I want us to consider a “what-if” scenario.  You are thirty-two years old, out of school, and have finally landed a job you really enjoy AND you are actually making money at that job. You have your expenses covered with “traveling money” left over for a little fun.  You recently discovered the possibility that Social Security (SS), when you are ready to retire, will be greatly reduced if not completely eliminated. You MUST start saving for retirement and consider SS to be the icing on the cake if available at all.  QUESTION: Where do you start?  As you investigate the stock markets you find stocks seem to be the best possibility for future income.  Stocks, bonds, “T” bills, etc. all are possibilities but stocks are at the top of the list.

People pay plenty of money for consulting giants to help them figure out which technology trends are fads and which will stick. You could go that route, or get the same thing from the McKinsey Global Institute’s in-house think-tank for the cost of a new book. No Ordinary Disruption: The Four Global Forces Breaking All the Trends, was written by McKinsey directors Richard Dobbs, James Manyika, and Jonathan Woetzel, and offers insight into which developments will have the greatest impact on the business world in coming decades. If you chose stocks, you definitely want to look at technology sectors AND consider companies contributing products to those sectors.  The following list from that book may help.  Let’s take a look.

Below, we’re recapping their list of the “Disruptive Dozen”—the technologies the group believes have the greatest potential to remake today’s business landscape.

Batteries

energy-storage

The book’s authors predict that the price of lithium-ion battery packs could fall by a third in the next 10 years, which will have a big impact on not only electric cars, but renewable energy storage. There will be major repercussions for the transportation, power generation, and the oil and gas industries as batteries grow cheaper and more efficient.  Battery technology will remain with us and will contribute to ever-increasing product offerings as time goes by.  Companies supplying this market sector will only increase in importance.

Genomics

genomics

As super computers make the enormously complicated process of genetic analysis much simpler, the authors foresee a world in which “genomic-based diagnoses and treatments will extend patients’ lives by between six months and two years in 2025.” Sequencing systems could eventually become so commonplace that doctors will have them on their desktops.  This is a rapidly growing field and one that has and will save lives.

Material Science

advanced-materials

The ability to manipulate existing materials on a molecular level has already enabled advances in products like sunglasses, bike frames, and medical equipment. Scientists have greater control than ever over nanomaterials in a variety of substances, and their understanding is growing. Health concerns recently prompted Dunkin’ Donuts to remove nanomaterials from their food. But certain advanced nanomaterials show promise for improving health, and even treating cancer. Coming soon: materials that are self-healing, self-cleaning, and that remember their original shape even if they’re bent.

Self-Driving or Autonomous Automobiles

self-driving-vehicles

Autonomous cars are coming, and fast. By 2025, the “driverless revolution” could already be “well underway,” the authors write. All the more so if laws and regulations in the U.S. can adapt to keep up. Case in point: Some BMW cars already park themselves. You will not catch me in a self-driving automobile unless the FED and the auto maker can assure me they are safe.  Continuous effort is being expended to do just that.  These driverless automobiles are coming and we all may just as well get used to it.

Alternate Energy Solutions

reneuable-energy

Wind and solar have never really been competitive with fossil fuels, but McKinsey predicts that status quo will change thanks to technology that enables wider use and better energy storage. In the last decade, the cost of solar energy has already fallen by a factor of 10, and the International Energy Agency predicts that the sun could surpass fossil fuels to become the world’s largest source of electricity by 2050.  I might include with wind and solar, methane recovery from landfills, biodiesel, compressed natural gas, and other environmentally friendly alternatives.

Robotic Systems

advanced-robotics

The robots are coming! “Sales of industrial robots grew by 170% in just two years between 2009 and 2011,” the authors write, adding that the industry’s annual revenues are expected to exceed $40 billion by 2020. As robots get cheaper, more dexterous, and safer to use, they’ll continue to grow as an appealing substitute for human labor in fields like manufacturing, maintenance, cleaning, and surgery.

3-D Printing

3-d-printing

Much-hyped additive manufacturing has yet to replace traditional manufacturing technologies, but that could change as systems get cheaper and smarter. “In the future, 3D printing could redefine the sale and distribution of physical goods,” the authors say. Think buying an electric blueprint of a shoe, then going home and printing it out. The book notes that “the manufacturing process will ‘democratize’ as consumers and entrepreneurs start to print their own products.”

Mobile Devices

mobile-internet

The explosion of mobile apps has dramatically changed our personal experiences (goodbye hookup bars, hello Tinder), as well as our professional lives. More than two thirds of people on earth have access to a mobile phone, and another two or three billion people are likely to gain access over the coming decade. The result: internet-related expenditures outpace even agriculture and energy, and will only continue to grow.

Artificial Intelligence

automation-of-knowledge

It’s not just manufacturing jobs that will be largely replaced by robots and 3D printers. Dobbs, Manyika, and Woetzel report that by 2025, computers could do the work of 140 million knowledge workers. If Watson can win at “Jeopardy!” there’s nothing stopping computers from excelling at other knowledge work, ranging from legal discovery to sports coverage.

 

The Internet of Things (IoT)

iot

Right now, 99% of physical objects are unconnected to the “internet of things.” It won’t last. Going forward, more products and tools will be controlled via the internet, the McKinsey directors say, and all kinds of data will be generated as a result. Expect sensors to collect information on the health of machinery, the structural integrity of bridges, and even the temperatures in ovens.

Cloud Technology

cloud-technology

The growth of cloud technology will change just how much small businesses and startups can accomplish. Small companies will get “IT capabilities and back-office services that were previously available only to larger firms—and cheaply, too,” the authors write. “Indeed, large companies in almost every field are vulnerable, as start-ups become better equipped, more competitive, and able to reach customers and users everywhere.”

Oil Production

advanced-oil-technology

The International Energy Agency predicts the U.S. will be the world’s largest producer of oil by 2020, thanks to advances in fracking and other technologies, which improved to the point where removing oil from hard-to-reach spots finally made economic sense. McKinsey directors expect increasing ease of fuel extraction to further shift global markets.  This was a real surprise to me but our country has abundant oil supplies and we are already fairly self-sufficient.

Big Data

big-data

There is an ever-increasing accumulation of data from all sources.  At no time in our global history has there been a greater thirst for information.  We count and measure everything now days with the recent election being one example of that very fact.  Those who can control and manage big data are definitely ahead of the game.

CONCLUSION:  It’s a brave new world and a world that accommodates educated individuals.  STAY IN SCHOOL.  Get ready for what’s coming.  The world as we know it will continue to change with greater opportunities as time advances.  Be there.  Also, I would recommend investing in those technology sectors that feed the changes.  I personally don’t think a young investor will go wrong.

Advertisements

BIOPRINTING

June 19, 2016


If you have read my posts over the past few months you will be very familiar with 3-D printing.  “Additive” manufacturing is a disruptive technology that is changing the manner in which components are made.  Once again, let us look at the definition of 3 D printing relative to “rapid prototyping”.

A 3D printer is a computer-aided manufacturing (CAM) device that creates three-dimensional objects. Like a traditional printer, a 3D printer receives digital data from a computer as input. However, instead of printing the output on paper, a 3D printer builds a three-dimensional model out of a custom material. (For our purposes, the words “custom materials” are the key words.)

3D printers use a process called additive manufacturing to form (or “print”) physical objects layer by layer until the model is complete. This is different than subtractive manufacturing, in which a machine reshapes or removes material from an existing mold. Since 3D printers create models from scratch, they are more efficient and produce less waste than subtractive manufacturing devices.

There are several viable options available today that take advantage of rapid prototyping technologies.   All of the methods shown below are considered to be rapid prototyping and manufacturing technologies.

  • (SLA) Stereolithography
  • (SLS) Selective Laser Sintering
  • (FDM) Fused Deposition Modeling
  • (3DP) Three Dimensional Printing
  • (Pjet) Poly-Jet
  • Laminated Object Manufacturing

The process of “additive” manufacturing is finding more and more uses as the availability of desirable materials improves.  At one time, during early phases of 3-D development, materials suitable for printing were very limited with only a few finding acceptance.  Even then, most 3-D printing was used to product prototypes and not “workable” goods used for long-term use.  That has all changed.  Additive manufacturing is now being considered for production as well as prototyping.

The June 2016 edition of “Manufacturing Engineering” had a fascinating article entitled “Bioprinting Helping Researchers Understand How Cells Work”.  Bioprinting is a new word to me with a definition as follows:

“ Bioprinting is the three-dimensional printing of biological tissue and organs through layering of living cells. While this area of manufacturing is still in the experimental stage and is currently used primarily in scientific study rather than applied science, the possibility of creating functional replacement tissues or organs could one day transform medical treatment.” 

Every day new applications for 3D printing are being discovered. Whether it’s  3D printing drones with the electronics built into them, or 3D printing human tissue for drug toxicity testing, the research being done and discoveries being made are often times unbelievable.  The area of 3D bioprinting is probably one of the most interesting applications of additive manufacturing.   It’s quite clear that someday in the not too distant future many of us will eventually have 3D printed body parts both inside and outside our bodies. The prospects of bioprinting are staggering.  As the technology develops over the coming decades,  individuals  will begin receiving bioprinted organs and other biological components, there is no doubt that the term ‘bioprinting’ will become a commonly used word within the English vocabulary.

Bioprinting begins with creating an architectural design based on the fundamental composition of the target tissue or organ.  Pre-bioprinting is the process of creating a model that the printer will use to later create and choose the materials that will be used. One of the first steps is to obtain a biopsy of the organ. The common technologies used for bioprinting are computed tomography (CT) and magnetic resonance imaging (MRI).  In order to print with a layer-by-layer approach, tomographic reconstruction is done on the images. The now-2D images are then sent to the printer to be made. Once the image is created, certain cells are isolated and multiplied. These cells are then mixed with a special liquefied material that provides oxygen and other nutrients to keep them alive. In some processes, the cells are encapsulated in cellular spheroids 500μm in diameter. This aggregation of cells does not require a scaffold, and are required for placing in the tubular-like tissue fusion for processes such as extrusion.   In a laboratory environment, a bioprinter then uses that design and deposits thin layers of cells using a bioprint head, which moves either left and right or up and down in the required configuration. Bioprinters use bio-ink, or bioprocess protocols, to build these organic materials. They also dispense a dissolvable hydrogel to support and protect cells as tissues are constructed vertically, to act as fillers to fill empty spaces within the tissues.

As you can imagine, the equipment used to bioprint human parts is remarkably specialized and used within a clean room environment to eliminate infection of the part or organ when surgically applied to a patient.  The three digital photographs below will illustrate two applications of equipment.

Biopringing Equipment

Biopringing Equipment(2)

BioFab

As mentioned earlier, bioprinting , for the time being, is experimental in nature but very very promising.  Considerable work is being accomplished to bring this form of additive manufacturing to the medical field. The nose and ear shown below indicate two body parts that will be surgically applied to an individual.

Nose and Ear--Bioprinted

For more information on bioprinting, please log into the following web pages:

  • America Makes
  • BioBots
  • Bioprinting (Journal)
  • Cellink
  • Cyfuse Biomedical
  • International Journal of Bioprinting
  • Lux Research
  • MicroFab Technologies
  • Penn State University
  • SME
  • Te Vido Biodevices
  • US Food and Drug Administration
  • Wake Forest Institute for Regenerative Medicine

As always, I welcome your comments.

%d bloggers like this: