ORDORIFOUS REALITY

January 14, 2017


My company is working on a project involved with capturing methane from the decomposition of organic material in landfill sites.  Research preparatory to accepting the job reviled very interesting facts.  Let’s take a look.

NUMBERS:

The U.S. has 3,091 active landfills and over 10,000 old municipal landfills, according to the Environmental Protection Agency. However, in the “good old days,” every town (and many businesses and factories) had its own dump.  This is somewhat disturbing since these landfills were unregulated.  Upregulation without standards can create situations where effluent can creep into groundwater possibly polluting wells and other sources of potable water.  That has now changed for the better.  The two digital maps below will indicate location and concentration of approved landfill sites.  You certainly can notice the greatest concentration is from the Mississippi River east where population densities are greatest.  This is certainly to be expected.

landfill-map2

landfill-map

Municipal solid waste (MSW) – more commonly known as trash or garbage – consists of everyday items people use and then throw away, such as product packaging, grass clippings, furniture, clothing, bottles, food scraps and papers. In 2010, individuals in the United States generated about 250 million short tons (230 Mt) of trash.   In the United Stateslandfills are regulated by the Environmental Protection Agency (EPA) and the states’ environmental agencies. Municipal solid waste landfills (MSWLF) are required to be designed to protect the environment from contaminants that may be present in the solid waste stream

Some materials may be banned from disposal in municipal solid waste landfills including common household items such as paints, cleaners/chemicalsmotor oilbatteriespesticides, and electronics. These products, if mishandled, can be dangerous to health and the environment.  Safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement is the goal of the EPA and state environmental agencies.

A typical landfill site looks pretty much as follows:

landfill-storage

You are correct—a big, very big mess.

CODES AND REGULATIONS:

Title 40 of the Code of Federal Regulations (CFR) part 258 addresses seven major aspects of MSWLFs, which include the following:

  • Location restrictions—ensure that landfills are built in suitable geological areas away from faults, wetlands, flood plains or other restricted areas.
  • Composite liners requirements—include a flexible membrane (i.e., geo-membrane) overlaying two feet of compacted clay soil lining the bottom and sides of the landfill. They are used to protect groundwater and the underlying soil from leachate releases.
  • Leachate collection and removal systems—sit on top of the composite liner and removes leachate from the landfill for treatment and disposal.
  • Operating practices—include compacting and covering waste frequently with several inches of soil. These practices help reduce odor, control litter, insects, and rodent, and protect public health.
  • Groundwater monitoring requirements—requires testing groundwater wells to determine whether waste materials have escaped from the landfill.
  • Closure and post-closure care requirements—include covering landfills and providing long-term care of closed landfills.
  • Corrective action provisions—control and clean up landfill releases and achieves groundwater protection standards.
  • Financial assurance—provides funding for environmental protection during and after landfill closure (i.e., closure and post-closure care).

TIME LINE FOR METHANE PRODUCTION FROM LANDFILL:

Collection of methane does not occur the first day garbage is dumped into a landfill.  The chart below will indicate the constituents and a typical timeline for production CH (4).

time-line

We are after the methane so as you can see, after two years, approximately, we have roughly twenty percent (20%) of the effluent available for reclama.

Typical characteristics and quantities from decomposition of an established landfill are as follows:

typical-characteristics-and-quantities

HOW WE DO IT:

The JPEG below will indicate a very rough schematic of a landfill site with wells “sunk” to receive mechane and basic piping necessary for the accumulation of mechane.  Well systems consist of a series of vertical LFG extraction wells (perforated or slotted collection pipes) that penetrate to near the bottom of the refuse or to near the depth of saturated waste. Well systems are often recommended for landfills or portions of landfills that exceed 12 m (40 ft.) in depth. The design of a well-system requires an estimate of the rate of LFG production and the radius of influence of the wells. A well- system, either active or passive, is useful for layered landfills where vertical LFG migration is impeded. Because of the variability of landfill refuse, design procedures are difficult to apply to LFG collection systems. Vertical LFG collection wells are typically installed once filling operations have been completed, and are commonly spaced at a frequency of one per acre and are constructed using an auger type drill rig. As a general rule, where LFG collection efficiency is important, it is generally advisable to develop a tighter grid of extraction points with smaller spacings operated at a lower vacuum. It has been found that a vacuum of 10 to 25 inches of water column (in wc) represents a reasonable balance between maximizing zones of influence and minimizing air intrusion into the site. Operating at higher vacuum levels tends to extend the zone of capture beyond the limits of the waste burial and increase the potential for atmospheric air intrusion that could create a landfill fire/explosion hazard. The radius of the capture zone for a vertical extraction well may range from around 50 feet to 200 feet and is strongly dependent on localized landfill conditions. LFG recovery rates from an individual extraction well may range from approximately 10 to 50 cubic feet per minute (cfm).

A depiction of a typical well is shown as follows:

well

Each well must meet EPA standards and have the ability to capture all affluent so contamination of ground water does not occur.  Well extraction piping and well placement patterns may look as follows:

well-extraction-piping

A cross-section of a typical site indicates multiple wells with the landfill area.  The digital below will give you some idea as to schematic piping and flow.

methane-collection

As you can see, after accumulation, the affluent must be cleaned to remove methane.  Constituents possible within the “mix” are as follows:

organic-contaminants

Some of these contaminants are cancer-causing so they must be dealt with prior to collection.

You will notice in our example above; the collected and scrubbed methane is used to fire generators used to produce electricity.  This electricity may be sold back to the grid or used for industry and/or homes.

Examples of LFG Energy Projects:

Projects can vary significantly depending on the size of the landfill, the energy end-user, and other factors. Currently operational projects include:

  • Apex (50 million tons of waste) Las Vegas, NV – CC Landfill Energy LLC is building a plant that will produce 11 megawatts (MW) of electricity for NV Energy, a utility that serves approximately 2.4 million customers.
  • Puente Hills (123 M tons) Whittier, CA – The largest LFG-to-electricity program currently in production, Puente Hills produces 50 megawatts, enough to power roughly 50,000 homes. Additionally, some of Puente Hills’ gas is used to fuel garbage trucks.
  • Rumpke Sanitary (36 M tons) Colerain Township, OH – This landfill site hosts the largest landfill-to-gas facility in the world, recovering approximately 15 million standard cubic feet of LFG per day, which is then distributed by Duke Energy Corporation.
  • Newton County Landfill Partnership (19 M tons) Brook, IN – More than 1.1 million standard cubic feet of gas is captured from Newton County Landfill per day. The energy is used by a nearby factory to make egg cartons.
  • Atlantic Waste (15 M tons) Waverly, VA – This site has in place a 20-mile pipeline to Honeywell’s Hopewell plant. The landfill provides 20 percent of the energy used at the plant.

CONCLUSIONS:

Methane extraction is not only possible but is being accomplished across the United States.  The very short list above indicates those states and cities in which technology is being applied to provide usable energy from old-fashioned garbage.

Advertisements

I want us to consider a “what-if” scenario.  You are thirty-two years old, out of school, and have finally landed a job you really enjoy AND you are actually making money at that job. You have your expenses covered with “traveling money” left over for a little fun.  You recently discovered the possibility that Social Security (SS), when you are ready to retire, will be greatly reduced if not completely eliminated. You MUST start saving for retirement and consider SS to be the icing on the cake if available at all.  QUESTION: Where do you start?  As you investigate the stock markets you find stocks seem to be the best possibility for future income.  Stocks, bonds, “T” bills, etc. all are possibilities but stocks are at the top of the list.

People pay plenty of money for consulting giants to help them figure out which technology trends are fads and which will stick. You could go that route, or get the same thing from the McKinsey Global Institute’s in-house think-tank for the cost of a new book. No Ordinary Disruption: The Four Global Forces Breaking All the Trends, was written by McKinsey directors Richard Dobbs, James Manyika, and Jonathan Woetzel, and offers insight into which developments will have the greatest impact on the business world in coming decades. If you chose stocks, you definitely want to look at technology sectors AND consider companies contributing products to those sectors.  The following list from that book may help.  Let’s take a look.

Below, we’re recapping their list of the “Disruptive Dozen”—the technologies the group believes have the greatest potential to remake today’s business landscape.

Batteries

energy-storage

The book’s authors predict that the price of lithium-ion battery packs could fall by a third in the next 10 years, which will have a big impact on not only electric cars, but renewable energy storage. There will be major repercussions for the transportation, power generation, and the oil and gas industries as batteries grow cheaper and more efficient.  Battery technology will remain with us and will contribute to ever-increasing product offerings as time goes by.  Companies supplying this market sector will only increase in importance.

Genomics

genomics

As super computers make the enormously complicated process of genetic analysis much simpler, the authors foresee a world in which “genomic-based diagnoses and treatments will extend patients’ lives by between six months and two years in 2025.” Sequencing systems could eventually become so commonplace that doctors will have them on their desktops.  This is a rapidly growing field and one that has and will save lives.

Material Science

advanced-materials

The ability to manipulate existing materials on a molecular level has already enabled advances in products like sunglasses, bike frames, and medical equipment. Scientists have greater control than ever over nanomaterials in a variety of substances, and their understanding is growing. Health concerns recently prompted Dunkin’ Donuts to remove nanomaterials from their food. But certain advanced nanomaterials show promise for improving health, and even treating cancer. Coming soon: materials that are self-healing, self-cleaning, and that remember their original shape even if they’re bent.

Self-Driving or Autonomous Automobiles

self-driving-vehicles

Autonomous cars are coming, and fast. By 2025, the “driverless revolution” could already be “well underway,” the authors write. All the more so if laws and regulations in the U.S. can adapt to keep up. Case in point: Some BMW cars already park themselves. You will not catch me in a self-driving automobile unless the FED and the auto maker can assure me they are safe.  Continuous effort is being expended to do just that.  These driverless automobiles are coming and we all may just as well get used to it.

Alternate Energy Solutions

reneuable-energy

Wind and solar have never really been competitive with fossil fuels, but McKinsey predicts that status quo will change thanks to technology that enables wider use and better energy storage. In the last decade, the cost of solar energy has already fallen by a factor of 10, and the International Energy Agency predicts that the sun could surpass fossil fuels to become the world’s largest source of electricity by 2050.  I might include with wind and solar, methane recovery from landfills, biodiesel, compressed natural gas, and other environmentally friendly alternatives.

Robotic Systems

advanced-robotics

The robots are coming! “Sales of industrial robots grew by 170% in just two years between 2009 and 2011,” the authors write, adding that the industry’s annual revenues are expected to exceed $40 billion by 2020. As robots get cheaper, more dexterous, and safer to use, they’ll continue to grow as an appealing substitute for human labor in fields like manufacturing, maintenance, cleaning, and surgery.

3-D Printing

3-d-printing

Much-hyped additive manufacturing has yet to replace traditional manufacturing technologies, but that could change as systems get cheaper and smarter. “In the future, 3D printing could redefine the sale and distribution of physical goods,” the authors say. Think buying an electric blueprint of a shoe, then going home and printing it out. The book notes that “the manufacturing process will ‘democratize’ as consumers and entrepreneurs start to print their own products.”

Mobile Devices

mobile-internet

The explosion of mobile apps has dramatically changed our personal experiences (goodbye hookup bars, hello Tinder), as well as our professional lives. More than two thirds of people on earth have access to a mobile phone, and another two or three billion people are likely to gain access over the coming decade. The result: internet-related expenditures outpace even agriculture and energy, and will only continue to grow.

Artificial Intelligence

automation-of-knowledge

It’s not just manufacturing jobs that will be largely replaced by robots and 3D printers. Dobbs, Manyika, and Woetzel report that by 2025, computers could do the work of 140 million knowledge workers. If Watson can win at “Jeopardy!” there’s nothing stopping computers from excelling at other knowledge work, ranging from legal discovery to sports coverage.

 

The Internet of Things (IoT)

iot

Right now, 99% of physical objects are unconnected to the “internet of things.” It won’t last. Going forward, more products and tools will be controlled via the internet, the McKinsey directors say, and all kinds of data will be generated as a result. Expect sensors to collect information on the health of machinery, the structural integrity of bridges, and even the temperatures in ovens.

Cloud Technology

cloud-technology

The growth of cloud technology will change just how much small businesses and startups can accomplish. Small companies will get “IT capabilities and back-office services that were previously available only to larger firms—and cheaply, too,” the authors write. “Indeed, large companies in almost every field are vulnerable, as start-ups become better equipped, more competitive, and able to reach customers and users everywhere.”

Oil Production

advanced-oil-technology

The International Energy Agency predicts the U.S. will be the world’s largest producer of oil by 2020, thanks to advances in fracking and other technologies, which improved to the point where removing oil from hard-to-reach spots finally made economic sense. McKinsey directors expect increasing ease of fuel extraction to further shift global markets.  This was a real surprise to me but our country has abundant oil supplies and we are already fairly self-sufficient.

Big Data

big-data

There is an ever-increasing accumulation of data from all sources.  At no time in our global history has there been a greater thirst for information.  We count and measure everything now days with the recent election being one example of that very fact.  Those who can control and manage big data are definitely ahead of the game.

CONCLUSION:  It’s a brave new world and a world that accommodates educated individuals.  STAY IN SCHOOL.  Get ready for what’s coming.  The world as we know it will continue to change with greater opportunities as time advances.  Be there.  Also, I would recommend investing in those technology sectors that feed the changes.  I personally don’t think a young investor will go wrong.


As you probably know, I don’t “DO” politics.  I stay with STEM (Science, Technology, Engineering and Mathematics).  In other words, subjects I actually know something about.  With that being the case, I do feel the technical community must have definite opinions relative to pronouncements made by our politicians.  Please keep in mind; most politicians have other than technical degrees so they are dependent upon input from individuals in the STEM professions.  That’s really what this post is about—opinions relative to Senator Sander’s Energy Plan. (NOTE: My facts are derived from Senator Sander’s web site and Design News Daily Magazine.  Mr. Charles Murray wrote an article in March detailing several points of Sander’s plan. )

Sanders’ ideas seemingly represent a growing viewpoint with the American population at large. He fared fairly well in the Iowa caucuses and won the New Hampshire primary election although history indicates he will not be the Democratic candidate facing the GOP representative unless Secretary Clinton is indicted by the FBI.  I personally feel this has a snowball’s chance of happening.    Sanders’ popularity provides an opportunity for engineers to weigh in on some of the hard issues facing the country in the energy arena. We want to know:  How do seasoned engineers react to some of his ideas? Let’s look first at a brief statement from “Bernie” relative to his ideas on energy.

“Right now, we have an energy policy that is rigged to boost the profits of big oil companies like Exxon, BP, and Shell at the expense of average Americans. CEO’s are raking in record profits while climate change ravages our planet and our people — all because the wealthiest industry in the history of our planet has bribed politicians into complacency in the face of climate change. Enough is enough. It’s time for a political revolution that takes on the fossil fuel billionaires, accelerates our transition to clean energy, and finally puts people before the profits of polluters.”

                                                                                                — Senator Bernie Sanders

THE GOALS

Bernie’s comprehensive plan to combat climate change and insure our planet is habitable and safe for our kids and grandkids will:

  • Cut U.S. carbon pollution by forty percent (40%) by 2030 and by over eighty percent (80%) by 2050 by 1.) putting a tax on carbon pollution, 2.) repealing fossil fuel subsidies and 3.) Making massive investments in energy efficiency and clean, sustainable energy such as wind and solar power.
  • Create a Clean-Energy Workforce of ten (10) million good-paying jobs by creating a one hundred percent (100%) clean energy system. Transitioning toward a completely nuclear-free clean energy system for electricity, heating, and transportation is not only possible and affordable it will create millions of good jobs, clean up our air and water, and decrease our dependence on foreign oil.
  • Return billions of dollars to consumers impacted by the transformation of our energy system and protect the most vulnerable communities in the country suffering the ravages of climate change. Bernie will tax polluters causing the climate crisis, and return billions of dollars to working families to ensure the fossil fuel companies don’t subject us to unfair rate hikes. Bernie knows that climate change will not affect everyone equally – disenfranchised minority communities and the working poor will be hardest hit. The carbon tax will also protect those most impacted by the transformation of our energy system and protect the most vulnerable communities in the country suffering the ravages of climate change.

THE PLAN:

  1. Acceleration Away from Fossil Fuels. Sanders proposes a carbon tax that he believes would reduce carbon pollution 40% by 2030 and 80% by 2050. He also wants to ban Arctic oil drilling, ban offshore drilling, stop pipeline projects like the Keystone XL, stop exports of liquefied natural gas and crude oil, ban fracking for natural gas, and ban mountaintop removal coal mining.  Ban fossil fuels lobbyists from working in the White House. Massive lobbying and unlimited super PAC donations by the fossil fuel industry gives these profitable companies disproportionate influence on our elected leaders. This practice is business as usual in Washington and it is not acceptable. Heavy-handed lobbying causes climate change skepticism. It has no place in the executive office.
  2. Investment in Clean Sustainable Energy. Sanders proposes investments in development of solar, wind, and geothermal energy plants, as well as cellulosic ethanol, algae-based fuels, and energy storage. As part of his move to cleaner energy sources, he is also calling for a moratorium on nuclear power plant license renewals in the US.
  3. Revolutionizing of Electric Transportation Infrastructure. To begin ridding the country of tailpipe emissions, Sanders wants to build electric vehicle charging stations, as well as high-speed passenger rail and cargo systems. Funds, he says, would also be needed to update and modernize the existing energy grid. Finally, he is calling for extension of automotive fuel economy standards to 65 mpg, instead of the planned 54.5 mpg, by 2025.
  4. Reclaiming of Our Democracy from the Fossil Fuel Lobby. Sanders wants to ban fossil fuel lobbyists from the White House. More importantly, he is proposing a “climate justice plan” that would bring deniers to justice “so we can aggressively tackle climate change.” He has already called for an investigation of Exxon Mobil, his website says.

COMMENTS FROM ENGINEERS:

  • As engineers we should recognize the value of confronting real problems rather than dwelling on demagoguery. Go Bernie.  This comment is somewhat generic but included because there is an incredible quantity of demagoguery in political narrative today.  Most of what we here is without specifics.
  • “Without fuel, we have no material or energy to manufacture anything. Plastics, fertilizer (food), metals, medicine –- all rely on fuel … We are not going to reduce our need for fuel by eighty percent (80%) without massive technology breakthroughs.”  I might add, those breakthroughs are decades away from being cost effective.
  • “I like the idea of renewable energy and I think there are many places in which we are on the right track. A big question is how fast it takes to get there. The faster the transition, the more pain will occur … The slower the transition, the more comfortably we’ll all be able to adapt.”
  • “Imagine if we had rolling power outages throughout the United States on a daily basis because of the shutdown of coal or nuclear power plants.”
  • Another engineer wrote that “the actual numbers of death and cancer risks associated with all the nuclear disasters from Three Mile Island to (Chernobyl) and the Fukushima plant pale in comparison to the result of death and misery of coal and fossil fuel power plants supplying most of our electricity today and for the foreseeable future.”
  • Another commenter said that “for Sanders to rid the US of fossil fuels, he must be one hundred percent (100%) in favor of nuclear energy. No amount of wind, solar, or geothermal will ever replace an ever-growing energy need.”
  • Little or no attention in the forum was paid to the issue of intermittency –- in particular, whether a grid that’s heavy in renewables would be plagued by intermittency problems and, if so, how that might be solved. Intermittent problems where no electrical power will NOT be tolerated by the US population.  I think that’s a given.  We are dependent upon electrical energy.  This certainly includes needed security.

As a parting shot we read: “I am suggesting that folks carefully examine the record of those yelling the loudest, and then decide what to believe,” noted reader William K. “As engineering professionals, we should always be examining the history as well as the current.”

I would offer a sanity check:  WE WILL NEVER COMPLETELY REMOVE OURSELVES FROM THE PRODUCTS PROVIDED BY FOSSIL FUELS.  We must get over it.  As always, I welcome your comments.


INTRODUCTION:

The use of natural gas in the form of CNG (compressed natural gas) is becoming an accepted alternative to petroleum; i.e. gasoline.   In 2011, the use of natural gas as a fuel for automobiles and trucks rose 7.1 % per year with a remarkable increase of thirty-eight percent (38%) since 2006.  That use has more than doubled in the past ten years to almost thirty-nine (38.85) million cubic feet in 2011.  It is estimated that by 2017, approximately eight percent (8%) of new North American Class 6-8 commercial vehicles will be natural-gas powered and annual sales will exceed 29,500 units.  This estimate was made by Frost & Sullivan.   Let’s get a better idea as to the various truck classifications.  The chart below will provide information relative to the classifications as defined by the Department of Transportation (DOT).

Truck Classifications

As you can see, the classifications basically revolve around the gross weight of the vehicle.  Both classifications indicate heavy-duty vehicles.

KEY BENEFITS:

Proven and Reliable – More than 11 million NGVs are in use worldwide, with about 110,000 in the U.S. Some tune-ups for NGVs have been extended by up to 50,000 miles. Some oil changes have been extended by up to 25,000 miles. Pipes and mufflers have lasted longer in NGVs because the natural gas does not react with the metals.

Economical – CNG fleet vehicles realize an overall cost savings of as much as 50% over gasoline, particularly after factoring in available alternative tax credits.  If we look at the relative cost and compare fuel types we see the following:

Mach Fuel Comparison

In my home town, Chattanooga, Tennessee, we see an average gasoline price of $2.57 per gallon with a national average of $ 2.64 per gallon.   For CNG, the gasoline gallon equivalent or GGE is $1.55 per gallon.  Defining GGE, we find the following:

Gasoline gallon equivalent (GGE) or gasoline-equivalent gallon (GEG) is the amount of alternative fuel it takes to equal the energy content of one liquid gallon of gasoline. GGE allows consumers to compare the energy content of competing fuels against a commonly known fuel—gasoline. GGE also compares gasoline to fuels sold as a gas (Natural Gas, Propane, and Hydrogen) and electricity.

Domestic Fuel – Natural gas supplies are abundant domestically, reducing our dependence on foreign oil and the impact of weather-related shortages.

Eco-Conscious – CNG vehicles are much cleaner than traditional vehicles, producing up to 90% lower emissions than gasoline or diesel. Natural gas is the cleanest burning fossil fuel today.  CNG vehicles produce the fewest emissions of all vehicle fuel types and emissions contain significantly less pollutants than gasoline.  Dedicated CNG vehicles release little or no emissions during fueling.

State Incentives– Some states offer tax credits for each vehicle converted to run on natural gas. Some states offer tax credits for purchasing a vehicles running on CNG. Other states offer car pool lanes if the vehicle runs on CNG.  In order for a “Clean Fuel” vehicle to travel in the Express Lanes it must display a “Clean Fuel” sticker/decal which costs $10.  Also, in several states CNG vehicles qualify for high occupancy vehicle (HOV) lane access, where applicable.

NEWS RELEASES

The following news release was issued by the Atlanta Journal and Constitution in July of 2013.

Atlanta Gas Light teams up with The Langdale Company

ATLANTA – July 23, 2013 – The first compressed natural gas (CNG) fueling station developed under the Atlanta Gas Light (AGL) CNG Program is now open in Valdosta, GA. Approved by the Georgia Public Service Commission (PSC) in 2012, the program is designed to expand public access to the CNG fueling infrastructure throughout the state and enhance Georgia’s role in the emerging CNG market in the southeastern U.S.  The Langdale Fuel Company of Valdosta was chosen as the recipient of funding from Atlanta Gas Light for the installation.

That company has worked with MARTA to outfit selected buses with CNG.  A graphic of one of those buses given below:

MARTA BUT WITH CNG

The station itself looks very much like a “standard” filling station we are use to in dispensing gasoline.

Compressed Gas Filling

 

You drive up, put the hose in the filler, then start pumping.

Filling

The complexities of receiving and compressing natural gas are demonstrated by the graphic below.  As you can see, there is significant technology involved with a typical compression “event”.

CNG Storage and Piping

 

SUMMARY:

CNG is definitely a viable alternative fuel for consideration AND there are several companies in the mark place today that can retrofit an automobile engine with the necessary equipment successfully run CNG as a primary fuel.  As always, I welcome your comments.


There is absolutely no doubt the entire world is dependent upon the generation and transmission of electricity.  Those countries without electrical power are considered third world countries with no immediate hope of improving lives and living conditions and yet there just may be alternatives to generally held methods for generating electricity.

If we look at the definition for renewable energy, we see the following:

Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources.

POWER GENERATION:

We are all familiar with current methodologies for power generation.  These are 1.) Hydroelectric, 2.) Nuclear, 3.) Coal-Powered, 4.) Oil-Fired, and 5.) Generation using Natural gas.  The graphic below will indicate the percentages of each generation type by technique.  This is for the United States.  Other countries use generation methods relative to the availability of resources, political pressures and cultural pressures.   Germany is in the process of abandoning their use of nuclear energy for power generation.  This is a cultural and political decision and not entirely based upon scientific considerations.

Generation of Electricity by Type

You will notice that renewable energy was approximately 12.9 percent of the total generation within the United States in 2013. Please note also that hydroelectric is considered to be a source of renewable energy.  This is show by the graphic below.  To break this down even further, we look at the following:

EIA TOTAL GENERATION BY ENERGY TYPE(2)

Renewable energy is represented by five (5) categories:

  • Hydroelectric
  • Wind
  • Solar
  • Geothermal
  • Biomass

One additional possibly is generation of electricity by virtue of tidal processes.  This technology is in its infancy with work being accomplished on a “demonstration” scale.  It is an up-and-coming methodology but right now does not enjoy a place within the list above.

Just how much energy results from each renewable category?

RENEWABLE ENERGY BY TYPE

From above we see there has been growing dependence upon renewable technology as a source of electricity.  Wind and biomass production are increasing while hydroelectric decreasing.  Geothermal and solar remain about the same.   The increase in energy production by biomass is significant. Very significant.

The Energy Information Agency (EIA) has collected the following data:

EIA Numbers for Renewable Energy

Why should governments and independent companies continue to consider renewable energy as a source of power?  There are compelling reasons.

BENEFITS:

  • ENVIRONMENTAL BENEFITS— For the most part, renewable sources of energy have minimal negative impact on our environment.  They are paramount in reducing carbon dioxide emissions.  Millions of people are exposed to toxic fumes from cooking fuels and kerosene lanterns, emissions from automobiles and energy sources for generating electricity.  All result in chronic eye and lung conditions.   Countries such as China and India have days where atmospheric particulate requires masks or face coverings when prolonged periods of outdoor activity are needed.
  • ENERGY FOR THE FUTURE—Coal, oil, natural gas, and even nuclear energy are expendable non-renewable sources of energy.  Once exhausted—gone forever.  Prolonging their use is paramount.  We will never completely remove ourselves from being a petro-based economy.  Too many bi-products are made from petroleum.  It is fantasy to suspect total elimination of petroleum usage.
  • JOBS AND ECONOMY—Investments in hardware and infrastructure for renewable energy use requires money but can creates jobs.  If you have been following the insanity relative to approval of the Keystone Pipeline you know the argument.  On a global basis, we can see the following: (PLEASE NOTE:  The numbers are in billions of US dollars )

GLOBAL NEW INVESTMENTS

The point with this graph is showing the increasing investment dollars for R & D efforts and   production of infrastructure in allowing generation of energy.

  • ENERGY SECURITY— The U.S. imported approximately 10.6 million barrels per day of petroleum in 2012 from about 80 countries. We exported 3.2 MMbd of crude oil and petroleum products, resulting in net imports (imports minus exports) equaling 7.4 MMbd. Net imports accounted for 40% of the petroleum consumed in the United States, the lowest annual average since 1991.

“Petroleum” includes crude oil and refined petroleum products like gasoline, and biofuels like ethanol and biodiesel. In 2012, about 80% of gross petroleum imports were crude oil, and about 57% of all crude oil that was processed in U.S. refineries was imported.

The top five source countries of U.S. petroleum imports in 2012 were Canada, Mexico, Saudi Arabia, Venezuela, and Russia. Their respective rankings vary based on gross petroleum imports or net petroleum imports (gross imports minus exports).  Net imports from OPEC countries accounted for 55% of U.S. net imports.

DISADVANTAGES:

One disadvantage with renewable energy is that it is difficult to generate the quantities of electricity that are as large as those produced by traditional fossil fuel generators. This may mean that we need to reduce the amount of energy we use or simply build more energy facilities. It also indicates that the best solution to our energy problems may be to have a balance of many different power sources.

Another disadvantage of renewable energy sources is the reliability of supply. Renewable energy often relies on the weather for its source of power. Hydro generators need rain to fill dams to supply flowing water. Wind turbines need wind to turn the blades, and solar collectors need clear skies and sunshine to collect heat and make electricity. When these resources are unavailable so is the capacity to make energy from them. This can be unpredictable and inconsistent. The current cost of renewable energy technology is also far in excess of traditional fossil fuel generation. This is because it is a new technology and as such has extremely large capital cost.

CONCLUSIONS:   It remains right and proper that the Unites States and other countries continue research and development relative to renewable sources of energy.    The cost of power generation is increasing and depletion of non-renewable sources is of great concern.  We must continue efforts to improve technologies of renewable power to reduce the cost of infrastructure and delivery.

I would welcome your comments: bobjengr@comcast.net

%d bloggers like this: