, as seen in the figure below. This design makes it possible to fabricate both the primary and tertiary mirrors from a single monolithic substrate. We refer to this option as the M1-M3 monolith.

MIRROR MONOLITH

After a feasibility review was held on 23 June 2005, the LSST project team adopted the monolithic approach to fabricating the M1 and M3 surfaces as its baseline. In collaboration with the University of Arizona and Steward Observatory Mirror Lab (SOML) construction has begun with detailed engineering of the mirror blank and the testing procedures for the M1-M3 monolith. The M1-M3 monolith blank will be formed from Ohara E6 low expansion glass using the spin casting process developed at SOML.

At 3.42 meters in diameter the LSST secondary mirror will be the largest convex mirror ever made. The mirror is aspheric with approximately 17 microns of departure from the best-fit sphere. The design uses a 100 mm thick solid meniscus blank made of a low expansion glass (e.g. ULE or Zerodur) similar to the glasses used by the SOAR and Discovery Chanel telescopes. The mirror is actively supported by 102 axial and 6 tangent actuators. The alignment of the secondary to the M1-M3 monolith is accomplished by the 6 hexapod actuators between the mirror cell and support structure. The large conical baffle is necessary to prevent the direct reflection of star light from the tertiary mirror into the science camera.

SUMMARY:

The truth is out there and projects such as the one described in this post AND the Large Hadron Collider at CERN certainly prove some people and institutions are not at all reluctant to search for that truth, the ultimate purpose being to discover where we come from.  Are we truly made from “star stuff”?

 

%d bloggers like this: