Information for this post was taken from the following sources: 1.) Design News Daily Magazine, Rob Spiegel, 2.) Machine Design, “Engineering by the Numbers”, 9 October 2014, 3.) Payscale.com, and 4.) The Occupational Employment Statistics, Bureau of Labor Statistics.

We all are interested in knowing how we “stack up” relative to the average compensation package within our specific discipline.  It’s human nature to want to know.   Most companies do not publish individual salary levels but most publish salaries within “band” levels.  Of course, salaries are dependent upon several factors such as, discipline, number of years within a profession, education levels, number of years with a specific company, company size, company profitability, and certain other markers company specific.   This post will give a very brief summation of salary levels within various engineering disciplines showing the maximum and minimum basic compensation.  I will come back at a later date and provide additional information relative to job satisfaction, demographics for the engineering profession at large and what some feel is the future of engineering in general.  Where are we going as a profession?

Let us now take a very quick look at what Machine Design considers to be the top six (6) engineering disciplines relative to pay grade.

BIOMEDICAL

In my opinion, I think Biomedical Engineering is one of fastest growing fields in the engineering profession.  When I was attending the university, in the dark ages, we did not have biomedical engineering. There were EE, ME and Materials Engineering “types” that gravitated to those endeavors simply because they felt compelled to contribute.  Today, several universities offer specific degrees in Biomedical.  An excellent profession to work within.

CHEMICAL

Chemical engineering has always been an area much in demand due to the requirements of the field.  General knowledge of chemistry is absolutely necessary for success in this discipline. This is certainly one reason the field enjoys a higher entry salary.   The petroleum industry attracts many chemical engineers for obvious reasons.

CIVIL

Years ago, and I do mean years ago, there were two types of engineering; military and civil.  Civil represented all other fields of engineering not practiced within the confines of military needs.  Today, civil engineers perform a great number of tasks including design of structures such as defined by the graphic above.  I feel the $55K entry level is much too low for the work accomplished.

COMPUTER SCIENCE

One very good thing about computer engineering hardware and software—they will be with us forever.  There is an increasing demand for software engineers due to advances in the field of mechatronics.   All complex systems benefit from computer-driven software.  I think that is a given.

COMPUTER-SOFTWARD

Some say the coal industry is going the way of the dinosaur.  I think not.  We still need those by-products from coal so mining remains a very desirable profession if not for that reason only.     In addition, geological engineers are employed by most, if not all, petroleum industries for the purposes of exploration.   Conflict minerals; i.e. cassiterite (for tin), wolframite (for tungsten), coltan (for tantalum), and gold ore, must be mined in addition to many other subterranean substance.

GEOLOGICAL ENGINEERING

Material science is one the most intriguing fields within the engineering profession.   Steel, aluminum, brass, copper, have been with us for centuries but composite materials represent a remarkably fast-growing and fairly new field of endeavor.   Automotive and aerospace companies are investing heavily in material science to improve strength and decrease weight.

MATERIALS SCIENCE

Mechanical engineering is one of the oldest fields in the engineering profession and started with the need to produce and deliver power.  Gears, wheels, brakes, pulleys, springs, levers, positioning devices, storage tanks all depends upon stress/strain calculations and measurements in order to provide products that are safe and fulfill needed requirements.

MECHANICAL ENGINEERING

As mentioned above, I will have more relative to the engineering profession over the next few days and keep in mind, these six represent a fraction of engineering opportunities available to an interested individual.  Hope you enjoy this one and it is beneficial to you.

MAVEN

October 11, 2014


What would you call a BIG story?  ISIL, Ebola Virus, Benghazi, IRS problems with Tea Party members, the search for the missing Malaysian jet?   All are big stories and certainly deserve necessary airtime and commentary.    There is one story that has gotten almost zero (0) airtime from the media and one story I feel is absolutely remarkable in importance relative to pushing the technological envelope.  The Mars MAVEN mission has been a huge success to date with the unmanned craft now orbiting the “red” planet.

MAVEN is an acronym for NASA’s Mars Atmosphere and Volatile Evolution spacecraft which successfully entered Mars’ orbit at 10:24 p.m. EDT Sunday, Sept. 21, 2014 after traveling 442 million miles. The purpose for the mission is to study the Red Planet’s upper atmosphere as never before.  This is the first spacecraft dedicated to exploring the tenuous upper atmosphere of Mars with the following objectives:

OBJECTIVES:

  1. Determine the role the loss of volatile gaseous substances to space from the Martian atmosphere has played through time.
  2. Determine the current state of the upper atmosphere, ionosphere, and interactions with the solar wind.
  3. Determine the current rates of escape of neutral gases and ions to space and the processes controlling them.
  4. Determine the ratio of stable isotopes in the Martian atmosphere.

There is some thought that by understanding the atmospheric conditions on Mars, we will gain better insights as to the evolutionary processes of that planet and maybe some ability to predict evolutionary processes on Earth.  Also, discussions are well underway relative to future establishment of colonies on Mars.  If that is to ever happen, we definitely will need additional information relative to atmospheric and surface conditions.

SYSTEM:

The graphic below is a pictorial of the MAVEN system.  This is somewhat “busy” but one which captures several significant specifics of the hardware including onboard instrumentation.

T0TAL SYSTEM

Please note the graphic at the bottom comparing what is believed to be early atmospheric conditions with current atmospheric conditions.  The loss of magnetic fields surrounding the planet is contributory to atmospheric losses.  Could this happen to Earth’s atmosphere?  That’s a question that we have yet to answer.  Additional specifics can be seen from the following:

MAVEN SPECIFICS

ENTRY:

After a 442 million mile trip, how did MAVEN hook up with Mars?  Very, very carefully.  The blue line in the graphic below shows the first part of MAVEN’s trajectory during its initial approach and the beginning of the 35-hour capture orbit. The red section of the line indicates the 33-minute engine burn that slows the spacecraft so it can be captured into Martian orbit. Mars’ orbit around the sun is indicated by the white line to the right of the planet, and the Martian moons’ orbits are dimly visible in the background.  This is a remarkable example of engineering and physics allowing for pinpoint accuracy relative to entry and the establishment of orbital stability.

ENTERING THE PLANET

INSTRUMENTATION:

MAVEN carries three instrument suites with eight scientific instrument packages designed to study the upper atmosphere and ionosphere of Mars and its interactions with the solar wind.  Three of the instruments are located on the Articulating Payload Platform extending from the bus, including the Imaging Ultraviolet Spectrograph and a mass spectrometer that will sample the atmosphere in situ.  The hardware housing these three packages is shown as follows:

INSTRUMENT PACKAGE

The The Particles and Fields Package, built by the University of California at Berkeley with support from CU/LASP and Goddard Space Flight Center, contains six instruments that will characterize the solar wind and the ionosphere of the planet. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, provided by Goddard Space Flight Center, will measure the composition and isotopes of neutral ions. MAVEN also carries a government-furnished Electra UHF radio, shown by the graphic below, provides back-up data relay capability for the rovers on Mars’ surface.

Communication Module

Lockheed Martin, based in Littleton, Colorado, built the MAVEN spacecraft and provides mission operations. NASA’s Jet Propulsion Laboratory is providing navigation services, and CU/LASP conducts science operations and data distribution.

HISTORY:

On February 19, the MAVEN team successfully completed the initial post-launch power-on and checkout of the spacecraft’s Electra ultra-high frequency (UHF) transceiver. This receiver is shown with the graphic below.  This relay radio transmitter and receiver will be used for UHF communication with robots on the surface of Mars. Using the orbiter to relay data with this relay radio from Mars rovers and stationary landers boosts the amount of information that can be relayed back to Earth.

A part of NASA’s Mars Scout program, MAVEN is the culmination of 10 years of R&D. Some of that R&D went into designing the materials for the spacecraft’s instruments as well as for the satellite itself, which weighs about as much as a small car and has a 37 ft wingspan, including solar panel arrays.  That panel system is shown as follows:

SOLAR ARAY

As you can see from the JPEG, the array is huge but necessary to power the complete system.

The craft’s core structures are made with carbon fiber composites made by TenCate Advanced Composites. The company is experienced in the design and fabrication of composites for aerospace applications, having already supplied them to previous Mars missions, including the Rover and Curiosity rovers. For MAVEN, which will orbit Mars for about one Earth year, TenCate engineered composite face sheets sandwiched between aluminum honeycomb sheets for the spacecraft’s primary bus structure.

Other materials in the orbiter include a cylindrical aluminum boat tail on the aft deck that provides engine structural support. The craft is kept at the correct operating temperature — 5F to 104F — using active thermal control and passive measures, such as several thermal materials for conducting or isolating heat. Most of the orbiter is enclosed within multi-layer insulation materials; the outside layer is black Kapton film coated with germanium.

SUMMARY:

Hopefully, you can see now why I feel MAVEN is a BIG story worthy of considerable air time.  It’s a modern-day engineering marvel.  I welcome your comments:  bobjengr@comcast.net.

THE BIG RIGS

September 13, 2014


The data presented in this post results from work accomplished by the Pew Charitable Trust.

I have a client located thirty-seven (37) miles from my business office. Fortunately, my commute to their facility is via our interstate highway system.  It is absolutely amazing what I see traveling those seventy-four (74) miles most days of the work week.  I see people reading the morning paper, ladies applying makeup, every third person talking on the cell phone, texting, people reading a book and TONS of people, mostly younger individuals, rocking out to the music they undoubtedly love.  One unmistakable fact—you can’t miss the number of “big rigs” moving across our country.  Regardless as to the time of day, they are out in force.

Let’s take a look at several very interesting statistics relative to transportation:

  • The transportation sector accounts for seventy percent (70%) of all fuel consumption in the United States.
  • Medium and heavy-duty trucks, using 2011 figures, represent seven percent (7%) of all vehicles on the road but consume twenty-five percent (25%) of the fuel used by all vehicles.
  • In 2013, trucks consumed 2.7 million barrels of petroleum per day.
  • Fuel is the single largest cost of owning and operating heavy-duty trucks, with the average cost per vehicle being $73,000 per year.
  • The average fuel consumption for an “eighteen-wheeler” is six and one-half (6.5) miles per gallon.
  • Goods and services provided by these trucks account for an average of $1100.00 per year in added expense for each consumer. This is indirect cost passed on to the purchaser.

These facts to me are definitely eye-opening.  In August of 2012, the U.S. Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) finalized fuel efficiency and emission standards dictating café standards of 54.5 MPG for light-duty trucks and passenger vans.  These fuel consumption regulations become effective in 2025.  In September of 2011, the first-ever standards for medium and heavy-duty trucks were finalized by the same agencies.  This standard covers a time period of 2014 through 2018.  Data is now being accumulated for the purpose of further defining the action.

These standards hope to bring about the following beneficial conditions:

  • A $50 billion reduction in fuel cost to transportation companies. Truck owners would save approximately $30,000 per year per truck.
  • A reduction in carbon pollution by 270 metric tons per year.
  • A net fleet savings of $0.21 per mile every thirteen months.
  • Saving 1.4 million barrels of petroleum per day.
  • Reduction of indirect cost to consumers of $250 near-term and $450 short-term.
  • Reduction of air-borne particulate saving health cost by $1.3 billion to $4.2 billion by 2030.

CONCLUSIONS:

I think these goals are achievable but do present engineering challenges to auto and truck designers and manufacturers. We are now seeing great efforts towards compliance with designers looking at the following areas:

  • Design of more efficient engines.
  • Using computational fluid dynamics (CFD) methodology to investigate air flow around truck bodies.
  • Lighter composite structures and materials to reduce the overall weight of cabs and trailers.
  • Using alternate fuels such as CNG (compressed natural gas), fuel cells and on-board hydrogen production.
  • Reduction or elimination of “idle” when a semi-truck is stationary
  • Disengagement of rotating gears when a truck is stopped.

All efforts are exploratory at this point but great progress is being made to meet the requirements.  I would love to hear from you relative to this post.

bobjengr@comcast.net.

 

INTERNET ADDICTION

September 6, 2014


The following resources were used to produce this post:  Internet Society, “Global Internet Report 2014”, SITEOPEDIA and HELPGUIDE.ORG, BBC News, “The Age of Internet Overload”.

WHAT IS THE INTERNET:

According to the Global Internet Society, “The Internet is a uniquely universal platform that uses the same standards in every country, so that every user can interact with every other user in ways unimaginable 10 years ago, regardless of the multitude of changes taking place.”

This statement sums it up in a very precise fashion.  The Internet has undoubtedly changed the entire world.  Open access to the Internet has revolutionized the way individuals communicate and collaborate, entrepreneurs and corporations conduct business, and governments and citizens interact. At the same time, the Internet established a revolutionary open model for its own development and governance, encompassing all stakeholders.  Fundamentally, the Internet is a ‘network of networks’ whose protocols are designed to allow networks to interoperate.  In the very beginning, these networks represented different academic, government, and research communities whose members needed to cooperate to develop common standards and manage joint resources.  Later, as the Internet was commercialized, vendors and operators joined the open protocol development process and helped unleash the unprecedented era of growth and innovation.

INTERNET PENETRATION BY COUNTRY:

If we look at global Internet penetration by country, we see the following:

GLOBAL INTERNET PENETRATION

Internet penetration on a global basis is obvious for countries other than those considered third-world.  Internet usage on a daily basis approaches use by one billion individuals per day.  There should be no doubt that with numbers such as these, there will be those with obsessive/compulsive disorders producing addiction.  With that being the case, what is Internet addiction?

INTERNET ADDICTION:

Internet Addiction, otherwise known as computer addiction, online addiction, or Internet addiction disorder (IAD), covers a variety of impulse-control problems, including:

  • Cybersex Addiction – compulsive use of Internet pornography, adult chat rooms, or adult fantasy role-play sites impacting negatively on real-life intimate relationships.  The Internet is the cheapest, fastest, and most anonymous pornography source. Internet pornographers made over $1 billion in revenues dealing their merchandise on-line. The threat of pornography over the Internet cannot be discounted: 70 percent of children viewing pornography on the Internet do so in public schools and libraries (The Internet Online Summit, 1997). All of us realize that we are surrounded by various forms of pornography, whether noticing the “adult” section of videos at Blockbuster, surfing the Internet, seeing advertising which is clearly sexually suggestive, or innocently going to a movie that just happens to have some kind of sex scene.
  • Cyber-Relationship Addiction – addiction to social networking, chat rooms, texting, and messaging to the point where virtual, online friends become more important than real-life relationships with family and friends.   Facebook has 1.4 billion profiles, and 1.06 billion of those (or 15 percent of the world’s population) use Facebook regularly.   Of those, 78 percent of users access Facebook on a mobile device a minimum of once a month.  Every second, there are 8,000 likes on Instagram.  Instagram launched in 2010, and boasts 200 million active users in 2014, with over 75 million users daily.   Google+ has over 540 million profiles and over 300 million monthly active users.  LinkedIn, launched in 2003, has 300 million users, and an average of two new members per second. Forty percent of users on LinkedIn check the site daily, and Mashable is the LinkedIn company with the most engaged following.
  • Net Compulsions – such as compulsive online gaming, gambling, stock trading, or compulsive use of online auction sites such as eBay, often resulting in financial and job-related problems. Obsessive playing of off-line computer games, such as Solitaire or Minesweeper, or obsessive computer programming.
  • Information Overload – compulsive web surfing or database searching, leading to lower work productivity and less social interaction with family and friends.  An average US citizen on an average day consumes 100,500 words, whether that is email, messages on social networks, searching websites or anywhere else digitally.  Take a look at the global statistics given below and consider what happens in sixty (60) seconds:
    • 168 million e-mails sent
    • 694,445 Google searches launched
    • 695,000 Facebook updates attempted
    • 370,000 Skype calls made
    • 98,000 Tweets accomplished
    • 20,000 new posts on TUMBLR
    • 13,000 iPhone apps downloaded
    • 6,600 new pictures on Flickr
    • 1,500 new blog entries posted, (just like this one )
    • 600+ videos posted totaling over 25 hours duration on YouTube

The most common of these Internet addictions are cybersex, online gambling, and cyber-relationship addiction.  Talk about busy.

SIGNS AND SYMPTOMS:

Signs and symptoms of Internet addiction vary from person to person. For example, there are no set hours per day or number of messages sent that indicate Internet addiction. But here are some general warning signs that your Internet use may have become a problem:

  • Losing track of time online. Do you frequently find yourself on the Internet longer than you intended? Does a few minutes turn into a few hours? Do you get irritated or cranky if your online time is interrupted?  From a business standpoint, I have often heard the Internet is a “black hole” when it comes to wasting time.  This is primarily due to net-surfing.  I will admit, in the work I do as a consulting engineer, I use the Internet on a daily basis to investigate vendors and companies supplying services to complement my work.  I don’t really consider this wasting time but actually saves time spent in research through phone calls, magazine searches, searches through Thomas Register, etc.
  • Having trouble completing tasks at work or home. Do you find laundry piling up and little food in the house for dinner because you’ve been busy online? Perhaps you find yourself working late more often because you can’t complete your work on time—then staying even longer when everyone else has gone home so you can use the Internet freely.
  • Isolation from family and friends. Is your social life suffering because of all the time you spend online? Are you neglecting your family and friends? Do you feel like no one in your “real” life—even your spouse—understands you like your online friends?
  • Feeling guilty or defensive about your Internet use. Are you sick of your spouse nagging you to get off the computer or put your smart phone down and spend time together? Do you hide your Internet use or lie to your boss and family about the amount of time you spend on the computer or mobile devices and what you do while you’re online?
  • Feeling a sense of euphoria while involved in Internet activities. Do you use the Internet as an outlet when stressed, sad, or for sexual gratification or excitement? Have you tried to limit your Internet time but failed?

INTERNET USAGE/USA:

If we look at Internet usage relative to addiction, we see the following for the United States:

HOW MUCH TIME EACH WEEK

This calculates to 988 hours per year for men and 728 hours per year for women. How much time do you spend per year reading a good book, calling your mother, taking a course at a local technical school or university, volunteering in your community, etc?  Have you improved your reading speed and reading comprehension lately?  You get the picture.

SITEOPEDIA has conducted polls that indicate significant addiction can result from Internet usage.  The graphic below will highlight the results of that poll.  Note: those indicating they are not addicted may just be lying.  The real rates of addiction are estimates at best.

ADDICTED

Those indicating they are addicted might consider the following recourse:

  • Recognize any underlying problems that may support your Internet addiction. If you are struggling with depressionstress, or anxiety, for example, Internet addiction might be a way to self-soothe rocky moods. Have you had problems with alcohol or drugs in the past? Does anything about your Internet use remind you of how you used to drink or use drugs to numb yourself? Recognize if you need to address treatment in these areas or return to group support meetings.
  • Build your coping skills. Perhaps blowing off steam on the Internet is your way of coping with stress or angry feelings. Or maybe you have trouble relating to others, or are excessively shy with people in real life. Building skills in these areas will help you weather the stresses and strains of daily life without resorting to compulsive Internet use.
  • Strengthen your support network. The more relationships you have in real life, the less you will need the Internet for social interaction. Set aside dedicated time each week for friends and family. If you are shy, try finding common interest groups such as a sports team, education class, or book reading club. This allows you to interact with others and let relationships develop naturally.

Modify your Internet use step by step:

  • To help you see problem areas, keep a log of how much you use the Internet for non-work or non-essential activities. Are there times of day that you use the Internet more? Are there triggers in your day that make you stay online for hours at a time when you only planned to stay for a few minutes?
  • Set goals for when you can use the Internet. For example, you might try setting a timer, scheduling use for certain times of day, or making a commitment to turn off the computer, tablet, or smart phone at the same time each night. Or you could reward yourself with a certain amount of online time once you’ve completed a homework assignment or finished the laundry, for instance.
  • Replace your Internet usage with healthy activities. If you are bored and lonely, resisting the urge to get back online can be very difficult. Have a plan for other ways to fill the time, such as going to lunch with a coworker, taking a class, or inviting a friend over.

WHAT WE DO:

The fascinating thing about Internet usage is what we actually do with all that time.  From the graphic below, we see legitimate usage of the Internet to accomplish “chores” and execute responsibilities.  I think shopping online and paying bills certainly fall within reason.

MONEY-MONEY-MONEY

Wasting time on the Internet is a matter of definition.  Please keep in mind the graphic below indicates time per DAY.  Left side men—right side women.

SITEOPEDIA U-TUBE

OK, now that I have your attention, where do we go next?

WHERE NEXT

We just might be doomed as a society.  Curb that habit.  I welcome your comments:

bobjengr@comcast.net


There is absolutely no doubt the entire world is dependent upon the generation and transmission of electricity.  Those countries without electrical power are considered third world countries with no immediate hope of improving lives and living conditions and yet there just may be alternatives to generally held methods for generating electricity.

If we look at the definition for renewable energy, we see the following:

Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources.

POWER GENERATION:

We are all familiar with current methodologies for power generation.  These are 1.) Hydroelectric, 2.) Nuclear, 3.) Coal-Powered, 4.) Oil-Fired, and 5.) Generation using Natural gas.  The graphic below will indicate the percentages of each generation type by technique.  This is for the United States.  Other countries use generation methods relative to the availability of resources, political pressures and cultural pressures.   Germany is in the process of abandoning their use of nuclear energy for power generation.  This is a cultural and political decision and not entirely based upon scientific considerations.

Generation of Electricity by Type

You will notice that renewable energy was approximately 12.9 percent of the total generation within the United States in 2013. Please note also that hydroelectric is considered to be a source of renewable energy.  This is show by the graphic below.  To break this down even further, we look at the following:

EIA TOTAL GENERATION BY ENERGY TYPE(2)

Renewable energy is represented by five (5) categories:

  • Hydroelectric
  • Wind
  • Solar
  • Geothermal
  • Biomass

One additional possibly is generation of electricity by virtue of tidal processes.  This technology is in its infancy with work being accomplished on a “demonstration” scale.  It is an up-and-coming methodology but right now does not enjoy a place within the list above.

Just how much energy results from each renewable category?

RENEWABLE ENERGY BY TYPE

From above we see there has been growing dependence upon renewable technology as a source of electricity.  Wind and biomass production are increasing while hydroelectric decreasing.  Geothermal and solar remain about the same.   The increase in energy production by biomass is significant. Very significant.

The Energy Information Agency (EIA) has collected the following data:

EIA Numbers for Renewable Energy

Why should governments and independent companies continue to consider renewable energy as a source of power?  There are compelling reasons.

BENEFITS:

  • ENVIRONMENTAL BENEFITS– For the most part, renewable sources of energy have minimal negative impact on our environment.  They are paramount in reducing carbon dioxide emissions.  Millions of people are exposed to toxic fumes from cooking fuels and kerosene lanterns, emissions from automobiles and energy sources for generating electricity.  All result in chronic eye and lung conditions.   Countries such as China and India have days where atmospheric particulate requires masks or face coverings when prolonged periods of outdoor activity are needed.
  • ENERGY FOR THE FUTURE—Coal, oil, natural gas, and even nuclear energy are expendable non-renewable sources of energy.  Once exhausted—gone forever.  Prolonging their use is paramount.  We will never completely remove ourselves from being a petro-based economy.  Too many bi-products are made from petroleum.  It is fantasy to suspect total elimination of petroleum usage.
  • JOBS AND ECONOMY—Investments in hardware and infrastructure for renewable energy use requires money but can creates jobs.  If you have been following the insanity relative to approval of the Keystone Pipeline you know the argument.  On a global basis, we can see the following: (PLEASE NOTE:  The numbers are in billions of US dollars )

GLOBAL NEW INVESTMENTS

The point with this graph is showing the increasing investment dollars for R & D efforts and   production of infrastructure in allowing generation of energy.

  • ENERGY SECURITY– The U.S. imported approximately 10.6 million barrels per day of petroleum in 2012 from about 80 countries. We exported 3.2 MMbd of crude oil and petroleum products, resulting in net imports (imports minus exports) equaling 7.4 MMbd. Net imports accounted for 40% of the petroleum consumed in the United States, the lowest annual average since 1991.

“Petroleum” includes crude oil and refined petroleum products like gasoline, and biofuels like ethanol and biodiesel. In 2012, about 80% of gross petroleum imports were crude oil, and about 57% of all crude oil that was processed in U.S. refineries was imported.

The top five source countries of U.S. petroleum imports in 2012 were Canada, Mexico, Saudi Arabia, Venezuela, and Russia. Their respective rankings vary based on gross petroleum imports or net petroleum imports (gross imports minus exports).  Net imports from OPEC countries accounted for 55% of U.S. net imports.

DISADVANTAGES:

One disadvantage with renewable energy is that it is difficult to generate the quantities of electricity that are as large as those produced by traditional fossil fuel generators. This may mean that we need to reduce the amount of energy we use or simply build more energy facilities. It also indicates that the best solution to our energy problems may be to have a balance of many different power sources.

Another disadvantage of renewable energy sources is the reliability of supply. Renewable energy often relies on the weather for its source of power. Hydro generators need rain to fill dams to supply flowing water. Wind turbines need wind to turn the blades, and solar collectors need clear skies and sunshine to collect heat and make electricity. When these resources are unavailable so is the capacity to make energy from them. This can be unpredictable and inconsistent. The current cost of renewable energy technology is also far in excess of traditional fossil fuel generation. This is because it is a new technology and as such has extremely large capital cost.

CONCLUSIONS:   It remains right and proper that the Unites States and other countries continue research and development relative to renewable sources of energy.    The cost of power generation is increasing and depletion of non-renewable sources is of great concern.  We must continue efforts to improve technologies of renewable power to reduce the cost of infrastructure and delivery.

I would welcome your comments: bobjengr@comcast.net

HALF SMART

August 23, 2014


The other day I was visiting a client and discussing a project involving the application of a robotic system to an existing work cell.  The process is somewhat complex and we all questioned which employee would manage the operation of the cell including the system.  The system is a SCARA type.  SCARA is an acronym for Selective Compliance Assembly Robot Arm or Selective Compliance Articulated Robot Arm.

In 1981, Sankyo SeikiPentel and NEC presented a completely new concept for assembly robots. The robot was developed under the guidance of Hiroshi Makino, a professor at the University of Yamanashi and was called the Selective Compliance Assembly Robot Arm or SCARA.

SCARA’s are generally faster and cleaner than comparable Cartesian (X, Y, Z) robotic systems.  Their single pedestal mount requires a small footprint and provides an easy, unhindered form of mounting. On the other hand, SCARA’s can be more expensive than comparable Cartesian systems and the controlling software requires inverse kinematics for linear interpolated moves. This software typically comes with the SCARA however and is usually transparent to the end-user.   The SCARA system used in this work cell had the capability of one hundred programs with 100 data points per program.  It was programmed by virtue of a “teach pendant” and “jog” switch controlling the placement of the robotic arm over the material.

Several names were mentioned as to who might ultimately, after training, be capable of taking on this task.  When one individual was named, the retort was; “not James, he is only half smart.  That got me to thinking about “smarts”.  How smart is smart?   At what point do we say smart is smart enough?

IQ CHARTS—WHO’S SMART

The concept of IQ or intelligence quotient was developed by either the German psychologist and philosopher Wilhelm Stern in 1912 or by Lewis Terman in 1916.  This is depending on which of several sources you consult.   Intelligence testing was initially accomplished on a large scale before either of these dates. In 1904 psychologist Alfred Binet was commissioned by the French government to create a testing system to differentiate intellectually normal children from those who were inferior.

From Binet’s work the IQ scale called the “Binet Scale,” (and later the “Simon-Binet Scale”) was developed. Sometime later, “intelligence quotient,” or “IQ,” entered our vocabulary.  Lewis M. Terman revised the Simon-Binet IQ Scale, and in 1916 published the Stanford Revision of the Binet-Simon Scale of Intelligence (also known as the Stanford-Binet).

Intelligence tests are one of the most popular types of psychological tests in use today. On the majority of modern IQ tests, the average (or mean) score is set at 100 with a standard deviation of 15 so that scores conform to a normal distribution curve.  This means that 68 percent of scores fall within one standard deviation of the mean (that is, between 85 and 115), and 95 percent of scores fall within two standard deviations (between 70 and 130).  This may be shown from the following bell-shaped curve:

Bell-Shaped Curve Showing IQ

Why is the average score set to 100?  Psychometritians, individuals who study the biology of the brain, utilize a process known as standardization in order to make it possible to compare and interpret the meaning of IQ scores. This process is accomplished by administering the test to a representative sample and using these scores to establish standards, usually referred to as norms, by which all individual scores can be compared. Since the average score is 100, experts can quickly assess individual test scores against the average to determine where these scores fall on the normal distribution.

The following scale resulted for classifying IQ scores:
IQ Scale

Over 140 – Genius or almost genius
120 – 140 – Very superior intelligence
110 – 119 – Superior intelligence
90 – 109 – Average or normal intelligence
80 – 89 – Dullness
70 – 79 – Borderline deficiency in intelligence
Under 70 – Feeble-mindedness

Normal Distribution of IQ Scores

From the curve above, we see the following:

50% of IQ scores fall between 90 and 110
68% of IQ scores fall between 85 and 115
95% of IQ scores fall between 70 and 130
99.5% of IQ scores fall between 60 and 140

Low IQ & Mental Retardation

An IQ under 70 is considered as “mental retardation” or limited mental ability. 5% of the population falls below 70 on IQ tests. The severity of the mental retardation is commonly broken into 4 levels:

50-70 – Mild mental retardation (85%)
35-50 – Moderate mental retardation (10%)
20-35 – Severe mental retardation (4%)
IQ < 20 – Profound mental retardation (1%)

High IQ & Genius IQ

Genius or near-genius IQ is considered to start around 140 to 145. Less than 1/4 of 1 percent fall into this category. Here are some common designations on the IQ scale:

115-124 – Above average
125-134 – Gifted
135-144 – Very gifted
145-164 – Genius
165-179 – High genius
180-200 – Highest genius

We are told “Big Al” had an IQ over 160 which would definitely qualify him as being one the most intelligent people on the planet.

Big Al and IQ

Looking at demographics, we see the following:

How Smart is Smart

As you can see, the percentage of individuals considered to be genius is quite small. 0.50 percent to be exact.  OK, who are these people?

  1. Stephen Hawking

Dr. Hawking is a man of Science, a theoretical physicist and cosmologist.  Hawking has never failed to astonish everyone with his IQ level of 160. He was born in Oxford, England and has proven himself to be a remarkably intelligent person.   Hawking is an Honorary Fellow of the Royal Society of Arts, a lifetime member of the Pontifical Academy of Sciences, and a recipient of the Presidential Medal of Freedom, the highest civilian award in the United States.  Hawking was the Lucasian Professor of Mathematics at the University of Cambridge between 1979 and 2009. Hawking has a motor neuron disease related to amyotrophic lateral sclerosis (ALS), a condition that has progressed over the years. He is almost entirely paralyzed and communicates through a speech generating device. Even with this condition, he maintains a very active schedule demonstrating significant mental ability.

  1. Andrew Wiles

Sir Andrew John Wiles is a remarkably intelligent individual.  Sir Andrew is a British mathematician, a member of the Royal Society, and a research professor at Oxford University.  His specialty is numbers theory.  He proved Fermat’s last theorem and for this effort, he was awarded a special silver plaque.    It is reported that he has an IQ of 170.

  1. Paul Gardner Allen

Paul Gardner Allen is an American business magnate, investor and philanthropist, best known as the co-founder of The Microsoft Corporation. As of March 2013, he was estimated to be the 53rd-richest person in the world, with an estimated wealth of $15 billion. His IQ is reported to be 170. He is considered to be the most influential person in his field and known to be a good decision maker.

  1. Judit Polgar

Born in Hungary in 1976, Judit Polgár is a chess grandmaster. She is by far the strongest female chess player in history. In 1991, Polgár achieved the title of Grandmaster at the age of 15 years and 4 months, the youngest person to do so until then. Polgar is not only a chess master but a certified brainiac with a recorded IQ of 170. She lived a childhood filled with extensive chess training given by her father. She defeated nine former and current world champions including Garry Kasparov, Boris Spassky, and Anatoly Karpov.  Quite amazing.

  1. Garry Kasparov

Garry Kasparov has totally amazed the world with his outstanding IQ of more than 190. He is a Russian chess Grandmaster, former World Chess Champion, writer, and political activist, considered by many to be the greatest chess player of all time. From 1986 until his retirement in 2005, Kasparov was ranked world No. 1 for 225 months.  Kasparov became the youngest ever undisputed World Chess Champion in 1985 at age 22 by defeating then-champion Anatoly Karpov.   He held the official FIDE world title until 1993, when a dispute with FIDE led him to set up a rival organization, the Professional Chess Association. In 1997 he became the first world champion to lose a match to a computer under standard time controls, when he lost to the IBM supercomputer Deep Blue in a highly publicized match. He continued to hold the “Classical” World Chess Championship until his defeat by Vladimir Kramnik in 2000.

  1. Rick Rosner

Gifted with an amazing IQ of 192.  Richard G. “Rick” Rosner (born May 2, 1960) is an American television writer and media figure known for his high intelligence test scores and his unusual career. There are reports that he has achieved some of the highest scores ever recorded on IQ tests designed to measure exceptional intelligence. He has become known for taking part in activities not usually associated with geniuses.

  1. Kim Ung-Yong

With a verified IQ of 210, Korean civil engineer Ung Yong is considered to be one of the smartest people on the planet.  He was born March 7, 1963 and was definitely a child prodigy .  He started speaking at the age of 6 months and was able to read Japanese, Korean, German, English and many other languages by his third birthday. When he was four years old, his father said he had memorized about 2000 words in both English and German.  He was writing poetry in Korean and Chinese and wrote two very short books of essays and poems (less than 20 pages). Kim was listed in the Guinness Book of World Records under “Highest IQ“; the book gave the boy’s score as about 210. [Guinness retired the “Highest IQ” category in 1990 after concluding IQ tests were too unreliable to designate a single record holder.

 

  1. Christopher Hirata

Christopher Hirata’s  IQ is approximately 225 which is phenomenal. He was genius from childhood. At the age of 16, he was working with NASA with the Mars mission.  At the age of 22, he obtained a PhD from Princeton University.  Hirata is teaching astrophysics at the California Institute of Technology.

  1. Marilyn vos Savant

Marilyn Vos Savant is said to have an IQ of 228. She is an American magazine columnist, author, lecturer, and playwright who rose to fame as a result of the listing in the Guinness Book of World Records under “Highest IQ.” Since 1986 she has written “Ask Marilyn,” a Parade magazine Sunday column where she solves puzzles and answers questions on various subjects.

1.Terence Tao

Terence Tao is an Australian mathematician working in harmonic analysis, partial differential equations, additive combinatorics, ergodic Ramsey theory, random matrix theory, and analytic number theory.  He currently holds the James and Carol Collins chair in mathematics at the University of California, Los Angeles where he became the youngest ever promoted to full professor at the age of 24 years. He was a co-recipient of the 2006 Fields Medal and the 2014 Breakthrough Prize in Mathematics.

Tao was a child prodigy, one of the subjects in the longitudinal research on exceptionally gifted children by education researcher Miraca Gross. His father told the press that at the age of two, during a family gathering, Tao attempted to teach a 5-year-old child arithmetic and English. According to Smithsonian Online Magazine, Tao could carry out basic arithmetic by the age of two. When asked by his father how he knew numbers and letters, he said he learned them from Sesame Street.

OK, now before you go running to jump from the nearest bridge, consider the statement below:

Persistence—President Calvin Coolidge said it better than anyone I have ever heard. “Nothing in the world can take the place of persistence. Talent will not; nothing is more common than unsuccessful men with talent.   Genius will not; unrewarded genius is almost a proverb. Education will not; the world is full of educated derelicts. Persistence and determination alone are omnipotent.  The slogan “Press on” has solved and always will solve the problems of the human race.” 

I personally think Calvin really knew what he was talking about.  Most of us get it done by persistence!! ‘Nuff” said.

PAYBACK

August 23, 2014


It is a very sad day when we lose an American citizen and doubly sad when the loss is due to terrorist activity.  James Wright Foley, a photo-journalist, was captured by ISIS while filming in Syria.  He was held captive over a year and beheaded by that remarkably brutal terrorist organization this past week.  The gruesome video, posted on U-Tube, has now been taken down.

I have seen digital photographs of children, Christian children, beheaded by these thugs.  They will stop at nothing to spread fear throughout the Middle-East and eventually to Western powers unless stopped.  They apparently are well-funded, well-organized and use American weapons left when military forces from Iraq deserted their posts.  They, for the most part, offered no resistance to the ISIS movements from Syria into Iraq and, of course, we provided no incentives for them to turn back.  We watched and did nothing.  We did not heed the warning and now it appears the “cat is out of the bag”.

I have no idea what our response, if any, will be but reality indicates we must do something to stop this spread of terror. The only manner seemingly effective is elimination—kill them.  They cannot be reasoned with and diplomacy obviously will not be the path leading to resolution of this growing problem. If we look at those areas controlled by ISIS, we see the following:

ISIS MAP

We are told they are coming for us and will not be satisfied until their flag flies from our White House.

All indications are there will be no “boots on the ground”.  If a military response is planed, it will be by virtue of air power.  Maybe that will be enough but who really knows?   With that being the case, let’s look at what we have in our arsenal.

F-22 Raptor

F-22 Raptor

This is the era of the F-22 Raptor – the world’s premier 5th Generation fighter.

The F-22 is the only fighter capable of simultaneously conducting air-to-air and air-to-ground combat missions with near impunity. This is accomplished with a never-before-seen standard of survivability even in the face of sophisticated airborne and ground-based threats.

In addition to being America’s premier air-superiority fighter, the F-22 evolved from its original concept to become a lethal, survivable and flexible multi-mission fighter. By taking advantage of emerging technologies, the F-22 has emerged as a superior platform for many diverse missions including intelligence gathering, surveillance, reconnaissance and electronic attack.

The Raptor is operational today, protecting our homeland and combat ready for worldwide deployment. F-22s are already assigned to multiple bases across the country.

F-35 Lightning II

F-35 Lightning

The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all weather stealth multirole fighters currently under development. The fifth generation combat aircraft is designed to perform ground attackreconnaissance, and air defense missions. The F-35 has three main models: the F-35A conventional takeoff and landing (CTOL) variant, the F-35B short take-off and vertical-landing (STOVL) variant, and the F-35C carrier-based CATOBAR (CV) variant.

The F-35 is descended from the X-35, which was the winning design of the Joint Strike Fighter (JSF) program. It is being designed and built by an aerospace industry team led by Lockheed Martin. Other major F-35 industry partners include Northrop GrummanPratt & Whitney and BAE Systems. The F-35 took its first flight on 15 December 2006. The United States plans to buy 2,443 aircraft. The F-35 variants are intended to provide the bulk of its manned tactical airpower for the U.S. Air Force, Marine Corps and Navy over the coming decades. Deliveries of the F-35 for the U.S. military are scheduled to be completed in 2037.  It should be noted here that problems do exists with this aircraft and it is not yet fully operational.

F-15

F-15

The F-15E Strike Eagle is a superior next generation multi-role strike fighter that is available today. Its unparalleled range, persistence and weapons load make it the backbone of the U.S. Air Force (USAF). A complement of the latest advanced avionics systems gives the Strike Eagle the capability to perform air-to-air or air-to-surface missions at all altitudes, day or night, in any weather.

The F-15 is a twin-engine, high-performance, all-weather air superiority fighter. First flown in 1972, the Eagle entered U.S. Air Force service in 1974. The Eagle’s most notable characteristics are its great acceleration and maneuverability. It was the first U.S. fighter with engine thrust greater than the basic weight of the aircraft, allowing it to accelerate while in a vertical climb. Its great power, light weight and large wing area combine to make the Eagle very agile.

The F-15 has been produced in single-seat and two-seat versions in its many years of USAF service. The two-seat F-15E Strike Eagle version is a dual-role fighter that can engage both ground and air targets. F-15C, -D, and -E models participated in OPERATION DESERT STORM in 1991, accounting for 32 of 36 USAF air-to-air victories and also attacking Iraqi ground targets. F-15s also served in Bosnia (1994), downed three Serbian MiG-29 fighters in OPERATION ALLIED FORCE (1999), and enforced no-fly zones over Iraq in the 1990s. Eagles also hit Afghan targets in OPERATION ENDURING FREEDOM, and the F-15E version performed air-to-ground missions in OPERATION IRAQI FREEDOM.

F-16

F-16

The General Dynamics (now Lockheed Martin) F-16 Fighting Falcon is a single-engine multirole fighter aircraft originally developed by General Dynamics for the United States Air Force (USAF). Designed as an air superiority day fighter, it evolved into a successful all-weather multirole aircraft. Over 4,500 aircraft have been built since production was approved in 1976.  Although no longer being purchased by the U.S. Air Force, improved versions are still being built for export customers. In 1993, General Dynamics sold its aircraft manufacturing business to the Lockheed Corporation, which in turn became part of Lockheed Martin after a 1995 merger with Martin Marietta.

F-117

F-117

The F-117A Nighthawk is the world’s first operational aircraft designed to exploit low-observable stealth technology. The unique design of the single-seat F-117A provides exceptional combat capabilities. About the size of an F-15 Eagle, the twin-engine aircraft is powered by two General Electric F404 turbofan engines and has quadruple redundant fly-by-wire flight controls. Air refuelable, it supports worldwide commitments and adds to the deterrent strength of the U.S. military forces.

The first F-117A was delivered in 1982, and the last delivery was in the summer of 1990. The F-117A production decision was made in 1978 with a contract awarded to Lockheed Advanced Development Projects, the “Skunk Works,” in Burbank, Calif. The first flight was in 1981, only 31 months after the full-scale development decision. Lockheed-Martin delivered 59 stealth fighters to the Air Force between August 1982 and July 1990. Five additional test aircraft belong to the company.

FA-18

FA-18

The McDonnell Douglas (now BoeingF/A-18 Hornet is a twin-engine supersonic, all-weather carrier-capable multirole combat jet, designed as both a fighter and attack aircraft (F/A designation for Fighter/Attack). Designed by McDonnell Douglas and Northrop, the F/A-18 was derived from the latter’s YF-17 in the 1970s for use by the United States Navy and Marine Corps. The Hornet is also used by the air forces of several other nations. The U.S. Navy’s Flight Demonstration Squadron, the Blue Angels, has used the Hornet since 1986.

The F/A-18 has a top speed of Mach 1.8 (1,190 mph or 1,915 km/h at 40,000 ft or 12,190 m). It can carry a wide variety of bombs and missiles, including air-to-air and air-to-ground, supplemented by the 20 mm M61 Vulcan cannon. It is powered by two General Electric F404 turbofan engines, which give the aircraft a high thrust-to-weight ratio. The F/A-18 has excellent aerodynamic characteristics, primarily attributed to its leading edge extensions (LEX). The fighter’s primary missions are fighter escort, fleet air defenseSuppression of Enemy Air Defenses (SEAD), air interdictionclose air support and aerial reconnaissance. Its versatility and reliability have proven it to be a valuable carrier asset, though it has been criticized for its lack of range and payload compared to its earlier contemporaries, such as the Grumman F-14 Tomcat in the fighter and strike fighter role, and the Grumman A-6 Intruder and LTV A-7 Corsair II in the attack role.

A-10

A-10

The A-10 Thunderbolt II, affectionately nicknamed “The Warthog,” was developed for the United States Air Force by the OEM Team from Fairchild Republic Company, now a part of Northrop Grumman Corporation Aerospace Systems Eastern Region located in Bethpage NY and St. Augustine FL. Following in the footsteps of the legendary P47 Thunderbolt, the OEM Team was awarded a study contract in the 1960s to define requirements for a new Close Air Support aircraft, rugged and survivable, to protect combat troops on the ground. This initial study was followed up by a prototype development contract for the A-X, and a final fly-off competition resulting in the selection of the A-10 Thunderbolt II.

Selection of the A-10 Thunderbolt II for this mission was based on the dramatic low altitude maneuverability, lethality, “get home safe” survivability, and mission capable maintainability designed into the jet by the OEM team. This design features a titanium “bathtub” that protects the pilot from injury, and dually redundant flight control systems that allow the pilot to fly the aircraft out of enemy range, despite severe damage such as complete loss of hydraulic capability. These features have been utilized to great effect in both the Desert Storm conflict of the 1990’s and in the more recent Enduring Freedom, Iraqi Freedom, and Global War on Terror engagements.

In 1987, the ™A-10 OEM Team and all A-10 assets were acquired by Grumman Corporation from Fairchild Republic Company, and are now part of the Northrop Grumman Aerospace Systems Eastern Region, presently partnered with Lockheed Martin Systems Integration as a member of the A-10 Prime Team.

A/V-8B

AV 8B Harrier

The Harrier today is one of the truly unique and most widely known of military aircraft. It is unique as the only fixed wing V/STOL aircraft in the free world. It also is unusual in the international nature of its development, which brought the design from the first British P.1127 prototype to the AV-8B Harrier II of today.

When the Harrier II was first flown in the fall of 1981, 21 years had elapsed since the original Hawker P.1127 first hovered in untethered flight. This basic design, only one of many promising concepts of the time, has weathered its growing up period and reached maturity in the AV-8B.

The 1957 design for the P.1127 was based on a French engine concept, adopted and improved upon by the British. The project was funded by the British Bristol Engine Co. and by the U.S. Government through the Mutual Weapons Development Program.

With the basic configuration of the engine largely determined and with development work under way, Hawker Aircraft Ltd. engineers directed their attention to designing a V/STOL aircraft that would use the engine. Without government/military customer support, they produced a single-engine attack-reconnaissance design that was as simple a V/STOL aircraft as could be devised. Other than the engine’s swivelling nozzles, the reaction control system was the only complication in the effort to provide V/STOL capability.

F-14

F-14

The F-14 Tomcat is a supersonic, twin-engine, variable sweep wing, two-place strike fighter manufactured by Grumman Aircraft Corporation. The multiple tasks of navigation, target acquisition, electronic counter measures (ECM), and weapons employment are divided between the pilot and the radar intercept officer (RIO). Primary missions include precision strike against ground targets, air superiority, and fleet air defense.

The F-14 Tomcat is a supersonic, twin-engine, variable sweep wing, two-place strike fighter manufactured by Grumman Aircraft Corporation. The multiple tasks of navigation, target acquisition, electronic counter measures (ECM), and weapons employment are divided between the pilot and the radar intercept officer (RIO). Primary missions include precision strike against ground targets, air superiority, and fleet air defense.

The F-14 has completed its decommissioning from the U.S. Navy. It was slated to remain in service through at least 2008, but all F-14A and F-14B airframes have already been retired, and the last two squadrons, the VF-31 Tomcatters and the VF-213 Black Lions, both flying the “D” models, arrived for their last fly-in at Naval Air Station Oceana on March 10, 2006.

CONCLUSIONS

I think ISIS, or ISIL, is a real and present danger.  We can no longer talk our way around this situation; this is no solution.  Playing golf is no solution.  Waiting for the next administration is no solution. The only recourse we have is to kill them.  Do not let ISIS live to see another sunrise.  Let’s let them enjoy their seventy-seven (77) virgins sooner rather than later.  I would enjoy your comments.

Follow

Get every new post delivered to your Inbox.

Join 105 other followers