June 26, 2017

I want to start this discussion with defining collaboration.  According to Merriam-Webster:

  • to work jointly with others or together especially in an intellectual endeavor.An international team of scientists collaborated on the study.
  • to cooperate with or willingly assist an enemy of one’s country and especially an occupying force suspected of collaborating with the enemy
  • to cooperate with an agency or instrumentality with which one is not immediately connected.

We are going to adopt the first definition to work jointly with others.  Well, what if the “others” are robotic systems?

Collaborative robots, or cobots as they have come to be known, are robot robotic systems designed to operate collaboratively or in conjunction with humans.  The term “Collaborative Robot is a verb, not a noun. The collaboration is dependent on what the robot is doing, not the robot itself.”  With that in mind, collaborative robotic systems and applications generally combine some or all of the following characteristics:

  • They are designed to be safe around people. This is accomplished by using sensors to prevent touching or by limiting the force if the system touches a human or a combination of both.
  • They are often relatively light weight and can be moved from task to task as needed. This means they can be portable or mobile and can be mounted on movable tables.
  • They do not require skill to program. Most cobots are simple enough that anyone who can use a smartphone or tablet can teach or program them. Most robotic systems of this type are programmed by using a “teach pendent”. The most-simple can allow up to ninety (90) programs to be installed.
  • Just as a power saw is intended to help, not replace, the carpenter, the cobot is generally intended to assist, not replace, the production worker. (This is where the collaboration gets its name. It assists the human is accomplishing a task.)  The production worker generally works side-by-side with the robot.
  • Collaborative robots are generally simpler than more traditional robots, which makes them cheaper to buy, operate and maintain.

There are two basic approaches to making cobots safe. One approach, taken by Universal, Rethink and others, is to make the robot inherently safe. If it makes contact with a human co-worker, it immediately stops so the worker feels no more than a gentle nudge. Rounded surfaces help make that nudge even more gentle. This approach limits the maximum load that the robot can handle as well as the speed. A robot moving a fifty (50) pound part at high speed will definitely hurt no matter how quickly it can stop upon making contact.

A sensor-based approach allows collaborative use in faster and heavier applications. Traditionally, physical barriers such as cages or light curtains have been used to stop the robot when a person enters the perimeter. Modern sensors can be more discriminating, sensing not only the presence of a person but their location as well. This allows the robot to slow down, work around the person or stop as the situation demands to maintain safety. When the person moves away, the robot can automatically resume normal operation.

No discussion of robot safety can ignore the end-of-arm tooling (EOAT).  If the robot and operator are handing parts back and forth, the tooling needs to be designed so that, if the person gets their fingers caught, they can’t be hurt.

The next digital photographs will give you some idea as to how humans and robotic systems can work together and the tasks they can perform.

The following statistics are furnished by “Digital Engineering” February 2017.

  • By 2020, more than three (3) million workers on a global basis will be supervised by a “robo-boss”.
  • Forty-five (45) percent of all work activities could be automated using already demonstrated technology and fifty-nine (59) percent of all manufacturing activities could be automated, given technical considerations.
  • At the present time, fifty-nine (59) percent of US manufacturers are using some form of robotic technology.
  • Artificial Intelligence (AI), will replace sixteen (16) percent of American jobs by 2025 and will create nine (9) percent of American jobs.
  • By 2018, six (6) billion connected devices will be used to assist commerce and manufacturing.

CONCLUSIONS: OK, why am I posting this message?  Robotic systems and robots themselves WILL become more and more familiar to us as the years go by.  The usage is already in a tremendous number of factories and on manufacturing floors.  Right now, most of the robotic work cells used in manufacturing are NOT collaborative.  The systems are SCARA (The SCARA acronym stands for Selective Compliance Assembly Robot Arm or Selective Compliance Articulated Robot Arm.) type and perform a Pick-and-place function or a very specific task such as laying down a bead of adhesive on a plastic or metal part.  Employee training will be necessary if robotic systems are used and if those systems are collaborative in nature.  In other words—get ready for it.  Train for this to happen so that when it does you are prepared.



  1. samuel Says:

    How very interesting and cautious it will be to have collaborative robots in our daily lives


What do you think?

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: