I have never presented to you a “re-blog” but the one written by Meagan Parrish below is, in my opinion, extremely important.  We all know the manufacturing sector has really taken a hit in the past few years due to the following issues and conditions:

  • Off-shoring or moving manufacturing operations to LCCs (low cost countries). Mexico, China, South Korea and other countries in the Pacific Rim have had an impact on jobs here in the United States.
  • Productivity gains in manufacturing. The ability of a manufacturer to economize and simply “do it better” requires fewer direct and indirect employees.
  • Robotic systems and automation of the factory floor has created a reduced need for hands-on assembly and production. This trend will only continue as IoT (Internet of Things) becomes more and more prominent.
  • Obvious forces reducing jobs in American manufacturing has been the growth in China’s economy and its exports of a large variety of cheap manufactured goods (which are a great boon to American and other consumers). Since China did not become a major player in world markets until after 1990, exports from China cannot explain the downward trend in manufacturing employment prior to that year, but Chinese exports were important in the declining trends in manufacturing during the past 20 years. More than three-fourths of all U.S. traded goods are manufactured products, so goods trade most directly affects manufacturing output.  Thus, increases in net exports (the trade balance) increase the demand for manufactured products, and increases in net imports (the trade deficit) reduce the demand for manufactured goods. The U.S. has run a goods trade deficit in every year since 1974 (U.S. Census Bureau 2015).
  • The recession cut jobs in all sectors of the American economy, but especially in factories and construction.
  • Manufacturers need fewer unskilled workers to perform rote tasks, but more highly skilled workers to operate the machines that automated those tasks. Manufacturers have substituted brains for brawn.
  • Trade Negotiations have to some degree left the United States on a non-level playing field. We simply have not negotiated producing results in our best interest.

Manufacturing employment as a fraction of total employment has been declining for the past half century in the United States and the great majority of other developed countries. A 1968 book about developments in the American economy by Victor Fuchs was already entitled The Service Economy. Although the absolute number of jobs in American manufacturing was rather constant at about 17 million from 1969 to 2002, manufacturing’s share of jobs continued to decline from about 28% in 1962 to only 9% in 2011.

Concern about manufacturing jobs has become magnified as a result of the sharp drop in the absolute number of jobs since 2002. Much of this decline occurred prior to the start of the Great Recession in 2008, but many more manufacturing jobs disappeared rapidly during the recession. Employment in manufacturing has already picked up some from its trough as the American economy experiences modest economic growth, and this employment will pick up more when growth accelerates.

As a result of the drop in manufacturing, many of our workers are on welfare as demonstrated by the following post written by Ms. Meagan Parrish.  Let’s take a brief look at her resume.  The post will follow.

MEAGAN PARRISH BIO:

Meagan Parrish kicked off her career at Advantage Business Media as Chem.Info’s intrepid editor in December 2014. Prior to this role, she spent 12 years working in the journalism biz, including a four-and-a-half year stint as the managing editor of BRAVA, a regional magazine based in Madison, Wis. Meagan graduated from UW-Madison with a degree in international relations and spent a year working toward a master’s in international public policy. She has a strong interest in all things global — including energy, economics, politics and history. As a news junkie, she thinks it’s an exciting time to be working in the world of chemical manufacturing.

PARRISH POST:

Study: One-Third Of Manufacturing Workers Use Welfare Assistance

There was a time when factory jobs lifted millions U.S. workers out of poverty. But according to new data, today’s wages aren’t even enough to support the lives of 1 in 3 manufacturing employees.

The study, conducted by the University of California, Berkeley, found that about one-third of manufacturing workers seek government assistance in the form of food stamps, healthcare subsidies, tax credits for the poor or other forms of welfare to offset low wages.

This amounts to about 2 million workers, and between 2009 and 2013, the cost for assisting these workers added up to $10.2 billion per year.

What’s more, the amount of employees on assistance shoots up 50 percent when temporary workers are included. In fact, the use of temp workers, who can be paid less and offered limited benefits, is one of the main reasons why the overall wages picture looks bleak for manufacturing.

“In decades past, production workers employed in manufacturing earned wages significantly higher than the U.S. average, but by 2013 the typical manufacturing production worker made 7.7 percent below the median wage for all occupations,” said Ken Jacobs, chair of the UC Berkeley Center for Labor Research and Education, in the paper.

“The reality is the production jobs are increasingly coming to resemble fast-food or Wal-Mart jobs,” Jacobs said.

By comparison, the number of fast-food workers who rely on public assistance is about 52 percent.

Oregon was named as the state that has the highest number of factory workers using food stamps, while Mississippi and Illinois lead the country in states needing healthcare assistance. When all forms of government subsidies were factored in, the states with the most manufacturing workers needing help were Mississippi, Georgia, California and Texas.

The research found that the median wage for non-supervisory manufacturing jobs was $15.66 in 2013, while one-fourth of the workers were making $11.91, and many more make less.

CNBC report on the study detailed the struggles of a single mom working as an assembler at a Detroit Chassis plant in Ohio for $9.50 an hour. She often doesn’t get full 40-hour work weeks and said she has to rely on food stamps, Medicaid and other government programs.

“I absolutely hate being on public assistance,” she said. “You constantly have people judging you.”

The report comes as debate about the minimum wage heats up in the presidential race. Raising the federal minimum wage to $15 has been a chief platform issue for Democratic presidential hopeful, Bernie Sanders. Presumptive Republican candidate Donald Trump has also shown support for lifting wages to some degree.

The findings have also added a sour note to recent good news about jobs in the U.S. Recently, the White House was boasting about improvements in the economy and cited a government report showing that about 232,000 new positions were created during the past 12 months.

CONCLUSIONS: MY THOUGHTS

To me this statistic is shameful.  We are talking about the “working poor”. Honest people who cannot provide for their families on the wages they earn or with the skill-sets they have.  Please note, I’m not proposing a raise in the minimum wage.  I honestly feel that must be left to individual states and companies within each state to make that judgment.  I feel the following areas must be addressed by the next president:

  • Revamp the corporate and individual tax code. What we have is an abomination!
  • Review ALL trade agreements made over the past twenty (20) years. Let’s level the playing field if at all possible.
  • Eliminate red tape producing huge barriers to individuals wishing to start companies. When it comes to North American or Western European manufacturing, there are certainly more regulatory barriers to entry.
  • Review all regulations, yes environmental also, that block productive commerce.
  • Overbearing regulations can give too much power to a few, and potentially corrupt ruling regime and prevent innovative ideas from flourishing. It can perhaps be an obstacle for a foreign nation to invest in a country due to those conditions and regulations which increase costs. (The fact that some of these regulations are usually for the benefit for the people of that nation poses another problem.
  • We have a huge skills gap in this country. Skills needed to drive high-tech companies and process MUST be improved.  This is an immediate need.
  • Beijing signaled with its currency devaluationthat the domestic economic slowdown it has failed to reverse is no longer a problem confined within China’s borders. It is now the world’s problem, too.  This problem must be addressed by the next administration.
  • Companies need to review their labor policies and do so quickly and with fairness. I’m of the opinion that people are almost universally the best judges of their own welfare, and should generally see to their own welfare (including continuing skill improvement and education), but I’m not in any way opposed to market based loans and even some limited amount of public funding for re-education of indigent non-productive workers (although charity & private sources would be a first choice for me).

 

As always, I welcome your comments.

Advertisements

NANOMATERIALS

May 13, 2016


In recent months there has been considerable information regarding nanomaterials and how those materials are providing significant breakthroughs in R&D.  Let’s first define a nanomaterial.

DEFINITION:

“Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 1000 nanometres (10−9 meter) but is usually 1—100 nm (the usual definition of nanoscale).”

Obviously microscopic in nature but extremely effective when applied properly to a process.  Further descriptions are as follows:

Nanomaterials must include the average particle size, allowing for aggregation or clumping of the individual particles and a description of the particle number size distribution (range from the smallest to the largest particle present in the preparation).

Detailed assessments may include the following:

  1. Physical properties:
  • Size, shape, specific surface area, and ratio of width and height
  • Whether they stick together
  • Number size distribution
  • How smooth or bumpy their surface is
  • Structure, including crystal structure and any crystal defects
  • How well they dissolve
  1. Chemical properties:
  • Molecular structure
  • Composition, including purity, and known impurities or additives
  • Whether it is held in a solid, liquid or gas
  • Surface chemistry
  • Attraction to water molecules or oils and fats

A number of techniques for tracking nanoparticles exist with an ever-increasing number under development. Realistic ways of preparing nanomaterials for test of their possible effects on biological systems are also being developed.

There are nanoparticles such as volcanic ash, soot from forest fires naturally occurring or the incidental byproducts of combustion processes (e.g., welding, diesel engines).  These are usually physically and chemically heterogeneous and often termed ultrafine particles. Engineered nanoparticles are intentionally produced and designed with very specific properties relative to shape, size, surface properties and chemistry. These properties are reflected in aerosols, colloids, or powders. Often, the behavior of nanomaterials may depend more on surface area than particle composition itself. Relative-surface area is one of the principal factors that enhance its reactivity, strength and electrical properties.

Engineered nanoparticles may be bought from commercial vendors or generated via experimental procedures by researchers in the laboratory (e.g., CNTs can be produced by laser ablation, HiPCO  or high-pressure carbon monoxide, arc discharge, and chemical vapor deposition (CVD)). Examples of engineered nanomaterials include: carbon buckeyballs or fullerenes; carbon nanotubes; metal or metal oxide nanoparticles (e.g., gold, titanium dioxide); quantum dots, among many others.

Nanotube

The digital photograph above shows a nanotube, which is a member of the fullerene structural family. (NOTE:  A fullerene is a molecule of carbon in the form of a hollow sphereellipsoidtube, and many other shapes. Spherical fullerenes are also called Buckminsterfullerenes or buckeyballs, which resemble balls used in soccer.  Cylindrical fullerenes are called carbon nanotubes or buckeytubes.  Fullerenes are similar in structure to graphite, which is composed of stacked graphene sheets of linked hexagonal rings. ) Their name is derived from their long, hollow structure with walls formed by one-atom-thick sheets of carbon, called graphene. These sheets are rolled at specific and discrete angles where the combination of the rolling angle and radius defines the nanotube properties; for example, whether the individual nanotube shell is a metal or semiconductor.  Nanotubes are categorized as single-walled nanotubes (SWNTs) or multi-walled nanotubes (MWNTs). Individual nanotubes naturally align themselves into “ropes” held together by van der Waals forces, more specifically, pi-stacking.

The JPEG below shows a nanoplate material.

NANOPLATE

Nanoplate uses nanometer materials and combines them in engineered and industrial coating processes to incorporate new and improved features in the finished product.

USES OF NANO TECHNOLOGY:

Let’s look at today’s uses for nano technology and you can get a good picture as to where the field is going.

  • Stain-repellent Eddie Bauer Nano-CareTM khakis, with surface fibers of 10 to 100 nanometers, uses a process that coats each fiber of fabric with “nano-whiskers.” Developed by Nano-Tex, a Burlington Industries subsidiary. Dockers also makes khakis, a dress shirt and even a tie treated with what they call “Stain Defender”, another example of the same nanoscale cloth treatment.
    Impact: Dry cleaners, detergent and stain-removal makers, carpet and furniture makers, window covering maker.
  • BASF’s annual sales of aqueous polymer dispersion products amount to around $1.65 billion. All of them contain polymer particles ranging from ten to several hundred nanometers in size. Polymer dispersions are found in exterior paints, coatings and adhesives, or are used in the finishing of paper, textiles and leather. Nanotechnology also has applications in the food sector. Many vitamins and their precursors, such as carotinoids, are insoluble in water. However, when skillfully produced and formulated as nanoparticles, these substances can easily be mixed with cold water, and their bioavailability in the human body also increases. Many lemonades and fruit juices contain these specially formulated additives, which often also provide an attractive color. In the cosmetics sector, BASF has for several years been among the leading suppliers of UV absorbers based on nanoparticulate zinc oxide. Incorporated in sun creams, the small particles filter the high-energy radiation out of sunlight. Because of their tiny size, they remain invisible to the naked eye and so the cream is transparent on the skin.
  • Sunscreens are utilizing nanoparticles that are extremely effective at absorbing light, especially in the ultra-violet (UV) range. Due to the particle size, they spread more easily, cover better, and save money since you use less. And they are transparent, unlike traditional screens which are white. These sunscreens are so successful that by 2001 they had captured 60% of the Australian sunscreen market.  Impact: Makers of sunscreen have to convert to using nanoparticles. And other product manufacturers, like packaging makers, will find ways to incorporate them into packages to reduce UV exposure and subsequent spoilage. The $480B packaging and $300B plastics industries will be directly affected.
  • Using aluminum nanoparticles, Argonide has created rocket propellants that burn at double the rate. They also produce copper nanoparticles that are incorporated into automotive lubricant to reduce engine wear.
  • AngstroMedica has produced a nanoparticulate-based synthetic bone. “Human bone is made of a calcium and phosphate composite called Hydroxyapatite. By manipulating calcium and phosphate at the molecular level, we have created a patented material that is identical in structure and composition to natural bone. This novel synthetic bone can be used in areas where the natural bone is damaged or removed, such as in the treatment of fractures and soft tissue injuries.
  • Nanodyne makes a tungsten-carbide-cobalt composite powder (grain size less than 15nm) that is used to make a sintered alloy as hard as diamond, which is in turn used to make cutting tools, drill bits, armor plate, and jet engine parts.
    Impact: Every industry that makes parts or components whose properties must include hardness and durability.
  • Wilson Double Core tennis balls have a nanocomposite coating that keeps it bouncing twice as long as an old-style ball. Made by InMat LLC, this nanocomposite is a mix of butyl rubber, intermingled with nanoclay particles, giving the ball substantially longer shelf life. Impact: Tires are the next logical extension of this technology: it would make them lighter (better milleage) and last longer (better cost performance).
  • Applied Nanotech recently demonstrated a 14″ monochrome display based on electron emission from carbon nanotubes.  Impact: Once the process is perfected, costs will go down, and the high-end market will start being filled. Shortly thereafter, and hand-in-hand with the predictable drop in price of CNTs, production economies-of-scale will enable the costs to drop further still, at which time we will see nanotube-based screens in use everywhere CRTs and view screens are used today.
  • China’s largest coal company (Shenhua Group) has licensed technology from Hydrocarbon Technologies that will enable it to liquefy coal and turn it into gas. The process uses a gel-based nanoscale catalyst, which improves the efficiency and reduces the cost.  Impact: “If the technology lives up to its promise and can economically transform coal into diesel fuel and gasoline, coal-rich countries such as the U.S., China and Germany could depend far less on imported oil. At the same time, acid-rain pollution would be reduced because the liquefaction strips coal of harmful sulfur.”

CONCLUSION:

I’m sure the audience I attract will get the significance of nanotechnology and the existing uses in today’s commercial markets.  This is a growing technology and one in which significant R&D effort is being applied.  I think the words are “STAND BY” there is more to come in the immediate future.

 

%d bloggers like this: